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ABSTRALT.. .

This thesis deals with the effect of beams on the
coupling action of' slab in slab-wall structures, considering

only the linear elastic behaviour..

The bending stiffness of floor slabs is calculated by
the finite element method (considering both flexural and
in-plane deformations) and the composite action of floor

.slab and beam‘coupling a pair of laterailly loaded plane

" shear walls is studied. Thé width of slab effective as flange
;. - of .the. composite..T-beam._is evaluated.in the beam-slab struc-
tures for various wall conf{é;fations.tThg relative influences
of a range of structural parameters on fhe effective slab .
width are evaluated, and design curves are ﬁresented to
facilitate their determination in practical situations. The
coupling action is found to be influenced by the ratio of
"beam depth to slab. thickness, the ratio of wall opening dié;'
tance to slab width and the ratio of - flange lgngth to.wall

opening distance,
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f L Corridor widtﬁ
Y Slab width
YE EfFectiQé slab width
) Length of slab
: Lcl 7 Centre-ta centrg aistance between shear walls
| b Width of beam |
: 4 Depth of beam
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CHAPTER 1

IN TRODUCTION

g

1.1 General

In general, the structural system of a building is a
three-dimensional complex assemblage of various combinations
of interconnected structural elements. These may be discrete

members or they may be continuous assemblages., The primary

-functions of the structural system are to carry effectively

and safely all the loads acting on the building, and eventually

to transmit them to the foundation.

In the prbcess of selecting the most suitable structurél
system for a tall building, several factors have torbe consi-
dered and Optimized'iﬁ'additioh'to‘the fhheight of thelbuilding,
For this complicated process, no simple clear-cut method is
available., The design team must usé every available me;ns ,
imagination, ingenuity, previous experience, and relevant

literature to arrive at the best possible solution in each

particular case, _ .

In principle, in any structurai 5;étem, all ‘of the load-
resisting systems and components should .be equally active and
1deally should work. together under all types and comblnatlons
of design loads. In other words, the parts of the structural
system that primarily resist horizontal loads should be able to
contribute to the resistance to vertical loads as well. This

is, in fact,” the case in some structural system%, and many

individual components such as floor systems are common to




(or merged together with) harizontal load resisting frames.

Even if the tuwo framing'Systems are discrete and sufficiently
separate, one must always consider them as being interrelated,
Lonsequently, their possible interactions should be taken into

account,

The mast efficient structufal system is the aone that
manages to combine all the structural Subsystems or components
into a completely integrated system in which most of the elements
take part in resisting the loads, Haowever, this ideal case is
unlikely to be fully achieved in practice, due to constraints
such as efficiency and ease of'aésembly and construétion,

.-._manufacturingﬁofqjoints,mecohbmic.consideratidns,‘and,other

requirements.

1.2 Framing Systems to Resist Harizontal L oads

An important characteristic of tallness in a building
is the relative importange of the lateral load-resisting and.
lateral stabilizing systems. Thelﬁdgﬁér laterallloads are those
due to wind and earthquake. The columns of tall bu1ld1ngs must

\
; be StablllZEd or laterally SUppDrted by lateral bracing systems,

and the lateral bracing system must re51;t deformations asso-
cxated with the Dut-of-straightness and plumb of structural
members and deformation associated with lateral forces. For
low-rise and_medium-rise structuresy the analysis andsdesign

. " o '
with respect to lateral forces has generally been merely a




process of checking the vertical load-resistant system for its
ability to resist latefal forces., However, for tall structures
the vertical load-resisting system may not have the-capacity to
resist lateral forces, or even if it does; the design for latefal

forces may add substantially to the structural cost.

In a broad sense there are three fundamental types of

lateral resisting elements:

1. Moment resistant frames
2. Braced frames

3. Shear walls

The three fundamental elements are generally in vertical planes

and may be placed in one or more of three general locations:

. 1. Exterior (perimeter) : . —~
2. Interior, and

3. Core,

1.2.1 Moment Resistant Frames VoL

MDmenf re51stant Frames consist of linear, horizontal
members (beams) in plane with and connected to llnear, vertical
member (Columns) with rigid or SEmlrlgld gnlnts. A moment
reslstant frame is identified by the prominence of its flexibji-
lity due to flexure of the individual beams and columns and the
rotatio;‘at Eﬁeir jeints, The strength aﬁd stiffness of the-
frame afé pEOpartioﬁal to the.éolumn and Eéah gize and inuerseiy f

-proportional to the story height and column ‘spacing.




/'

1.2.2 Braced - Frames

A braced frame consists of a beam and column framewark

infilled with diagonal bracing. It is a system composed entirely

of linear members, and is identified by its Flexrblllty due to

the shartening and lengthening aof the horizontal floor members
and theediaganal‘bracing membera. This system has had wide
application in structural steel buildings. The.braced frame
may be used internally in walls or partitions, where it creates
a special praoblem in the fitting of the portion in and around
the “diagonal members. If used externally, it creats an unusal
facada and unsually shaped windows, which are often not consji-
dered desirable, Its primary use has been“in_and_aropnducores,
where it can be placed in unseen aad nonarchitectural spaces.
The braced frame is a very stiff and efficient structural -
System, since it does not involve the Flaxural deformation of

members.

1.2.3 Shear Walls n p—

Shear walls may be defined as planar uertlcal elements
dlstlagu1shed by thelr relative thlnness and substantijial length.
Shear walls are further 1dent1f1ed as having few openings or
penetratlons, such thaf they have little or no flexibility due
ta the Flexure of individual pieces of the wall, Their flexibi -
lity is generally limited to the sum of ouerall shear deformatian

and auerturnlng flexural defarmatlan. Shear walls may be solid or




penetrated with a limited number of openings. The sheat wall
may Oor may not carry substantial gravity loads. The shear'wall
may be a single bearing wall, a wall connecting two or more
columns, or ahpanel wall fitting the Dpenlngs of beam column
Frame;_The shear wall system is an efficient structural form
for providing lateral strength and stiffness to high-rise
buildings. The different types and layouts of shear wall are

shown in Fig. 1.1.

More usually, in practical structures, the walls are
interténnected through floor slabs and resist both lateral
and graeity loads Fig. 1.2. The-FloUt slabs, besides acting
as horizontallyrrigid_diaphragms to. collect and.distrieute the
lateral'loads_amdng the walls,malso provide some restraint
against the vertical movements and rotations of the walls. The
resulting interaction between the walls and the Floor slabs
increases the lateral stiffness of the building and reduces the

Overall stress levels in the walls,

If the bending stiffness of thehtonnecting members or

their wall connectlons is low and they behave eFFectluely as

pi ned end llnks, the total wind moment at any level will be

o
!

shared between the walls in proportlon tD their flexural rigi-

dltlES, preu1ded that they bear a constant ratio to each other

throughout their height. If the walls are geometrically dissi-

milar, such an assumption, although used often-iﬁ practice, might
R P, _

lead to gross errors, and it is necessary to perform a more

accurate analysis €.9. Space frame analysis with computer.
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F'lj. 1.1{a) Typical shear wall Forms,

/
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Planar Cross-wall

T-Shaped Cross - wall '

Two - way
s
Fig, 1.1(b] Typical Layout of Shear wall,
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The problem is complicated if, in-plane walls are joined
by monent-resistant connecting members., When the walls detiect,

. shears and moments are induced in the connecting beams or slabs,
which consequently induce axial forces in the walls. The resul- ;
ting stzucture is much stiffer and more efficient than the pin-
connected system. The effect of the finite width of a wall
-subjected to horizontal forces is to impose a sidnificant
vertical displacement as well as a rotation on the end of each

connecting beam; this causes a much greater effective stiffness

of the connecting member than in a column-supported structure.

N
RS

¥

Coupling Action of Slab

As it is not aiways pdssihle to construct solid shear
shear walls, pierced walls are adopted to make room for corridors
and dther service facilities. Now-a-days shear wall-slab struc-
tures have become very popular specially for multistoried apart-
ment buildings. The ~speedal feature df this type of bUlldlng is
that the two rouws ’Df apartments are . connected by a common
corridor and they partltan walls are treated as shear walls.

T

As no prDJECtlng stems of -beams run across the corrlddr, there

is no need for false celllngs and the height of the buildings-
- !

is'appreclably shortened thus accommodating more floors in the

same height.

Under the actlon of lateral forces the walls deflect but

\ J
nct as a true cantlleuer because of the stiffness of the slabs
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connecting them . Fig. 1.3. Moreaver, the slabs are guite useful
in diétributing stresses caused due to non-uniferm vertical

loading or differential settlement of the walls Fig. 1.3,

Effect. of Beam Stiffness

Shear walls coupled by beams that are monolithic with
floor slabs are frequently used in shear wall buildings. A
tommon.praetice in the analysis of such coupled shear walls
is to disregard the contribution of the slab and assume that
thermalls are coupled only by a prismatic lintel beam. However,
in gravity load design it is standard practice to include a
portion of the slab as' a flange for the beams, so that greater

moment of resistance is obtained by the composite action. y

1.3 Ubjective of the Thesis

a) To. evaluate effective flange width of the connecting
beam for various wall confiqurations and beam

depths, R

'b) To. find the-principal structural parameters that have

e a significant effect on effective flange width of the

connecting slab,

c) To. provide design guidelines for evaluating the

contribution of slabs in coupling shear

walls.
f/ C i

/

[T N )
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{a} Horizontal loﬁd on slab ‘(b Unequa! Loading

and wall structure.
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{c) Differential Settlement.

Fig. 1.3 Redistribution of Load Through slg'bs
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1.4 Scope of the Thesis

Scope of the thesis is restrlcted to the study of the-

elastlc behau1our of the system,
The follewing wall shapes have been studied:
a) A pair of planar wall s,

b) A pair of T-shaped walls with flanges at the corridor

edge.
c) A pair of I-shaped walls,

d) One T-shaped and another planar wall, havipg flanges

at the corridor edge for T-shaped wall,

The analysis is carried out neglecting the influence of

wall thickness, So when the ratio of wall thickress to wall

OpEﬂlng length is very high these results may not be applied.




CHAPTER 2

REV IEW OF LITERATURE

2,1 Introduction

A typlcal floor system in a bu1ld1ng consists of ;

e1ther.—

a) flat slabs Supported only on vertical load-bearing

elements (walls, columns Or suspenders),

or b} slabs Supported on beams which rest on walls and/or

r .\
columns, _ : M

o

et is - customary inm somé analyses to 1ntr0duce the concept
of an 'effective width of slab', which acts as a beam in flat
slab~wall system or as a flange of a T- beam in a slab-beam- Qéll
system in restraining the vertical movements of the walls,
. These widths are usually flxed by intuition ang englneerlng
judgement. Ope of the emplrlcal gu1des for slabs Connecting -
in- llne pairs of wall is that if, on« ‘the plan of the slab, 45°

lines are drawn from the inner edges of the walls, ‘then the
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b
J
7

width

zzz

[ Effective

Fige. 2.1 Empirical rule for calculating effective uidth.

\,
2.2 Shear Wall-Slab System ' .

7/

_-4Amcommdn-ﬁormxdﬁ.constructianmfor-multi-storyLepartment

buildings consists of shear walls and floor slabs, in which
the coupling of the cross-walls by the floor slabs has led to’
an efficient structural system for resisting lateral loads,
~The structural analysis and design of slaE-coupled shear wall
system may readily be performed using existing techniques Fdru

beam-coupled wall structures, provided that the eguivalent

width of the slab which acts effectively as a wlde coupllng

beam, or its correSpondlng structural stlffness, can be assessed.

- !'"/

bnly a limited number of research publieatidn is avail-
able, the earliest\paper being uritten by Khad and Sbarounis(1).
They attempteedto prepare a set of sultable design curves for
'effectlue uldth of slab in flat slab- structurei; They regarded

| il i
effectlue width as a function of width and span of slab They

R
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also considered effective width as a function of column thickness.
According to their investigation effective width increases with
decreasing width/span ratio and increasing column thickness/span

ratio,

Barnard and Schwaighpfer(z) used Rosman theory with
simplification to solve for streeses'in ~shear walls connected
solely through slebs. They assumed the entlre mldth of the slab
to be effectlue and verified the theoretlcal analysis by model
tests of shear walls connected by slabs of various widths. The
discussicdns of the same paper by Choudhury(s) Quadeer(a) and

(s)

Michael revealed that taking ﬁhe entire slab wldth as effec-

tive may lead to a serious error in the calculation of stresses.

ChDUdhury(E) tested an asbestos cement model of a coupled
shear wall structure and reached the indirect conclusion that
for the particular structure, only 2% .of the total width was
effective. He came to the similar conclusions through an analysis
of floor slabs by finite element method,

(7) tested a number of steeliﬁadels. He attempted to

Hug
prepare a. SFt of suitable design curves for effective width of
'kslab in- Fla? plate structures, He eualuated effective width
For dlfferent shapes of shear walls., He also evaluated effective
width as a functlon 0f corridor width and width of slab itself.
According to his inuestigation effective width increases with

increasing corridor width/slab width ratio.

4
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‘lQuadeer and Stafford Smith(a) analysed the slab by finite
difference method and through experiments, which gave resﬁits
very close to those from theoretical studies. They produced a
set of curves with slab width, centileuer width}_eorridor width,
and the width of the shear ealls, as uariables for effective
‘midth "Ffrom those curues it is seen that effective width is
a functions of all these parameters, while a close inspection
reveals that the slab widthirand corridor width have the most

(9)

significant effect on the effectiue width. Michael showed
that a single curve can be drawn with all the data presented
by Quadeer and Smith, He also tr;ed to fit into it another
curve, having equatlon (L/Y + U.B)(l—Ye/Y) = D.Q,-Qhere, L is
the corridor width Y is the slab width and Y, is the effective
» width of the slab,

0)

Pulmano, Black ang Kabila(1 analysed an eight-story
flat slab building by finite element method. In order to
verify the correctness of the approximate values of effective
width of slabs, given by X T 318-63 uwhere full width is speEif
fied and that given by the equation presented by.Michael,_the;

. \ - ' .
analysed the eqguivalent frame taking the effective width of

.~"Slabs as connecting beams and concluded that the latter one is

nearer to the results obtajined by finite element analysis.,

Loull(11) tested a perspex model wlth closer transverse
spacing Df Drthngonal system walls and found that the stiffening

/
effect of the close- ~spaced walls upon the floor slab is a major

factor in calculating the effective wldth of the coupling floor




18

slabs. He also used Rosman's theory in calculating the resul-
tlng stresses which compared favourably with those obtained
experimentally., He is of the Opinion that in the particular
type of cases the value of the effective width is greater

than the full width of the slab,

The influence of orthogonal walls acting as flanges has
been examlned theoretically using the finite element methaod
by Tso and Mahmoud(zz). They used finite element technique to
obtain the stlffness of the slab coupled shear wall system,
The conflguratlons of the walD Systems included slab Coupled
planar walls, T section walls; and box section core-uwalls,
There final aim was to prepare design'curues in terms of the
efféctive width of the slae between shear walls, They pointed
out the fact that the additional stiffening effect from the.
coupling slab is significant only when the wall Opening is

small,

Coull and wang(12) analysed coupled shear walls with

different shear wall conflguratlon by- finite element method.

They prepared sets of design curues. They 1nuest1gated theore-
\ :
tlcally the uarlatlon of the effective slab width or stlffness
. with dlfferent geometrical layout parameters. They evaluateg
effective slab width as a function of wall length, slab widtn,
wall Dpenlng uldth for a pair of inline plane coupled shear wall
conflguratlon. They concluded from the curves of Y /Y vs. w/L

— 1‘

for the two ratios of L/Y - 0.5 and 1.5 that the effect of
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uariatian in wall length may be disregarded in the evaluation
of effective slab width, so long as the influence of the ratio
L/Y is considered, they recommended that the effect of dissi-
milar wall lengths in a pair of Coupled walls ‘may Ee diéregarded
if the ratio of the shorter wall length to the wall OpEﬂlng
is greater than 0.5. They alsa concluded that the influence DF '
slab width is strong when Y/X is smaller than L /X, but when
Y/X is larger than L /X the influence of slab width diminishes
rapidly. Increasing the slab width beyond a value of about
three times the wall opering M@dth appears to have virtually
no effect on-the effective slab\yidth for a particular wall
opening width. They Showéd that tHe influence of L/X on Ye/X
for a particular value of Y/X 'is almost identical to the imflu-
ence of Y/X on Ye/X for the same value of L/X. They formulated
the equation of a generalized design curve as Ye/Y = L/Y(1-0.4
L/Y). They.also evaluated slab width for flanged shear wall
configuration and found that the presence of external wall
flanges increases the effective width of thé slab by.less than
4 .for the extreme case‘considered.;}héy_concluded that the-
influence of external wall flanges may be safely disregarded.

-

2,3 Shear Wall - Beams - Slab System

Shear walls coupled by lintel beams that are monolithic

with floor slabs are freguently used in shear wall buildings.
:’“

A common-practice in the analysis of such coupled shear walls

'
\
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is to disregard the contribution of the slab and assume thaﬁ
the wélls are coupled only by a_prismatic beam. However, in
gravity load design it is standard practice to include a
partion of the slab as a flange for the beam, .sao that a greater
moment of resistance is obtained by the.composite action. While
under ultimate load conditions it may be sounﬁ practice to
ignore the contribution of the slab beﬁause flange sections
may be cracked at points of negative bending moment, there is
no reason why under working load conditions in which the struc-
tural“behaviour is sensibly ;inearly elastic, the beneficial
étiffening effect of the slab should not be included in an

analysis of the coupled shear walls, , : ;

Although a numgér of studies Haue been médé of the-
behaviour of slébs coupling shear walls, as reviewed in the
‘preceeding article, no infarmation had been published until
1984 when Couwll and uong(13) published their papétrbndtﬁeaaétion

of floor slabs acting compositively with lintel beams. They_

“~

analysed the composite behaviour of

a pair of lgterailylloaaed shear walls by the finite element
-.method. They evaluated the sfiffening éf%ect and the effective
width of thé slab acting as the fiange of-a composite T-beam
fof é.range of strﬁbtural parameters, The uéfiables which were
involved in the structural geometry of a_ﬁypical floor panel
coupling'a pa}f-of shear walls included the slaq;wiﬁth Y, the

1

. : 7
» the wall length, W, the slab thickness, t, the

wall Opening; L
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lintel width, b, and depth, d. They found that the composite
stiffness.ratio and effective flange widfh, Ye/Y, increased
subsfantially;with the wall opening width, L/t, over the range
of wvalues considered. The influeneé of wall apening width,
Howeuer, tends to become-léss impoqﬂant with larger values of
L/t, They also concluded that for p%écticalpuréoses, the
effect of variations in lintel width may be disregarded in

the evaluation of effective flange width. They also found that
the coﬁposite stiffness ratio decreases with an increase in
lintéi_aépth and the effective flange width on the other hand

increases with lintel depth,

It is seen that the effective flange width ualues for
" the practical range of relative lintel depths considered are
substantially lower than the effective width for the limiting

case of a flat slab floor without lintéi'beam¢

/ ¥
'\ ! \ . . //




CHAPTER 3

THEURETICAL ANALYSIS AND PROGR AM DEVELOPMENT'

3.1 Introduction

%

Shear walls Cgupled by bgams:that'are mpnolithi¢
with floor siabs are a common type of construction for épart-
ment buildings. The load bearing shéar mallsAhaue a dual
function of resisting the gravity and lateral loads, resulting
in an efficient use of materials. Further savings may be
achieved by taking into account the effect DF coupling betuween
shearg malls by lintel beams, Dependlng on the plan conflgura—
tion and dimensians, the floor slabs Can provide substantial
n;vuincfeaSEHOﬁElatEBalFStiﬁfDESSytpwth8€wh018ubuildingg'thUS

- reducing the sway effect due to lateral loads.

The composite behaviour of.a beam and slab coupling
a pair of laterally loaded shear walls is investigated by the
finite element method. The finite:element method is being
applied extensively in plate bendlng problems, since it was first
used by Adini and Cloth(Tq) and melosh(15). Jenkins aHd
(16)

Harrison suggested the use of this methaod in calculatlng
“the stlffness of slabs in shear core structures. Une of the
maJDr aduantages in u81ng the finite element method in the
present problem is the comparative ease with.which it can be

incorpaorated into a general proéramme for anaiysing the equi-

valent frame ,which is, in essence, also a finite' element procedure.
R . o i
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3.2 Assumptions Made in the Analysis h

In order to limit the structural parameters involved to
only the most significant, ‘the investigation is limited to the .
study of the interior bay of a cross-wall structure, assumed to
have a lafge number of bays in the longitudinal directiocn and

One bay in the transverse direction."

It is assumed that upder the action of lateral forces,
the walls deflect 8qUally due to the high in-pléne stiffness
Of the floor slabs, As a resclt, the slopes of the walls are
9quaf_at all leuels. An applicatien of the standard slope

deflection equations for prismatic beams then shows that,

wenerrunder=these rconditions, ~the end-rmaments-are‘equal ;and‘a peint

- Of contraflexure occurs at the mid span position of each beam(B).
L4

This assumption is sufficiently accurate far design purposes,

unless one wall is VEeTYy shall compared to the other,

A study méde by Coull and wong(12) of walls coupled by
slabs alope has shouwn that the effects of dlSSlmllar wall
lengths may be disregarded, prOU1dEd that the length of the
smaller wall 1s greater than about. half the length of opening
betueen walls, which will be true in almost all practical

SltuatlDDS. :

3.3 Stiffness of Coupling Beam

I
i

Thé‘shééi walls resist the lateral loads bﬁ the structure,
due to wind or earthquake effects, by cantilever bending action,

!
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which résults in rotations of wall cross-sections. The‘Freg
bending of a pair of shear walls is resisted by the lintél
beams together with the floor slabs, which are forced to
rotate and bend out of plane where they are connected Tigidly

to the walls Fig. 3.1(b).

Due to the large depth of the wall, considerable diffe-

L

rential shearing action is imposed an the connecting beam,
which develops transverse reacfions to resist the wall defor-
mations Fig. 3.1(c), and induces tensile and Compressive axial
Forces into the walls, As a result of the large lever arm
involved, relatiuely small axial‘forcés can give rise to
uﬁm¢usubstantial“moments;oﬁnresistamce,_therebyﬁreducing,greatly
the wind moments in the walls, and the resultiﬁggtensile
stresses at the winduward edges. The lateral stiffness of fhe
structure is alsa considerébly increased, H‘similar situation
arises if relative vertical deFormatiDn of the walls occurs,
due to unegual” Uertlcainloadlng on the walls or to dlfferentlal
foundation settlement. The eFFect on—the connectlng beam is “
similar to that produced by parallel wall ratation by bending

lFlg. 3. 1(d) and 3, 1(e)

-

Let ué consider the elastié‘deformation of a beam of clear
span L coupling a éair of shear walls with centroidal axes
distance, LC apart undergoing parallel rotations, 0 , under the
actions DF windlmoments. m1'and m2 Fig. 3.2(a). MAs is Custaomary

I

in such analyses it is assumed that plane sectians of the wall
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26

Le
ol : A
a . L B b
A o — i
0 \
' . p4 o1
M| M2
y P ’

e L — e —

{a}

Case

Case Y

(c}'E
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_remain hlane in..bending. The deformations of the walls in

Fig. 3.2(a) can be viewed as the sum of the deformation in

Fig. 3.2(b) and in Fig. 3.2(c).

For Case I

R S
P, Py P,
ey
we have
m, = 4EI 8/L + BEI a E‘/.L.2 . 301
1 g ' e R o |
_ an 2 T o ~
my = 26D O + BEI_a O/L° _ R I
.’ P, = km tmo) /L = (BEI_/L%+1261 a/L) @ - 3.3
. 1 } 1 2 ‘ a e .
4EIE Ja 332-9 :
mj1 =motaPy s — (1 Tt R ) | 3.4
R A C4EI / _
C _ e 4 3. a+b Jaby 4
Moy = my + BP, = —— (§+7 L_+_L_§)e 3.5

»
.- v
. J:lq “
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Similarly from Case II

4EI

Moy = =—= (1 + 36/l + 362438 3.6
4ET » -
My = = (1/2 + 3(atb) /2L + 3ab/L %) s 3.7
4ET

T M= m11+ m12 = e(3/2+3(3a+b)/z_+3(a2+ab)A_2)8

BEIE (L+2a)t_C

m, = . ] 3.8
1 L 2 ‘
BEI, (L+2a)t_ |\ -
. m1/e = — > N . 3.8a
- R . L J"’
4RI ey 2y , 2
and M, = - (3/2+3(a+3b) /2L +3(ab+b®) /L )8
.- ] _
: BET (L+2b)|_c
e My = . > ] 3.9
L .
TZ _ BEI (Efzb)Lc- .
¢ C L2 - —
F or symmetric walls, we.haue a==ha —

~

oTand Ur 2a =+ 20 = L -

' c
"_\—/ ' ‘ . - - -
- - - '
and equations 3.8 and 3.9 become
6EI, L2
R e e 310

/

‘The CDuplingrg%ifanSS‘Df the beam, which may bE defined

N
N

in terms of the moment-rotation relationship for the Qall,
v . o
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The moment-rotation relationship for a pair of shear
walls coupled by a lintel beam with the floor slab can be
evaluated by a.finite element anaiysis, allowing the effective
second moment.of area'for the compaosite coupling medium to be
ebtained from Eq. (3.11) for equal wall lengths or either from

(3.8a) or from Eg. (3.9a) for unegual wall length.

3.4 Effective Flange Width of Lomposite Coupling Beam® 13/

In commen with gravity load design, a portion of the
floor slab may be assumed to act as the flange of a T-beam.
Using effective second moment of area, I_,» it.can be shown that

the effective flange width YE is given by

Ye

[

Ly

ol
1.

s

Fh__E_;_..'.

Fig. 3.3 Composite coupling'beah erss-section,

Al 3T e

' . o oLt . - .//
C+ (€% + 48t2a (1 -1 ))% °
] w e w

e B

2t3
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in which b = the width of the beam.,; t = the slab thickness
: 2)

C =12 (Ie - Iw) - A, (t2 + 12e”); e = the eccentricity between

the centroids of the web anpd flange sections, and Iuj second
moment of area for the web Fig. 3.3,

3.5 Finite Element Analysis of Slab and Beam

‘The slab that is monolithic with the llntel beam is
SUbJECtEd to membrane as well as bending effects under composite
coupling lfmtlen. In order to model this behaviour adequately,
the -slab~is represented by ajnectangular flat shell element

and . bean : by the beam element with degrees of ffeedom similar

to those ef_ehell element node. The element used is obtained

by combining a standard plate-bending element with three degrees
- of freedom at each node (transverse dileacement'and rotations

about the x and y- -axes) with a standard plane stress element with

two degrees Df Freedem at each node (in-plane displacements in

X and y- dlrectlens) so that- the flexural as well as the membrane

characteristics are 1nc0rporated\1nmthe same element.

For the,lintel, the beam is dlUlded into elements as
- O
P i

shown in Figs 3.4, Frbm the assumptlons that slab and beam
. T ! .
i TR l
acts compositely, stiffness matrlces cerresgonding to the beam's

! : . :

i

centroidalfnodes are obtained first and than transformed to the

corresponding nodes of flat shell element uhlch are assumed to
\ \
be rlgldly connected wlth the Centroldal nodes of beams by rigid
g P / :

R ‘\. ; \ ) - - EE . .- . Iy

links,
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Fig. 3.4 Typical finite element idealization of Beap -
and floor slab,

J.5.1 Flat Elements

yield governing differentjial equatlons uhose Complexity depends
greatly on shell geometry. Analytlcal solutlons of these equa-
thﬂS .are, auallable only for shells ‘with slmple geometrlc forms

. and FDr restrlcted boundary condltlons._“

1

The Flnlte element method which was introduced ip the
flftles, is a Completely general approach for the SOlUtan of
problem in stress analysis. The Flnlte element method implies.
-an 1deallzat10n of the ‘shell surface as an assemblage of dlscrete_

structural elements. The stlaness perertlES of the 1nd1u1dual

AY
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elements are evaluated from an assumed set of dlsplacement patterns.

These displacement patterns or functions shculd include:

1. All rigid body motions

2, Lonstant strain and curvature states-

Planar quadrilateral elements mayabe used for the analysis
of shells for which groups of four surface points lying in one

r

and the same plane can be conveniently found.

It is important to emphasize that when using planar
elements, errors of a geometric nature are introduced in addji-
tion to the errors associated with the assumed displacement
functions. However, these gecmetrical e@Lrors diminishlwith

decreasing mesh size.

The structural idealization and.its subsequent discreti-
zation is achieved by dividing the continum into a number of
rectangular, triangular, quadrilateral or arbitrarily shaped
elements.'In the present~analysis, rectangular elements have
been used. Although it has been. shown that rectangular elements

give better results than trlangular elements, the maJDr disad-

vantage of these elements is the dlfflculty encountered in

-

deallng ulth 1rregular, curved boundaries. Most cf the shear
I
walls are built “toua rectangular module and the slabs are also

regular in shape so this difficulty should not arise in

¥

~analysing slab coupled with shear walls and beams.

! Fan E ) . /
Y |

Analysls of - shell structures by the Flnlte element method

was first based\on the pure membrane theory, and made use of the

i




33

trlangular constant strain element. Howeuer, a satisfactory
shell element must contain both the plane stress and the

plate bendlng stiffnesses. If the relatjive displacements for a
planar shell¥element are small,'the membrane or in-plane action.
and the bending aotion are uncoupled oithin each element. The

stiffpess matrix for the shell element may therefore be obtajined '

by sUperimposing tuwo independently derived stiffness matrices:

1. The stiffness matrik for a plane stress finite

element.

2. The stiffness matrix for a plate bending finite

element.

The use of flat plate elements for analysis of shells
’ was first presented by Zienkiewicz and Cheung(jﬁ) and by
€lough and Tocher(18). It is easy to generate stiffness matrix
for a Flat'element. The shell element has three translational
and two rotational degrees of freedom of each model point, as

shown imnFig. 3.5. The rotation about an axis noermal to the

element is not inoluded among the nodal parameters. This may
lead. to some dlffloultles wheh. transformlng the element stlff-
—fess matriix to the global ooordlnate system. This problem may

be overcome by transforming‘only the translational degrees of
; j :

freedom to the global coordinate system. The rotatlonal degrees

of freedom uwere transformed to a common tangent plane at each
/

'nodal lent *neglectlng the rotatlons about the axls normal

to thlS plane. _
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Membrane Element Plate Element

Flat Shell Element

Fig. 3.5 Rectangular” flat shell element with 5 degrées of
freedom at each node. . '

The flét'elemenﬁ:iS'Silee to formulate, easy to describe

by input data; easy to mix with other element types, and
, e

capable oFﬁrigidébody motion without strain., The stiffness

matrix of the shell element will first be established in a_

local toordinate system, The element-and the convention

adapted for the local coordinate system are shown in Fig. 3.6.
- \ - A :

R Ch ' .
-\-’.’F,/l" - . . “

g4 - N

Fig. 3.8 Planar shell element in local coordinate system.
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w
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Y (a) Displacement Components (bl Rotation Components
Ll ¢
P,
A A
1t o Py H [ My
;P* . , — My

(c) Force Compohénts ) {d) Moment Components

Fig. 3.7 Nodal displacementuand force components.

Each of the four nodes is consldered to haue three dlsplace»
. | : :

“ment and two rotation components in space as nodal parameters.

l
Thus theré are 5 parameters related to each node. The parameters

are denoted as shown in Fig. 3.7a and b. The corresponding
5tress ‘rCesultants are denoted as shown in Flg. 3.7c and d, The

'\

quantltlesldefined in Fig. 3.7 are assembled fn_the following

vectors.
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{db = u {r} = P
i i
p Y
v | y |
w ' p : J.13a,b
. A .

0 Mx
6 M
3 YJ - y_ )

where index i denaote node number i. The total uectars of nodal

parameters and nodal stress resultants for the element are

{ g} = 4, (EY = Ey . 3.14a,b
g9, LY
d F o
=3 =3
I |

The quantities F and 8 are related by the equations

[5_] {E’.} | . 3.15

where [5] is the stiffness matzix of the shell element referred

.

to local coordinates, ‘ ‘“e

—

FProvided that the relative dlsplacements, wlthln the

element are small, whlch is the usual assumption of linear

el

structural | theery, the in- plane ‘action and the bending actlen

~

are unceupled.

The plane stress stiffness wlll be dlscussed in Art, 3.5.2,

is ehosen to_describe the in-plane actlon and gluen in the form
i } _ o ﬁ
as shown in Eg. (3. 15) S

Y\
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- R p p p [ ]
Py = | &9 Ky Kl K, u
P P p P
9] K K K K v
|y, S21 =22 =23 =24 ! 3.16
[ 5 ] p P p p B
P K31 K3z K33 K3, u
P KP KP KP kP v
| "y, | =41 =4z 243 =44 | Y
- -
. X
p v
Ly 4 Ly
._: u
[ o
X
LY 1,
p .
L. y_lg,

In £g. 3.16 displacements and stress resultants related to
node number 1 have been listed first, follouwed by the corres-
ponding quantities for nodes number 2, 3 and 4. The superscript

P has been added to denote plane stress,

The plate bending element with 12 degrees of freedom

will discussed in Art:! 3.5,3 is chosen for bending action.

The’stiffness matrix for this element is giﬁén in Eq. 3.17.

-

o
4
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I — ] P
e 8 B B B 7
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B B B B 8 )
" K21 Koo Koz Ky, X
B B B B
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In Eq.'3.17 the parameters have again been arranged

in subvectors related to the nudes 1,2, 3 and 4 respectluely,

and in each subvector the dlsplacement -normal . to the plane.

of the plete'has been placed First.

;//’- All necessary 1nF0rmat10n For the formatlon of the

-

stlffness matrlx of Eg. 3.15 is now auallable. It only remains
i - '

to place the submatrices of Eqs. 3 16 and 3, 17 in the right
p031t10n5 in [F . The procedure lS shown in Flg. 3.8 for
the top‘feuresubmatrlces in 5J:. The temalnleﬁ 8 submatrices
are formed in the seme manner. ‘ | -

\

(e
\
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In-plane action (8x8) Bending action (12x12)
p P | up P B B B B
K. .| K K K K K K K
. ~11! —12\ =13\ =14 _ “11‘.‘1§/ _?B _141
kPl «P \ k" B | «8 Kal
=211 =22 \N\=23 22 723 .—2?
o | .o [\p s | ts | g
K311 532 5\33 32 !5-33 -K-z}a
plop ‘5 B / B B
\ LR L 4 /iu 5‘44
[ . |“ B : *I v P \i Tz ‘ T ez
P P ] | |
K5 II K2 "_(F|}3| -KlF’A!
I e AR 'S IRt M
I B 8 ! B 8 -
[ Kn | K L Kz | Ky
f ) R —
| | | !
. ity Rt Tl S s P - =4 - ——
[ I ' |
I ' | [ -
T | | N {
' l b | .
""““f“\“"*‘T*_“"""T"""‘“*'T—’"“
- : \ | . | i
- 3 ‘ I | :
i
o L ! |
| i ] =
j i I
..__v_t__._.,.____,_I__..._____T______.__}___.___.
.| I I i
| i ! |
! [ ' | u
\'\' — R /
\i. ;' N . R . I/'

Fig. 3.8 Construction of the stiffness matrix for the shell
element by use of stiffness matrices for plane
stress and plate bending. - :
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'3.5.2 Plane Stress Flement

Isoparametric guadratic plane elements are used to. -
develop stiffness matrix for the inﬁplane_action. Any standard
text can provide the fiormulation required for developing the
plane sttess stiffness matrix. The author uses the formulation

given by Bathe and Milson(19).

3.5.3 Plate Bending Element

The finite element method is being applied extensively
in plate bending problems, since it was. first used by

(14)

Adini and Clough and Melosh§15). In order to evaluate

the stiffness matrix of thelindiuidual‘elements, the displace-

ment patterns within the elemEnts have to be assumed. The

R accuracy af the finite element procedure depends directly on
the extent to which the assumed displacement functions are
able to reproduce the actual distortions in the continuum.

Clough and Tocher(zo)

~have carried out a comparative study

of the various dlsplacement functlons which have been suggested
for use in plate bendlng problems. ihey studied 3 shapes
suggested for rectangular elements and 4 shapes for trianqular
elements and from 280 different analyses of different plates,
they conclLded that 'two of the rectangular elements (M and
ACN) and the compatible trlangular elemaent (HCT) prou1de very
satlsfactory ‘analyses when used in the flnlte element analyses

- of plate bendlng. These tuwo rectangular elements are somewhat

more accurate than the triangular element, partlcularly when
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a4 coarse mesh is used and therefore are to be recommended for
the analysis of any system in which the ooundarles fit the
rectangular co-ordinate area., Since floor slabs are usually

composed of\reotangular areasy 1t was decided to use rectan-

gular elements.

The ACM: displacement function is 12 term polynomial
_ 2 2, 3
W = a, + a; x + azy * a,x  + agxy + agy + AmX
+ a 2 +a 2 + a 3 + a 3 + a; 3
g% ¥ Tagxy 10Y 117 T2%Y
The element stiffness matrix derived from the above
-displacement fupction is shouwn in Appendix-A,

-

3.5.4 Beam Element [

’ In tne oeeient analysis the beam is.assumed to act
compositely with the slab coupling it. So it will not be
unjustified to take as much degrees of freedom in the beam
node as in the slab nodal point, So the degrees of freedom

and convention taken is' shown innthe Fig. 3.9 and 3.10. 7 -

It is to be noted that since the analyses are carried

an the floor slab elements only and since the plane of slab

-

doan be anylof the plane of Global coordinate plane there is

no need for transforming slab element stiffness matrix from
local -to Global stiffness matrix. Also .in general the beam
elements are in orthogonal direction, S0 tuwo types of beam

.f .
elements are used, one in X—dlIECthﬂ Fig. 3.9 and other in

Y-direction Fig. 3 10,
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Fig. .3.10» Beam element Y-direction. /.
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The element stiffness matrix with 5 degrees of freedom

for both types of beam element are shown in Appendix-A,.

3.5.5 Rigid Links (Composite Elements)

Lintel beam is assumed to actlcompositely with thee.
slaﬁ. Usualiy the neutral surfacés of the plate and beam
are not coincident. Therefore, to keep displacement compati-
bility between beam element and'pléte and to reduce the total
number of nodes, beam stiffness matrix is developed for the
degrees of freedom of the adjacent plates node connected
mith.the beam. A standard preliminary treatment is to connect-
adjacent plate and beam nodes'by rigid link, so.that d.e.f
of the beam are replaced by d;o.f of the plate. The usual
assembly is then passible. The necessary transformation is

now described.

!
i/

Fig. 3.11 Nodes 1 and 2 of a beam element are fade slave
to nodes K and & by rigid links 1k and 2%,
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fhe beam element used has 10 d.o.f - 5 at node 1 and
3 at naode 2. With reference to these d.o.f, element load"énd
Stiffness matrices are t' and k', Similar d.o.f. are used
at nodes k and R of the rigid links 1k .and 22. The "master"

d.0.f. at node k and ."slave" d.o.f at node 1 have the relation

T \ ' ¢ 3
M =[i1:l Yk
Y1 Yk
w w
1 k
< f 4 ,
] ij exk
8y1 Byk
. \ / \ /
- . —
where [A{] = 1 0 0 0 - e 3.19
. o 0 | a0 C 0
0 ) 1 a 0
f 0 0 i a
0 0 0. 0 1
i 1 _
where B, = eccentricity between plate H0de and beams centroigal
- \node.. (*+ve if plate ‘s oneutral plane is above the

ﬁbeam neutral plane).

A similar expression is written for link 2% by replacing
subscripts 1 and k by 2 and £ . The transformed arrays {rf and
[5] associated with d.o.f at nodes k and & , are

i
I
1 /
' o - . P

T ——
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L
(x = [1] (r')

o ] -] [

I
=

where [I]- = i, g
o = , 3.20
10x10 | 0 A

3.5.6 Degrees of Freedom of the Floor Slab(s)

In general, each nodeal point in the flat shell has

five 'degrees of freedom u,u,w,‘ex, ey. In the case of flat

shell suppprted on walls and columns, stiffness values are
necessary in the overall analysis of the structure for only
those degrees of freedom thch.corrESpond to the unknown
-displacements of the walls and columAs, For example, in

Fig. 3.12, stiffness of nodes A1,A A_,B LA AB and B

2’ 3) a, 5! 1)B2!

B: will be sufficient in carrying out the overall analysis of

-

Y } : Ag ' Do
. : Az | Ay Ea _ B B2

o A 77777 7
_ RV77774.1171114 775711 7277

1 W

7
e h

" . . i
. - [N -, . . /
{

1 . - i . i

Fig. 3.12 Finite element idealization of floor slab,
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the structure. Thus, it is not necessary to incorporate the

full finite element stiffness matrix of the 'slab in the
analysis of walls., Instead, stiffﬁess values corresponding
to only those nodes which are coupled to the walls will

suffice.

In the analysis of walls, it is éssumed that plane

sections of the walls before bending remain plahe after bending.
This implies that in order to maintain full compatibility with
the uall-d%Splacements, the displacements of the floor nodes
directly connected to the walls. (viz. ApsRosfssfyAg,Ag,B.,8,
83 in Fig. 3.12) must also be linearly related, Consequently,_
displacements for all the ﬁdaEé connected to any particular

# wall may be referred to only one:node (ﬁié; displacements of
B1 and 52 may be referred to the displacements of 83). So the
nodes in tﬁe floor slab may be classified into the following

categories: -

i) nodes uwhich are completely free to displace and

hencé no nodal forces prddﬁbed.

- y ‘ o
ii) nodes which are rigidly connected to other nodes

and hence their diSpladéments bear a linear

relationship with each other.
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5 0 15 20 25 30 - 35

33

all 3

AFigyﬂ3t1EamELhitemeLementaiQQQLizatiéﬁroﬁ”floqr'Sléb.

In Fig. 3.13, nodes 2,3,4,1.7,22,32,33,34 and 35 fall

into the first category..

The displacements of all nodes lying on wall 1, node
nos. 2,3,4, are linearly related to each other and these may

be expressed in ferms of the displacements of any of the 3

nodes. Téking node 3 as the reference node:

\ . . .
i \ o . )

v, =éu3, as we neglect the inplaﬁé rdtation
up =g - (yzeyy) O 3t Oxgmxple o

8 = ex,3

5 =g

or [52}

1

L Y3 | , /




48
and Uy, = Uz

W, = wg - (yz—ya) 0,4 * (x3 - xa) By,3
X, 4 Xy 3

3] = O
Yyl Ys3

S KT RIS

Similar equations may be written for the other walls.

Although, in the analysis of the floor slab, the reference
node may be selected arbitrarily, as long as it lies on the
wall, these stiffnesses have to be transformed to cofrespond
to the wall-centroids before they can be incorporated into
the equivalent frame programme forhfhe analysis of walls,

3.5.7 Condensation of the Stiffness Matrix(a)

Let [5] {ub = (P} | 3.22

represent the nodal equilibrium equations for the finite

element 'idealization OF the floor. _

K is. the stlffness matrlx assembled byrthe Superp051t1®n

of nodal stiffnesses, obtalned from element stlffness matrices,

U is the displacement vector whjich refers to all the

displacements,

and P is the load vector corresponding ta these displacements.

: -—-'.“ . - _ L _' ) //
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The displacement u contains all the possible degrees
of freedom of the discretized structure, 5 x (pumber of nodal
. points). Let this displacement vector be partitioned into

three vectors:

i) 4, which refers to the displacementsof nodal
) f

points..taken as reference points.
ii) U, which refers tao the displacements of the naodal

points rigidly connected to the reference nodes in (i)

and iii) u4 which refers to the displacements of all other

nodal points that are not on the uwalls (ive, free nades).

Let the load vector P be partitioned into vectors 31,32

and 53 corresponding to the displacements, Hys Y5 and us
s respectively.
5 =[] p [P ]
0 {_9_} = Y, and {__} = Pl
u, P, 3,23
| ~3] : =3
and ﬁ] p = P,
P Y “ p - ' 3. 24
g L !—2 =2 ' : .
U3 P3|

The stiffness matrix K may be partitioned to givezthe sub-

matrices corresponding te the three groups of displacements:

. . : 4
. . ;
‘ . /
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B Ko K3 Y = | &
21 Kpo Kps P 2> 3023
K3 K3 Kjs U3 E—3_J

Since the displacement vectors u

Yy and 22 are related

to each other linearly,--

MR

where I1 is a linear transformation matrix.

For example, in the plate shown insFig. 3.13, taking
nodes 3, 17 amd 34 as the reference nedes for walls 1,2, and

3 respectively,

Displacements of nodes 3,17, and 34 Form displacement
' vector P
Displacements- of nodes 2,4,22,32, Form the displacement
33, and 35 vector Y,
Displacements of-nodes the remaining Form the displacement
nodes : o vector Us

The transformation matriilhgeieting 22 and Uz, may be
written by inspection of the.deflectee-shape. Keeping in view
'that’ as ﬁlane seetione of-thee wall before bendlng are assumed
te remain plane after bending, all the. nudes connected to a
eartlcular{wall must also lie on the same plane after bending.

Hence, the slopes at the nodes must be fhe same and the vertical

deflections must be linearly related.

. . : /

\ ‘ - ' ' ,/
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v

The transformation matrix T1nmay\FrDm Eqs; 3.21,

4T . B _
AR P o,
v B el
2 _).‘..2 | 8 : 0 v
. P
LL|2- ) _"_'_'_l——‘——‘——-———— LU3
: 01 A 1 g .
X, 2 S I S X3
ys2 ] - l =4 R
______ - —‘—'—-—-l—--———._ - — - — —— ]
Uy S 1 80 [ Ac Yq7
I R y
4 i : 0 1A 7
L. - [ 0]
Wy Y17
X;4 ex:1?
' L 3]
Y22 ys 17
. ]
22 C Y34
u )
.- 22 Va4
5 _ .
Xy 22 ex,34
__XL%E_ 9y,34
Y35 -
V35 -
;fo”' W3g
- ex’ 35' !
8x,35
6
| Y39
"‘ lﬂ_"-—. .. . ’/ l - L
\ i \ . _ — ) Iy - :
- or {uy} = [ifJ {u,} Lo 3.27




where,

A= [ 0 0

o 0 1 0

\ 0 0 1
0 0 0

| 0 0 0

oo [ 0 0

0 1 0

0 0 1

0 0 g

o 0 g

Ay o= 'K 0 0

3 _ 0 1 0
0 0 1

0 0 0

0 0 0

Similarly . A,, Ag, A can be derived.
. __iTherefore,
fﬂ} = FH1 B =t = Fi g 24
s I1“1 I1' 8 3
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where

=
o
[ %]
-

[\N]
[dm]

0 1

and I represents unit matrices, of such order as to make

themconforming for multiplication with the appropriate vectors.

Applying the contragredient relationship that exist betueen

the forces and displacements to Eg. 3.28,

r B 3 .o
Bif = [12] R | 3.30
33 EZ
) =x1

Eg. 3.24 may now be reuritten as

[ [ ()

Al
3t

/Pfemultiplying both sides by Ig‘!

Yz L I
P /
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Writing K in its partitioned form, as iaAneqg. (3.25) and

substituting the values of_Izland T,

Lo
% - T o _
I I, 3 K11 Kqio Kiz [L 2 Yl = 1By
3. 33
g g 1 Kor Koz Kog i a 43 B3
831 K32 K3 3f |2 L

Larrying out the matrix multiplication, and noting that, since
the displacement vector Us refers to nodal displacements which
do not have any external restraint imposed an them, the corres=

ponding load vector P3 must be zero,

i
*

(Kq T Kopek, Tt Ty KT A K3t D Ko uy | = |y | 3.34
u 0
U3 >
L31 * K3l K3z
Eliminating Y from E£Eq. 3.34,

i N

¥i
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where

[5c] = [(5~11+I—1'52ﬁ Ky —T1‘ * T1 Koo Ty

3. 38

- (K3 + Iy ‘5-23)(533”)(5_31*&32113]
is the condensee stiffness matrix of the plate, the displacements
'being referred to one node point for each wall; If the reference
node for a wall does not correseond.to_the centroid of the wall
the matrix ﬁc may be tzansformed by using a trensfermatien
matrix defining the location of the centroid of the wall with-

Tespect to the reference node.

3.8 Computer Programme

Fig. 3.14 shous a flow diagram of the computer programme
- developed for the evaluation of the floor slae-stiffnesses.
This programme differs from other finite element programme in
that instead of solving for externally applied displacements

by means of matrix condensation.

The basic floor data, such as the number of elements,:
number of nodal points are read fitétlmThe'data describing
the element ptoperties may be generated partly and partly read
/\_infit From the element property data the elements are taken
as flat shell element or beam element. Explicit expressians
for the etlffness matrices of the:elements have been calculated
and these are used in eualuatlng theesttffneSS matrix. It 15

l

worth notlng that an orthotreplc flat shell element may be

included with uery l1ttle_mod1f1cat10n lanthe data entry.

%

ey
-
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The concept of banduidth is used in storing and operating
on the assembled stiffness matrix. By careful numbering of

nodes, the band width may be kept a minimﬁm.

,
Any external restraint, B.g. those imposed due ta

CUﬂtinuity of the plate or fixity of the plate, may be applied

before condensing the stiffness matrix.

The condensation of the stiffness matrix involves the
soly?iop of eq. 3.35, The matrix T1 is usually large, but
has few nuﬁ-zerq elements, cohsisting oniy of submatrices

- _Ai's which one of the form shouwn in egq. J3.21., In the

programme only these Ti's'ére formed with a conseguent saving

in the storage required.

A listing of the computer programme together with an
explanation of details and form of data input jis given in

Appendix-B.

ey
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Read'basic floor data

Rread and generate the details of finite
Plate or beam element

Read element property and connectivity
data and distinguish whether qguadratic
Plate or beam element

Fihd the width of band in
Stiffness matrix

Evaluate element stiffness matrices and
add to the correspaonding neodal stiffness
in overall structure stiffness matrix

Apply boundary restraint

Condense the overall stiffness
matrix

Print stiffness matrix for flaor

Flow diagram of the programme for the

finite element analysis of floor slab
—__ stiffness, : : /

./,,J’~__.




CHAPTER 4

RESU LTS AND DISCUSSICN S

4.1 Introduction

In order to stuey the compesrte coupling action of
beam and slab connecting a pair of sheer walls, the plate
in Fig. 4.1(a) was analysed. The dimension X is length, Y is
'midtn of the slab, L is the clear opening between walls,

Z-is the flange width of ualis (in case of T—shaped I-shaped
walls), W, and W, are the lengths of two walls. In order to
study “the effect of dlfferent\wall conflguratlon, in-line plane
walls, T-shaped malls, I- shaped walls and one T- shaped and

- another plane. walls_were. taken.in the study. The.different

wall configurations used are shown in Fig. 4.1.

Line B1 82 indicates the position of beam connecting
the two walls. In order to study the effect of beam stiffness
on the effective width, different sizes of beam are considered

in the study.

S ——

SlnCE the rotational stlffness K of the comp051te beam

is affected dlrectly by the change in the linear distance

-

//L/between ua%l centres as the wall configuration is changed,
the result% for tne stiffness factor do not give a clear
picture of the actual influence of the wall configuration and
beam eize on .the effective coupling slab width. Hence, in order
: y
" to assess more succinctly the 1nfluence Df mall conflguratlon

and beam size, reference 1s made only to the results obtalned

'for the effectlue width to the slab width ratio, Y /Y
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1 .
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. (a) Typical Slab\ panel
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(b) Plane walls _(gl-T—shabedlualls
. \
4 |
|t B2 =) B2
(d) I-shaped walls _ | (e) T-shaped  and plane

wall, (

Fig. 4.1 DBifferent wall configqurations.
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i

4.2 Coupling Action of Slab (without beams) -

A

There are several papers on the coupling action of slab
in shear wall structures. Figs. 4.2 and 4.3 have been prepared
to compare the results of this study with those available in

the papers.

'h.2.1 Plane Shear Walls

The plate shown in Fig, 4.1(b) without connecting beam
81 82 is analysed. Keeping L;\X Conetant and uarying Y only,
the Jeriation of Ye/Y with the\ratio of wall opening to slab
width (L/Y) is studied and Y /Y vs. L/Y curve is shown in
~-Figy 4:2¢-From the design curves~given by Couwlkl and-wong(12)
the values of Ye/Y for various L /Y ratios are plotted on the -
same Fig. 4,2 and these giue close agreement with the observed
results, Similar results are observed from the design curves

by Tso and Mahmood(22).

4.2.2 T-shapeduShear Walls : ;f%\‘~w

.- The plate shown in Fig. 4.1(c) without beam B, B, is
;faﬁeiyzed. Keeping L,X and Z coﬁetant_enq_uarying Y only the

! T
uerietion.éf Ye/Y‘yithzthe ratio of wall Opening to slabiwidth
L/Y is studied and shown in Fig. 4.3 as a firm line. fFrom the
designlcurues.giuen by €oull and Won (12}; the ueiuas of Y /Y

for different. L/Y ratios are plotted in the sa?e flgure. For

the higher range of L/Y ratlo, these give close agreement but

---AJ;J.- '

-t
s

-
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at the lower value of L/Y these give some deviation {e.g. 3.7 .

higher for L/Y = 0.375) from the observed results.

4.3 Coupling Action of Slab and .Beam

To demonstrate the effect and 1nfleence of beam flexi-=
blllty on the effective flange width of the composite coupllng
beam various plates shouwn in Fig. 4.1 were analyzed and the
results are shown from Fig. 4.4 to Fig. 4.13. Only one paper
has so far been published on this topic, viz. by Coull and

(13) K

MDng . The paper considers‘only‘planar shear walls with

\

'connectlng beams., Dn the concludlng remarks they stated that

‘tHé influerice of the coupling action’is ‘significant unly when

the beam is relatively flexible. That remark can also be made

from the study done here.

4.3.1 Plane Wall Configurations -

It has been shown by Coull and wong(12) that in walls

coupled by‘slabs alone, the effects Df dissimilar wall lengths '

may-be dfsregardéd ‘provided that the length of smaller wall

is greater than about half the Adength of Openlng betueen walls.

\

.This will;be true in almost all practical situations. In order

to uerify whether these above conclusion is valid for slabs
with beams also. ,the uarlatlon of ¥ /Y with the ratio of one

wall length to another wall length mz/w Forydlfferent beam

depth is studied and the result is shown in Fig. 4.4. -‘for three




L6853y

B2

ratios of Lu2/u11 - 0.5, 0,25 apd 1.0, The trends of the results
for the three cases are similar and the curves forr-each beam
size are almost coincident, So the effect of dissimilar wall

length may be disregarded whether beam is present or absent.

Effect of Oifferent Beam Size

i

The variation of Y_/y Hith;tﬁeirafio of beam depth to
slab thickness d/t is shown in Fig. 4.4 for different ratios
of mall opening to 'slab wldt% The tfends of the results for
the two cases are dlfferent but both the cases show that with
the increase in L /Y ratio, YE/Y‘increases, rapidly for d/t = 2
(eig;*increasing L/Y ratio from D:ﬁ“tb 0.7; the'uaiue’oF'Ye/Y
changed from 0.33 to 0.51 for W,/w, - 0.5) and slouwly for
d/t = 6 Ee.g. increasing L /Y ratio from 0.4 to 0.7, the value
of Y_/Y changed from 0.15 to 0.215). Fig. 4.10 shows the
variation of Ye/Y withr different d/t ratios for two ratios
of L/Y --0.75 and U.3?5.'Hera both the curves show that
increase in beam depth decreases the Yy /Y ratlo, rapidly within

the range to 2¢ d/t< 5. Thus it can concluded that beam reduces

,

}//the 1nfluence of slab in the COUpllﬂg actlon in coupled shear

!
wall system.

]

Effect of Wall Upening Width

’
l”'

In the Fig. 4.4 Y/ vs. L/Y is pLottedffor two values
of d/t - 2 anq\ﬁ For both the values of d/t Y /Y 1ncreases

with the increase of L/Y ' , |
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From Fig. 4.4 it can be concluded that with increase
in opening size, ccupiing action of the connecting slab

increases,

For the increase in L /Y ratip 0.4 to 0.7, the increase
in ¥, is 18 .of slab width and 7% of slab width for d/t =

and d/t = 6 respectively.

4.3,2 T-section Walls

Flanged shear walls occur frequently in cross-wall
st;cctures as a result of maklng thescorridor or facade
lcngltudlnal walls of similar construction to the cross-walls

S rfe I satlsfy'theéneed“Fcr*addificnal“rcad’bearing area or

- longitudinal stiffness, or simply fcr convenience in cons-

truction.

Effect of Flanges

Let us consider the pair Df ideaticél T- shapcd walls~
shown in Fig. 4.1(c) mthh are symmcfrlcal wlth respect to the
~ panel centre lines, Preu1cus study’ shcwed that the EffECtS‘Df
’dissimila; wall lengths may behcierQarded. Thus, although the
present sﬁudy is confined to a study of composite beams
coupling equal walls which ratate equally under the action of

lateral forces, it may be ant1c1pated for d831gn purposes that

the results  will apply with Suff1c1ent accuracy to most prac-

tical situations.
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A finite element analysis enébied a series of curves
to be produced showing the variation of the effective widﬁh_
ratio Ye/Y as a function of the wall opening ratio L /Y fof
uarious,flange width ratios Z/L. for the two-d/t ratios of
2 and 5. These are shown in Fig. 4.5 , Fig. 4.5 and Fig., 4.7
for three L /X ratios of 6.15, U.333 and 0.5. For-d/t = 2,
the effect of flange is promiment. The Ye/Y ratios are
obtained for ZA ratio of 1.0, 0.75, 0.5 and 0.0. The trends
of the results for the four cases are similar, the effective
‘width increase with the increase in flange length. As an
example, for increase in Z/ from 0.5 to 0.75, the inC;ease
in Y, is from 62 .to 70 «of slab width for L/Y = 0.5. Approxi-
mately similar amount of iné?Ease is observed for different

L L/Y ratio.

For d/t = 6, the effect of flange is not so much prominent.
In the above example, for increase in Z/L from 0.5 to 0.75, the
increase in Y_ is from 28 to 28.64 .of slab width. From the
curves it is observed that for d/t = 6, flange does not af%ect
Eucﬁ in éhe lower value of L/Y ratio but it is éigniﬁicant

Pl - \ ’ .
for higher'L /Y ratio.
e
To. investigate the effect of slab length i.e slab length
. ! .
on the Y /Y, Fig. 4.5, 4.6 and 4.7 shows the uarlatlon of

effectlue wldth Y /Y with L /X ratio. And it is found that for

both the d/t ratlo - 2 and B ulth the 1ncrease ‘in L/X ratlo.
\ ' ' ' /%

Y /Y 1ncreases buttthe amount Df increase ;scqulte a small‘

value. As an example, YE/Y for L/Y'= 0.6, and L/X = D 15 is .B55
. . 1
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for Z/L = 1 and for the same case but with L/X = 0,333, Y /Y =
0.91. Thus, the effect of slab length on the coupling actian

May be disregarded.

To‘demonstréte the effect-ofcbeam size on coupling
action of T-section walls, YE/Y as a function d/t is shouwn
in Fié. 4.12 for tuwo r;tios of L/f - 0.75 and 0.375. Here,
as in the caée of plane wall configﬁrétion, both the curves
show that increase in beam depth decreases the YE/Y ratio,

rapidly in the range 2 <d/t <&,

4.3.3 I-section Walls

Figure 4.1(d) sfious a configuration with flanges at
e the interior ends as well as flanges at the exterior ends of

the cross walls.

" Effect of Flanges

IniFig. 4.9 YE/Y is shown as.a function of the ratio

| of openimg distance to slab width for three ratios of Z/ - 0.75,

/.,\ . © - ' -
5y and 1.0. The results show the same trends and values as

. 0.
X v N
~7 in T-section walls with same flange lengtha -

i

Figufe 4.13 demonstrates the effect of beam sizes an

effective slab width; this also gives the same trends and values

forithe-T-section walls, T hus, the effect af exterior flange
;o - o /

can be disregarded.
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4.3.4 Plane Walls and T-shaped Flanged Walls

As before curves have been produced Fig. 4.8 shawing
the variation of Ye/Y as a function L /Y for‘uarieus ratios
of Z/L. The trends of the results are similar as in the

T-shaped walls but value is less,

. To. demonstrate the effect oﬁ beam sizes on an effectiie
slab width, Fig. 4.11 is draun. This figure also gives the
same trends as in Dtherlconfiguratiens. Here as in other
cases_igcreases in beamAdepﬁh.decreases the Ye/Y ratio, rapidly

in the range 2 <d/t <35, N

4.4 Effect of Shear Deformation of the Beam

The design curves presented are obtained neglecting

shear deformation in the connecting beanm.

To. demonstrate the effect of shear deformation of the
cannecting beam on the effectlue width calculation, Y /Y VS.
d/t are plotted in thelFlgs. 4, TD to 4, 13 for various wall
lcenfiguration con51der1ng shear deformation in the beams.

”,And it is feund that c0n51derat10n of shear deformation decreases

the effectlue mldth of the slab by less than % of the slab
width far the extreme case considered (e. g. in the Fig. 4.10,
For L/Y = 0.75 and for d/t = 7.0, consideration shear deforma-

-. tion decreases the value of Ye/Y from 0.22 to P;17).
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4,5 Discussions

From the resulfs it is observed that thesmost signifi-
cant paramefers that affect the coupling actioﬁ is the wall
opening distance. For all the cases studied, it is found that
with the increase in wall opening length, the coupling action
pfouided by tHe slab becomes more and more significant. This
agreea with the empirical conclusions based on determination

of effective width by assigning angle of dispersian Fig. 2.1.

—--It is also observed that length of the slab has negligible
effect on the coupling action. Also dissimilar wall lengths do
not have any significant effect on the coupling action, These
can ae éxplained bylthe.fact that the coupling action is

influenced by the properfy of the opening zone only.

ifbm the observation of results for a system where one
T-section wall is coupled with a planar wall, it is found that
the effectlue width of slab is more than that .when both the
ualls are planar and less than that. when both the walls are.
of T- sectlon. Thns is due to the actlon of walls flange in
dlstrlbut;ng the curvature farther along the slab width, Thus

it is p0551ble that the use of beam can be ommited when T-.

shaped walls are Used,

Finally, the most significant Dbaerﬁation is that the

use of Deam decreases the coupling action of slab. viz. in a
,‘ ’ nJ' M\ - . : Iyr
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coupled I-section ualis, as d/t increase for 1.0 to 6.0, the
value of Ye/Y is found to be reduced from 0.7 to 0,18 for

L/Y = 0.375.

The results obtained are neglecting shear deformation
in the connecting beam ana consideration of shear déformation
in the connecting beam reduces the_effectiue width of slab
but the reduction is by less.than 9 of the slab width for

the extreme case considered.
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CHAPTER .5

CONCLUSIONS AND SWGG.ESTIONS FOR FURTHER STUDY

S.1Lonclusions

The composite action of beam and slabncoupling a pair
- of shear walls has beeﬁ inuestigatea By a finite element method,;
and 'the relative influences of a range of structural parameters
on th; effective flange width of the composité coupling beam
have been evaluated. Design cﬁrues for calculating the effective
width.have been provided for the normal range of structural

dimensions encountered in practice. From the limited number of

analyses, the following conclusions can he drauwn.

i) For the Coupled planar shear walls coupled by slab
only the equation Ye/Y =L/Y (1-0.4 L/Y); given by Coull and

(12)

Wong for calculating effective flange width can be used.

ii) Dissimilar wall lengths have little influence on the
effective flange width of. the connecting T-beam in'touplgd'

shear walls, T

_iii) Beyond certain depth of beam (d/t> 6), additional
‘beam depth has almost negllglble effect on the effective flange
width for all the wall conflguratlons Considered, i.e tuwo

planar walls, tuo T-section walls, two I-section walls, one

planar and other T-section wall,

-Significant reductions in the wind strg%ses and deflec-
tions im:i.the walls may be achieved by including the composite

action when the lintel is relatively shallow. i




-

s

81

iv) Interior flange length of flanged wall has the mast
significant effect on the effeftive width or slab and if has
been observed that for I-section walls exterior flange have
negligible effect on the effective flange width. Thus the

corridor edge property have marked influence on the célcula-_

. tion of the effective flange width whereas exterior edge

prOpérty of wall does not affect significantly on the same.
Therefore it can be concluded that although the design charts
are provided for one band of opening these can also be used

for multiple bands of opening.

v) Sheaf deformation in the connecting beam reduces
the_effectiyehslabhwidth.bpn one. of the. extreme-cases- consi-
dered, considération of shear deformation decfeases the wvalue
of Y /Y from 0.22 to 9.17, for L/Y = 0.75 and d/t = 7.07in’

planar wall configuration.

5.2 Suggestions for Further Study .

To. verify the results experiaéhtal investigation should
be made. | -

Al

.
-

To. verify the inference that these results should hold
equally good for coupled shear walls with multiple bands of
Opening, one should investigate a model Qf coupled shear walls

theoretically and experimentally.
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APPENDIX A

CATAWIGUE OF STIFFNESS MATRICES

~ I. Stiffnesslmatrix for a Rectangular Plate Bending Element.

Displacement function: u

'\. -
% .

DlsplaceWent vector: d = P BX,1 8y,1 W Bx’2 vy 2
AR w, 6 o 5 w, 8 ” ¢
3 Yx,3 Yy 3 4 Xsd Cy,4
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The generalized element stlffness matrix k For the
rectangular plate of 12 degree of freedom is given below., All

"~ elements of this matrix

which are different from Zero are listed for the case of
isotropic material and constant element thickness. The indices

iyj denote row and column number respectively,

Since k is a symmetrical matrlx, only the elements on

and below the main diagonal are given.,

The following symbols are used

B ~= h/a .
.- v = Poisson's ratijo
ME = 144y
MJ = 1 + 4y
mm =1 -y
BTL. = g% 4+ g2 -

N.B: All expressions hust be multiplied by
- \ - v ‘

- ir S g3
- . 12(1-v) an

(i,1) = 4BTI. ¢ MF/E (7,1) = 28BTI. + MF/5
(2,1) = (2 5'2 + M3 /5)b (8,1) = (- g2 + MM/5) b
(3,1) = (28° +. m0/5)a (9,1) =" (8% - pin/s)a

i




(2,2

(3,2)

]

(4,2)

n

(s,2)

fl

(7,2)

]

il

(3,3

[}

(4,3)

(El 3)

il

(733) =

(9,3

(10, 3)

(4,4)

(5,4)

(6,4)
(7,4)

Hi

(8,4)

]

(89,4)

]

Il

(5,5).

-(6,5)

(7,5)

It

(8,5)

(46‘2/3 + 4mM/15) b2

-Vab

(-B~% 4 MO/5)b
(2872/3-4mm/15) n2
(B“z-mm/S)b

(48%/3+4mm/15) a2
- (282 + MMm/5) a
(28°/3-1M/15) a2
(-8% + mm/s)a
(82/340m/15) 22

= (82 _ M3 /5S) a

4BTIK+ MF/5

~(2872 4 MO /3) b
~(28° + ma/s) a
2(8%-2872) ¥ /s
-(287% 4 MM/S) b

(-8% + mu/s)a

(48'2/3 + 4mM/15) p2
vabh '

(2872 4 mm/s) b
(28'2/3-mm/15)b2
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(8,2) = (B87%/3 + mm/15) b2

(10,2)
(11, 2)

(11,3)

(10, 4)
(11, 4)
(12, 4)

(10,5)

_(12,5)

i

1l

I

1]

I

(2872 4 MM/s)b

(287%/3-mm/15) b2

(28°/3-4mm/15) a2

- 2BTI. + MF/s
(-B'2+ MM /5) b

(-8°% + mm/s) a

(8™2-mm/5) b
(BB™%/3+mm/15) p2




(B’E) =

(7!6) =

(9!5) =
(7!7) =
(8,7) =

(9,7) =

(B!B)

I}

(9,8)

(10, 8) .

(9,9)

1]

+-(10;9) -

(10,10)
(11, 10)
(12,10)

(11,11)

(11,12)

(12,12)

1l

(4,1)

Il

(s,1)

(6,1)

1

(482773 + 4mm/15) a2
(-8% + mo/5)a
(282(3-4mm/5)a2
4BTI+MF/S

-(28% + w0 /5)b -

~( 282 +M0 /5) a-

(487%/3 + amm/15) b2
-Vab

= (872 . m0/5)b

(4B%/354mm/15) a2

z.(gs§m+rmm/5)a

4BTI. + MF/5

N

(28'2 + MO /5)b

(282 + MO /5)a

!

= (4872 + 4mm/15) b2

= vab

-2(28% _8"%) _ i /5

.,(;8'2 + MD/S)E

(282_+ mm/5) a

T462/3 ¥<4MW/15)a2

(10,6)

(12,8)

(19,7)

Ci1,7)

(12,7)

(11,8)

(12, 9)

"(10,1)'

(11,1)

I

It

11

fl
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( B _ MM/S) a

( 82/3+mm/15)a2

-2(28%-8"%) _F /5
(B"z-MD/S)b_

-(282‘+ MM/5)a

(2872/3-4mn/15) b2

(282/3-mM/15) a2

2(82 28”2)-MF/5

n(28'2 + MM/5)b

(12, 1) = (8% - ma/s)a
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II. Stiffness Matrix for Beam Element

(neglecting shear deformation)

Since E:is a symmetric matrix, only the element on and

aboue.the main diagonal which are Qifférent from zero are

\
i i
\

given

O0X DIRELTION -

Thé Follumihg symbols are used:

"E = Young's Modulus C—=
| A ='Cross-sectional area
- L = . Length of beam element
Iy = Moment of inertia about Y-axis
IZ = Moment of inertia about z-axis
J = Polar moment of inertia

G = Shear Modulus




(1,1) =
(2,2) =
(3,3) =
(4,4) =

(5,5) =

(8,6) =

(7,7)

(838) =
(9:9) =

(10,10)

(1,8)
(2,7)
(4,9)

(5110) =

Ii

1

il

0V DIREC

AE/L

12 EIZ/L3
3

12 E1 /L

G /L

4 EI /L
y/

AEAL
12 EIy/L3
12 EIy/L3

G J/L

"4 EI /L
Y/

- RE/L

- 12
EIZ/L

- GJ/L

2 EI_/L
y/

TION

3
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'
/
i
A




9a

C(1,1) = '.I2EIZ/L3 - (3,4) = sEr AP
(2,2) = se/L
(3,3 = 12 €1 43
(4,4) = 4ET N

(5!5) = GJ/L

(&5)=12H2A3 (8,9 = -6 o °
(7,7) = aE/ L
(8,8)

3
‘.”12E§/L
(9,9 = AEIX/L

(10,10) = g I/

(1,8) = <1261 p° ' (4,9 - 261

T (2,7 = acn | (3,9 = ser i2
(3,8) = - 1283 A3 (¢,8) = - se1 A2
(5,100 =- GJIA
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