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tures for various wall configurations. Th~ reiative influences

shear walls is studied. The width of slab effective as flange

I,

!
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The bending stiffness of floor slabs is calculated by

the'finite element method (considering both flexural and

in-plane deformations) and the composite action of floor

Tbis thesis deals with the effect of beams on the

coupling action of' slab in slab-wall structures, considering

ASS TRACT ..

only the linear elastic behaviour •.

width are evaluated, and design curves are presented to

of a range of structural parameters on the effective slab

of _the.composite ..J -beam_.is.eval.uated,.in the beam-sl.ab struc-

facilitate their determiDation in practical situations. The

coupling action is found to be influenced by the ratio of

.'

-opening distance.

.slab jhd beam coupling a pair of laterally loaded plane

'beam depth to slab thickness, the rati? of wall opening dis-

tance to slab width and the ratio of flange length to wall

_.'
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CHAP TER 1

m TRODUCnON

1.1 General

In general, the structural system of a building is a

three-dimensional complex assemblage of various combinations

of interconnected structural elements. These may be discrete

members or they may be continuous assemblages. The primary

.functions of the structural system are to carry effectively

and safely all the loads acting on the building, and eventually
to transmit them to the foundation.

In the process of selecting the most suitable structural

system for a tall building, several factors have to be consi-

der~d and dptimized ~h.~dditioh to the hei~ht of the building.

For this complicated process, no simple clear-cut method is

available. The design team must use every available means

imagination, ingenuity, previous experience, and relevant

literature to arrive at the best possible solution in each
particular case.

In principle, in any structural system, all .of the load-

resi.sting systems and components should ,be equally active and

ideally should work together under all types and combinations

of design loads. In other words, the parts of the structural

system that primarily resist horizontal loads should be able to

contribute to the resistance to vertical loads as well. This

is, in fact," the case in some structural systel)is,and many.

individual components such as floor systems are common to

" ..•.~(,
".1
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(or merged together with) horizontal load resisting frames.

Even if the two framing systems are discrete and sufficiently

separate, one must always consider them as being interrelated.

Consequently, their possible interactions should be taken into
account.

The most efficient structural system is the one that

manages to combine all the structural subsystems or components

into a completely integrated system in which most of the elements

take part in resisting the loads. However, this ideal case is

unlikely to be fully achieved in practice, due to constraints

such as efficiency and ease of,a~sembly and construction,

manufacturing, of joints, economic considerations,and~other
requirements •

1.2 Framing Systems to Resist Horizontal Loads

An important characteristic of tallness in a building

is the relative importance of the lateral load-resisting an~

lateral stabilizing systems. The n;~~~~ lateral loads are those

due to wind and earthquake. The columns of tall buildings must
\

?e stabilized or laterally supported by lateral bracing systems,

and the lateral bracing system must resist deformations asso-
I

ciated with the out-of-straightness and plumb of structural

members, and deformation associated with lateral forces. FOr

low-rise and_~edium-rise structures~ the analysis and~design. ". J

with respect to lateral forces has generally been merely a



resist lateral forces, or even if it does, the design for lateral

3

-" .. "

-. -.

inversely

strength and sti~fness of
.-... i

and beam size and

3. CO!I:e.

1.2.1 Moment Resistant Frames

Moment resistant frames consist of linear, horizontal

members (b;ams) in plane with and connected to linear, verti'cal

and may be placed in one or more of three general locations:

1. Moment resistant frames

lateral resisting elements:

2. Interior, and
1. Exterior (perimeter)

process of checking the vertical load-resistant system for its,

The three fundamental elements are generally in vertical planes

3. Shear wall.s

the vertical load-resisting system may not have the capacity to

2. Braced frames

ability to resist lateral forces. However, for tall structures

In a broad sense there are three fundamental types of

forces may add substantially to the structural cost.

,

member (Col'umns) with rigid or semir:igid <joints. A moment

resistant frame is' identified by the prominence of its flexibi-

rotation at their joints. The
'---.,
I

frame are proportional to the column

lity due to flexure of the individual beams and columns and the

proportional to the story height and column spacing.

•
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dered desirable. Its primary use has been.inand. around,cores,

the diagonal members. If used externally, it creats an unusal

where it can be placed in unseen and nonarchitectural spaces •

A braced frame consists of a beam and ~olumn frame~ork

4

Shear walls ~ay be defined as planar vertical elements\ .

infilled with diagonal bracing. It is a system composed entirely

facade and unsually shaped windows, which are often not consi-

system, since it does not involve the flexural deformation of

The braced frame is a very stiff and efficient structural

1.2.2 Braced. Frames

the shortening and lengthening of the horizontal floor members

application in structural steel buildings. The braced frame

a special problem in the fitting of the portion in and around

and t~e&diagonal bracing members. This system has had wide

may be used internally in walls or partitions, where it creates

of linear members, and is identified by its flexibility due to

members.

1.2.3 Shear Walls

Shear walls are further identified as having few openings or
. .

penetrations, such that they have little or no flexibility due

to the flexure of individual pieces of the wall. Their flexibi-

lity is generally limited to the sum of overall;shear deformation
1/and overturning flexural deformation. Shear walls may be solid or

distinguished by their relative thinness and substantial length •. -----
/

•

'.
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penetrated with a limited number of openings. The shear wall

mayor may not carry substantial gravity loads. The shear wall

may be a single bearing wall, a wall connecting two or more

columns, or a panel wall fitting the openings of beam column

frame. The shear wall system is an efficient structural form

for providing lateral strength and stiffness to high-rise

buildings. The different types and layouts of shear wall are
shown in Fi~. 1.1.

More usually, in practical structures, the walls are
intert6nn~cted t~rough floor slabs and resist both lateral

and gravity loads Fig. 1.2. The floor slabs, besides acting
,as horizontally rigicL diaphragms t.o..c.oll.ectand di.stribute the

lateral loads among the walls, also provide some restraint

against the vertical movements and rotations of the wans. The

resulting interaction between the walls and the floor slabs

increases the lateral siiffness of the building and reduces the
overall stress levels in the walls.

If the bending stiffness of the-'connecting members or

their wall 70nnecti9ns is low and they behave effectively as

_i?-~nrl~d-endl;inks, the total wind moment at any level will be

shared betw~en the walls in proportion to their flexural rlg~-

dities, proJided that they bear a constant ratio to each other

throughout their height. If the walls are geometFically dissi-

milar, such an assumption, although used often i~ practice, might. . , .

lead to gross errors, and it is necessary to perfrirm a more

accurate analysis e.g. space frame analysis with computer •

•
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(lg.1.1(a) TYPical Shear Wall Forms.
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Planar Cross-Wall

T-Shaped Cross-Wall

-

. - . --. -. ..'

~
~ .... t- -

.

-

,

, • ~.

,j

Fig. 1.1(b) Typical Layout 0'. Shear Wall.
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Ln a column-supported structure.
\

\
\"

" ~

shortened thus accommodating more floors in the

false ceilings and' the height of the buildings

Coupling Action of Slab

of the connecting member than

"

shear walls, pierced walls are adopted to make room for corridors

by moment-resistant connecting members. When the walls deflect,

10

shears and moments are induced in the connecting beams or slabs,

that the two rows of apartments are.connected by a common

ment buildings. The speeial feature of this type of building is

tures have become very popular specially for multistoried apart-

and other service facilities. Now-a-days shear wall-slab struc-

connected system. The effect of the finite width of a wall

connecting beam; this causes a much greater effective stiffness

As it is not always possible to construct ~olid shear

subjected to horizontal forces is to impose a significant

vertical displacement as well as a rotation on the end of each

The problem is complicated if, in-plane walls are joined

which consequently induce axial forces in the walls. The resul-

ting stfucture is much stiffer and more efficient than the pin-

As no projecting -ste"msof .beams run across the corridor, there

corridor and the.partition walls are treated as shear walls •

Under t~e action of lateral forces the wa~is deflect but
Ii

not as a true cantilever because of' the stiffness of the slabs

same height.

i. -~-is no need ~or
I

is'appreciably

•

I

~

J

.,



the walls are coupled only by a prismatic lintel beam. However,

connecting them Fig. 1.3. Moreover, the slabs are quite useful

in distributing stresses caused due to non-uniform vertical

("t...,/'.

shear walls.
/

,/

wall configurations and beamvarious
depth s.

,beam 'for

contribution of slabs in coupling

a) To,evaluate effective flange width of the connecting

1 1

c) To,provide design guidelines for e,valuating the

Shear walls coupled by beams that are monolithic with

'b) To" find the;principal structural parameters that have

a si~nificant effect on effective flange width of the
connecting slab.

loading or differential settlement of the walls FiG. 1.3.

Effect of Beam Stiffness

floor slabs are frequently used in shear wall buildings. A

common pra8tice in the analysis of such coupled shear walls

is to disregard the contribution of the slab and assume that

in gravity load design it is standard practice to include a

portion of the slab aS'a flange for the beams, so that greater

moment of resistance is obtained by the composite action. ¥

1.3 Objective of the Thesis

•

••I \

~
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:fbl unequal Loading

(e) Differential Settlement.

(a) Horizontal load on slab
and wall structure .

- -r-
- -
- -

-

""",,/////

Fig. 1.3 Redistribution of Load Through slpbs

--
-
-
-
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1.4 Scope of the Thesis

Scope of the thesis is restricted to the study of the-
elastic behaviour of the system.

The following wall shapes have been studied:

a) A pair of planar wall s.

b) A pair of T-shaped walls with flanges at th~ corridor
edge.

c) A pair of I-shaped wall s.
,

d) One T-shaped and another planar wall, having flanges
at the corridor edge for T-shaped wall.

The analysis is carried out neglecting the influence of
wall thickness. So when the ratio of wall thickness to wall

opening length is very high these results may not be applied.

,/



col umns.

either:_

elements (walls, columns or Suspenders).
a) flat slabs supported only on vertical load-bearing

'" '~It"is "customary in' some ,analyses to introduce the concept

orb) slabs supported on beams which rest on walls and/or
\\\

"

of an I effective width Of slab I, which acts as a beam in flat

slab-wall system or as a flange of a T-b~am in a slab-beam_wall
system in restraining the vertical movements of the walls.

These widths are usually fixed by intuition and engineering

CHAP TER 2

,A typical floor system in a bUilding consists of

2.1 Introduction

REV lEW OF LITERATURE

judgement. One of the empirical guides for slabs connectin~-

in-line pairs Of wall is that if, on itne plan Of the slab, 450
lines are d!awn fr~m the inner edges Of the walls, then the

/," "

Of these lines is effective in providing bending stiffness,

Fig. 2.1. TiLll now, the assumption regarding the value Of

effective width Of slab varies from designer to designer and this

is mostly done ,arbitrarily without going deep i,7'1;0mathematical
detail s.

width of the slab that lies within the points Of inter-section"---
~'



buildings consists Of shear walls and floor slabs, in which

15

~.- .c:u~'" .-:::~
w

\
/ \.

~----------. ,,,
"~
,,,,, ,"

Fig. 2.1 Empirical rule for calculating effective width.

2r2 Shear Wall-Slab System

The structural analysis and design of slab-coupled shear wall

width Of the slab which acts effectively as a wide coupling,.

system may readily be performed using existing techniques f?r.

beam-coupled wall structures, provided that the Equivalent

an efficient structural system for resisting lateral loads.

the coupling of the cross-walls by the floor slabs has led to

c .•. , A ..common. form, o.f..constr-uction."foI:.multi-story ,.a[}artment

Only a limited number Of research publication is avail-

able, the earliest paper being written by Khan and Sbarounis(1).

They attemptegoto prepare a set of suitable design curves for
,effective wifdtr Of slab in flat slab'structures.' They regarded

. ","d1f ./ .....
• .'- "0 •• ' • •effective width as a function Of w~dth and span .of slab. They

/

beam, Dr its corresponding structural stiffness, can be assessed •
. '~

•
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1/

'--tested a number of steel -m-odels. He attempted to

tivemay lead to a serious error in the calculation of stresses.

solely through slabs. They assumed the entire width of the slab

to be effective and verified the theoretical analysis by model

effective. He came to the similar conclusions through an analysis

also conside~ed effective width as a function of column thickness.

shear wall structure and reached the indirect conclusion th~t

Choudhury(6) tested an asbestos cement model of a coupled

tests of shear walls connecte.d by slabs of various widths. The
discussions of the same paper by Choudhury( 3) Quadeer(4) and

Michael (5) revealed that taking the entire slab width as effec-

ratio.
decreasing width/span ratio and increasing column thickness/span

Barnard and SChwaighofer( 2) used Rosman theory with

simplification to solve for stresses'in shear walls connected

According to their investigation effective width increases with

for the particular structure, only 2~ .of the total width was

of floor slabs by finite element method.

According to his investigation effective width increases with

increasing corridor width/slab width ratio.

prepa_:I;:ea:s.ft of suitable design curves for effective width of
/"

/

._sl'abin flat pIate str uctures. He. eval uated effecti ve widthI . "_
!

for different shapes of shear walls. He also evaluated effective

width as a function of corridor width and width of slab itself.
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• width of the slab.

•......~.

. !_I-.

widtRiJand corridor width have the most

the effective width •.Michael (9) showed

tested a perspex model with closer transverseCoull (11)

reveals that the slab

significant effect on

the corridor width Y is the slab width and Y is the effective
e

width of slabs, given by ~l 318-63 where full width is speci~

verify the correctness of the approximate values of effective

flat slab building by finite element method. In order to

Pulmano, Black and Kabila(10) analysed an eight-story

a functions of all these parameters, while a close inspection

and the width of the shear walls, as variables for effective

width. Ffrom those curves it is seen that effective width is

that a single curve can be dra~n with all the data presented

by Quadeer and Smith. He also trl~d to fit into it another

curve, having equation (L/Y + 0.8) (l-Y IY) = 0.9, where, L is
e

very close to those from theoretical studies. They pr.oduced a

difference method and through experiments, which gave results

.Quadeer and Stafford Smith( 8) analysed the slab by finite

set of curves with slab width, cantil~ver width,corrLdor width,

fied and that given by the equation p-resented by Michael, they

nearer to the results obtained by finite element analysis.

\

analys.ed the equivalent frame taking the effective width of

spacing of or:Aogonal system walls and found th~~ the stiffening
I \ /1effect of the close-spaced walls upon the floor slab is a major

factor in calculating the effective width of the coupling floo~

.-------/ I

,./slabs as connecting beams and concluded that the latter one is
,
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small.

Y /Y vs. W/Le

effect of

There final aim was to prepare design curves in terms of the

been examined theoreticalL~ using the finite element method

by Tso and Mahmoud(2~. They used finite element technique to

Coull and Wong( 12) analysed Coupled shear walls with,

coupling slab is significant only when the wall opening is

out the fact that the additional stiffening effect from the

eff@ctive width of the slab between shear wal~s. They pointed

experimentally. He is of the opinion that in the particular

obtain the stiffness of the slab coupled shear wall system.

The configuratibns of the wali\systems included slab coupled

planar walls, T section walls; ~nd box section core~walls.

slabs. He also used Rosman's theory in calculating the resul-

type of cases the value of the effective width is greater

The influence of orthog6nal walls acting as flanges has

ting stresses which compared favourably with thbse obtained

than the full width of the slab.

different shear wall configuratio~ by-finite element method.

They prepared sets of design curvei. They investigated theore~
\'. \

tically the variation of the effective slab width or stiffness
I

with different geometrical layout parameters. They evaluated

effective slab width as a function of wall length, slab width,

wall opening width for a pair of inline pidne coupled shear wall
configuration. They concluded from the curves ~f

•• ~ .1
' 1for the two ratios of L/Y - 0.5 and 1.5 that the

•
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variation in wall length may be disregarded in the evaluation

of effective slab width, so long as the influence of the ratio

L/Y is considered, they recommended that the effect of dissi-

milar wall lengths in a pair of coupled walls may be disregarded

if the ratio Df the shorter wall length to the wall Dpening

is greater than 0.5. They also concluded that the influence of

slab width is strong when Y/X is smaller than L lx, but when

Y/X is larger than L/X the influence of slab width diminishes

rapidly. Increasing the slab width beyond a value Df about

three "times the wall ope13ing w,idth appears to have virtually,
\

no effect on the effective slab'width for a particular wall'.
opening width. They showed that the influence of L/X on ye/x

fora particular value of Y/Xis almost identical to the iRflu-

• ence of Y/X Dn Y /X for the same value of L/X. They fDrmulatede "

the equation of a generalized design curVe as Y /Y * L/Y(1-0.4
e

L /Y). They also evaluated slab width" for flanged shear wall

configuration and found that the presence of external wall

flanges increases the effective width of the slab by less th"an

~ fDr the extreme case considered. Jhey concluded that the

influence of external wall flanges may be safely disregarded.

2.3 Shear W~ll - Beams - Slab System

Shear walls coupled by lintel beams that are monolithic

with floor slabs are frequently used in shear wall buildings.
/

A commonpra~fice in the analysis of such COUPykd shear walls

\
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is to disregard the contribution of the slab and assumi that

the walls are coupled only by a prismatic beam. However, in

gravity load design it is standard practice to include a

portion of the slab as a flange for the beam, so that a greater

moment of resistance is obtained by the composite action. While

under ultimate load conditions it may be sound practice to

ignore the contribution of the slab because flange sections

may be cracked at points of negative bending moment, there is

no reason why under working load conditions in which the struc-

turar-behaviour is sensibly linearly elastic, the beneficial

stiffening effect of the slab should not be included in an

analysis of the coupled shear walls.
- .. -

Although a number of studies have been made of the'

behaviour of slabs coupling shear walls, as reviewed in the

preceeding article, no information had been published until

1984 when Coull and Wong( 13) published their papet:'onetbe'cattion

of floor slabs acting compositively with lintel beams. They_
"analysed the composite behaviour 6f"--a""'.iinteland slab coupling

a pair of laterally_loaded shear walls by th-e finite element

m~thod. They evaluated the stiffening effect and.the effective.-
width of the slab acting as the flange of a composite T-beam

for a range of structural parameters. The variables which were

involved in the structural geometry of a fypical floor panel

coupling a pair of shear walls included the slab, width Y, the
, ,;

wall opening, L, the wall length, W; the slab thickness, t, the
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case of a flat slab floor without lintdl beam •

r

!

i
,,

of values considered. The influence of wall opening width,

effect of vaFiations in lintel width may be disregarded in

lintel width, b, and depth, d. They found that the composite

stiffness. ratio and effective flange width, Ve/V, increased

substantially' with the wall opening width, ~/t. over the range

however, tends to become-l~ss important with larger values of

the evaluation of effective flange width. They also found that

L/t. They also concluded that. for practical purposes, the

the composite stiffness ratio decreases with an increase in

lintel depth and the effective flange width on the other hand
increases with lintel depth.

It is seen that the effective flange width values for

the practical range of relative lintel depths.considered are

substantially lower than the effective width for the limiting

..--.--_/
/

•



,",'"',incre ase ,-ofd ater,al ,-stiffness, ,to,,,t-hec-'wh01ec,building; ,thus

•

CHAP TER 3

THEORETICAl!. ANALYSIS AND PROGRAM DEVELOPMENT,

3.1 Introduction
'.

Shear walls coupled by beams, that are m~nolith~c

with floor slabs are a common type Of construction for apart-

ment buildings. The load bearing shear walls have a dual

function of resisting the gravity and lateral loads, resulting

in an efficient use of materials. Further savings may be

achieved by taking into account the effect of coupling between

shears walls by lintel beams. Depending on the plan configura-

tion and dimensions, the floor slabs can provide substantial

reducing the sway effect due to lateral loads •

The composite behaviour of a beam and slab coupling

a pair of laterally loaded shear walls is investigated by the

finite element method. The finite,element method is being

applied extensively in plate bending problems, since it was first

used by Adini and Clough(14) and r~:~ii(-15). Jenkins and

Harrison(16) suggested the use of this method in calculating

',the stiffness of slabs in shear core structures. One of the

major advantages in using the finite element method in the

present problem is the comparative ease with which it can be

incorporated into a general programme for analysing the equi-

valent frame ,which is, in essence, also a finite' element procedure.
,;
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"' "-The shdaf walls resist the lateral loads pn the structure,

3.2 Assumptions Made in the Analysis

equal at all levels. An application of the standard slope

deflection equations for prismatic beams then shows that,

In order to limit the structural parameters involved to

only the most significant, the investigation is limited to the

23

A study made by Coull and.Wong(l~ of walls coupled by

study of the interior bay of a cross~wall structure, assumed to

have a large number of bays in the longitudinal direction and

It is assumed that under the action of lateral forces,

one bay in the transverse direction.

of the floor slabs. As a res~lt, the slopes of the walls are

the walls deflect equally due to the high in-plane stiffness

This assumption is sufficiently accurate for design purposes,

unless one wall is very small compared to the other.

slabs alope has shown that the effects of dissimilar wall

lengths may be disregarded, provided._that the length of the

situations.

3.3 Stiffness of Coupling Beam

due to wind or earthquake effects, by cantilever bending action,

smaller wal+ is greater than about, half the length of opening

/~between wal~s, which will be true in almost all practical

,
'",'',,-under"o,tlne,se,condi,tioDs,"the enoJmoments, are,'equa,l'and"a point

of contra flexure occurs at the mid span position of each beam(6).



-----substantial-moments.o~resistance •.therebyreducingcgreatly
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which results in rotations of wall cross-sections. Th~ free

bending of a pair of shear walls is resisted by the lintel

beams together with the floor slabs, which are forced to

rotate and. bend out of plane where they are connected rigidly
to the walls Fig. 3.1(b).

Due to the large depth of the wall, considerable diffe-
rential shearing action is imposed on the connecting beam,

which develops transverse reactions to resist the wall defor-

mations Fig. 3.1(c). and induces tensile and compressive axial
forcii'-sinto the walls. As a result of the large lever arm

involved, relatively small axial forces can give rise to

the wind moments in the walls, and the resultinggtensile

stresses at the windward edges. The lateral stiffness Of the

structure is also considerably increased. A similar situation

arises if relative vertical deformation of the walls occurs,

due to unequal.vertica .•..Lloadin.g on the walls or to differential

foundation settlement. The effect"on.-.th.econnecting beam is

similar to that produced by parallel wall rotation by bending
Fig. 3.1(d) and 3.1(e)•--~-

let us consider the elastic deformation of a beam Of clear
span l COUpling a pair Of shear walls with centroidal axes

distance, l apart undergoing parallel rotations, e , under thec .

actions Of w~rJc:Imoments. M1 and M2 Fig. 3.2(a)',/As is customary

in such analyses it is assumed that plane sections of the wall
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Case I

Case J[

b

, .
sum of individ~al

,. ~;/

L

(a)

'Lc

(b)

a

Wall rotations as the
wall rotation.

Fig. 3.,2

•
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3.4

3.5
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For Case I

remain plane iR .•bending. The deformations of the walls in"

Fig. 3.2(a) can be viewed as the sum of the deformation in

"Fig. "3. 2( b) . and in Fig. 3. 2( c) •

Ie)
we have

m1 = 4EI elL + BEl a eiL2e e

m2 = 2EI e/L + BEl a e/L 2e e

~
• P 1 = ,( m1+m2) IL = (BEl IL 2+ 12EI a/L3) e• • e e

4El 3a 2
M11 + aP 1 e ( 1 + 3a ) e= m1 = -r- - +L ;:z

,,--- 4El I
I 3. a+b 3ab) .~M21 + bP 1 e 0= m2 = -r- + '2 -L- + ?

•
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3.7

3.8

3.8a

3.9

3.9a

3.10
L 2
c
~8

(L+2a)L____ c 8

L2

(L+2a)L c
L2

4E I 2 2
=~(3/2+3(3a+b)/2L+3(a +ab)/L )8

6E1 eM = M1 =, M2 = -C- .\,..

• . M = M11 + M121

6E1
M1

e= -C-

6EI• I~1/8 e. . = -r
.4EI

- - 2 2eand M2 = -C- (3/2+3(a+3b)/2L+3(ab+b)/L )8

6EI (L+2b)L
M2

e c 8= -C-
L2

M2 6EI (L+2b)L .e - c'8 = -C-
L 2

F or symmetric walls, we have a = b _

" \ /
. The coupling'-slif~ness of the beam,. which may bie defined

in terms of the moment-rotation relationship for the wall,
\

- \
l L',/'

, and L' + 2a = +. 2b -, c, ..--/ I--,.' Iand equatio,hs 3.8 and 3.9 become
i

Similarly from Case II

4EI
3b2/L2) 8M22

e ( 1 + 3b/L += -C-
"

4EI
3ab/L 2) 8M12

e (1/2 + 3( a+b) /2L= -C- +
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3.•11

3.12

b

Ye

/:d

I~ 6El e
e=-L-

The moment-rotation relationship for a pair of shear

In com~on with gravity load design, a portion of the

Fig. 3.3 Composite coupling beam cross-s~ction.
.j'

walls coupled by a lintel beam with the floor slab can be

evaluated by a finite element analysis, allowing the effective

second moment of area for the composite coupling medium to be

3.4 Effective .FI~nge Width of Lomposit~ Coupling 8eam(13)

obtained from Eq. (3.11) for equal wall lengths or either from

(3.8a) or from Eq. (3.9a) for unequal wall length.

floor slab may be assumed to act as the flange of aT-beam.

Using effective second momenE-of area, Ie' it.can be shown that
the effective flange width Ye is given by

.,
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3.5 Fihite Element Analysis of Slab and Beam

to
beams by rigidconnected with the centroidal nodes pf

r--_ {
'I

,,

by combining a standard plate bending element with three degrees

the -sl-ab-is represented by a rectangular flat shell element

characteristics are inco~porated~n_1~e same element~

two degrees of freedom at each node (in-plane displacements in

x and y-direction~ so that ihi flexural as well as the membrane

about the x and y-axes) with a standard plane stress element with

of freedom at each node (transverse displacement and rotations

in which b = the width of the beam; t = the aslab thickness

C = 12 (I I) - A (t2 + 12e2); e = the eccentricity be'tweene w w

'The slab that is monolithic with the lintel beam is

and~b~a~ by the beam element with de~rees of freedom similar

the centroids of the web and flange sections, and Iw second
moment of area for the web Fi~. 3.3.

coupling ~ction. In order to model this behaviour adequately,

subjected to membrane as well as bending effects under composite

to those of shell element node. The element used is obtained

corresponding nodes of flat shell element whith are assumed
\

be rigidly

links.

For the lintel, the beam is divided into elements as
/ ,

, ,
shown in Fig; 3.4. Frbm the assumptions that slab and beam----' ,

;0' \ ,_

acts compositely, stiffness matrices corresponding to the beam's. I

centroidal 'nodes are obtained first and than transformed to the

•
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The finite element methbd. which was introduced in the

The classical methods for analyzing shell structures

3.5.1 Flat Elements

Fig. 3.4 Typical finite element idealization of Bea~and floor slab.
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yield governing differential equations whose complexity depends
_.~-------

. '---greatly on shell geometry. Analytica~ solutions of these equa-

tions,are, a,vailable:only for shells with simple ,'geometric forms

fifties. is a completely general approach for the solution of

z

problem in str~ss analysis. The finite element method implies
. . -', . I .

'a'nidealizatioA of the 'shell surface as'an asse'~blage of discrete

structural elements. The stiffness properties of the individual\

,/,and for resfricted boundary condi.tions."
,
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decreasing mesh size •

give better results than triangular ~lements, the major disad-

vantage of these elements is the difficulty, encountered in

tion to th,e errors associated with the assumed displacement

It is important to emphasize that when using planar

elements. In the present, analysis, rectangular elements have

been used. Although it h~s been shown that rectangular elements

rectangular, triangular, quadrilateral or arbitrarily shaped

zation is achieved by dividing the continum into a number of
The structural idealization and its subsequent discreti-

functions. Ho~ever, these geometrical errors diminish with

elements are evaluated from an assumed set of displacement patterns.

These displacement patterns or functions should include:

elements, errors of a geometric nature are introduced in addi-

1. All rigid body motions

and the same plane can be conveniently found.
of shells for which groups of four surface points lying in one

2. Constant strain and curvature states-

Planar quadrilateral elements may be used for the analysis

regular in shape so this difficulty should not arise in

analysing slab coupled with shear walls and b~ams.
- \ /.r-....... ,f, " »

Analysis of shell structurssby the finite el~m~nt method

was first based\on the pure membrane theory, and made use of the
I,

,.-_/

dealing with irregular, curvedbound~rieB. Most of ths shear
I

walls are built ~Qya rectangular module and the slabs are also

•



to the global coordinate system. This problem may

by transformin~ only the translational degrees of

element.

el ement.
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triangular constant strain element. However, a satisfactory

2. The stiffness matrix for a plate bending finite

planar shell \element are small, the membrane or in-plane action

and the bending action are uncoupled within each element. The

stiffness matrix for the shell element may therefore be obtained'

by superimposing two independently derived stiffness matrices:

for a flat element. The shell element has three translational

The use of flat plate elements for analysis of shells
was first presented by Zienkiewicz and Cheung(1J) and by

Clough and Tocher(1~. It is easy to generate stiffness matrix

1. The stiffness matrix for a plane stress finite

plate bending stiffnesses. If the relative displacements for a
\.

shell element must contain both the plane stress and the

and two rotational degrees of freedom of each model point, as

shown innFiQ. 3.5. The rotation about an axis normal to the

element is not included among the ngdal parameters. This may

lead, to some difficulties whehtransfo~ming the element stiff-

freedom to the global coordinate system. The rotational degrees

of freedom were transformed to a common tangent plane at each

nodal point~-neglecting the rotations, about th'-axis normal
. " \ . 1/ : ..

to this plane.

'--ness matri:x
---' I

be overcome
j
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The flat element is simple to formulate', easy to describe

2

Flat Shell Element

Fig. 3.5 i1ectangular- flat shell element with 5 degrees of
freedom at each node •

adapted for the local coordinate system are shown in Fig. 3.6 •
.r . \

Fig. 3.6 Planar shell element in local coordinate system.

by input data, easy to mix with other element types, and
/'

" capable of rigid-body motion without strain. The stiffness

matrix of the shell element wil,~ first be established in a

local coordinate system,.-The elem-ent-'and the convention

Membrane Element

- .~-

•
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ex

Mx

8y

(d I Moment Components

(b) Rotation Components(0) Displacement Components

Px

tc I Force Components

"

x

\

'." ,

the .four nodes is. considered to have three dTsplace,:-

Fig. 3.7 Nodal displacement "and force components;

!

and ~wo rotation components in space as nodal parameters •
I

ther~ are 5 parameters related to each node. The parameters

z

Thus

w

\
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vectors.

are denoted as shown in Fig. 3.7a and b •. The corresponding

stres~': resul tants are denoted as shown in Fig •.. 3. 7c and d. The
"

quantities /d"ii'fined in Fig. 3.7 are assembled in the following

E,:-ch' 0 f
,~ .

......-/~- . ment

•

,
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3. 15

action. and given in the form
/

{ F } = £1 ' 3.14a,b

F '-2

£3'

{ d } = .£1

.£2

.£3

{ cj} = u {E)' = P
i i x

v P
Y

w P 3.13a,bz

ex Mx

ey My

where index i denote node number i. The total vectors of nodal

Provided that the relative displacements, within the

where [~Jis the stiffness mat~ix of the shell element referred

The pl,,;nestress stiffness will be discussed in Art. 3.5.2,

The quantities F and d are related bt the equations

parameters and nodal stress resultants for the element are

to local coordinates.

structural:theory, the in-plane action and the bending action
i
Iare uncoupled.

is chosen t9_jescribe the in-plane
I I

as shown in Eq. (3.16).
\

eJe~ent ar~ small, which is the usual a~sumption of linear.-~

•



37

P has been added to denote plane stress.

/
,/

'I

r~..~
I

[::], !S.~1 !S.~2 P P

[:}= !S.13 !S.14

!S.i1 !S.i2 P P!S.23 !S.24 3. 16

[::], !S.j1 !S.j2 !S.j3 !S.j4 [:1!S.~1 !S.~2 !S.~3 !S.~4

[::], [:],
-[:,] [:J
. y 4

.

node number 1 have been listed first, followed by the corres-

In Eq. 3.16 displacements and stress resultants related to

ponding quantities for nodes number 2, 3 and 4•.The supersc.ript

The plate bendin~ element with 12 degrees of freedom

will discussed in Art; 3.5.3 is cllo'senfor bending action.

The.•stiffness matrix for this element is given in Eq. 3.17 •



P 8 8 8
K8= ~11 ~12 ~13 w'-'z , -14

M 8 8 8 1:3 Bx ~21 ~22 ~23 ~24 x
8 8 8 1:3

3. 17M ~31 ~32 ~33 ~34 By, Y
" 8 8 8 ,
" P 8

z ~41 ~42 ~43 ~44 w

M
Bx
x

M
ByY 2

2
P wz

M Bxx

M eyy 3
3

P wz

M , , ," e I'XX

• M ey
4 Y

4

/

. In Eq. 3. 17 the parameters have again been ~rranged.
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"

The remainin~ 8 submatrices
II

is shown in Fig. 3.8 for

All necessary information for the formation of the
\

in subvectors related to the nodes 1,2,3 and 4 respectively,

and in each subvector the displac'emenLnormal, to the plane

of the plate' has b/een ,placed first.

stiffness ~atrix of Eq. 3.15 is now available. It only remains
J

to place the submatrices of Eqs. 3.16 and 3.17 in the right

posi ti~ns in ,[~J. The procedure

the topfou~_ ..~ubmatrices in [~l
are formed in the same manner.

\
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3.5.2 Plane Stress Element

Isoparametric quadratic plane elements are used to

develop stiffness matrix for the injplane action. Any standard

text can provide the tiofmulation required for developing the

plane stress stiffness matrix. The author uses the formulation
, , ( 1 9)given by Bathe and Wilson •

3.5.3 Plate Bending Element

The finite element method is being applied extensively

in plate bending problems, since it was, first used by
Adini and Clough(14) and Melosh(15). In order to evaluate

the stiffness matrix of the individual elements, the displace-

ment patterns within the elements have to be assumed. The

• accuracJ of the finite element procedure depends directly on

the extent to which the assumed displacement functions are

able to reproduce the actual distortions in the continuum.
(20)Clough and Tocher have carried out a comparative study

of the various displacement functions which have been suggested
. ""

for use in plate bending problems. Iheystudied 3 shapes

suggested for rectangular elements and 4 shap~s for triangular
\ ~/ ,

_~k elements and from 2BO different .analyses of different plates,~ ,
, I

~hey concl~ded th~t 'two of' the rectangular elements (M and

ACM) and the compatible triangular element (HCT,).provide very

satisf~ctoryanalyses when used in the finite element analyses

of plat~ be.n'ding.These two rectangular' elemeryls are' somewhat

more accurate than the triangular element, particularly when
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a coarse mesh is used and therefore are to be recommended for

the analysis of any system in which the boundaries fit the

rectangular co-ordinate area. Since floor slabs are usually

composed of'rectangular areas~ it was decided to use rectan-
gular elements. _

The ACM, displacement function is 12 term polynomial

3. 18

The element stiffness matrix derived from the above
displacement function is shown in Appendix-A.

3.5.4 Beam Element

In the ppe~ent analysis the beam is assumed to act

compositely with the slab coupling it. So it will not be

unjustified to take as much degrees of freedom in the beam

node as in the slab nodal point~ So the degrees of freedom

and convention taken is. shown in the Fig. 3.9 and 3.10•
. >.-. ---.

It is tobe noted that since the analyses are carried

on the floor slab elements only and since the plane of slab

can be any'of the plane of Glo bal coordinate plane there is,

no need for transforming slab element stiffness matrix from

local.to Global stiffness matrix. Also .in general the beam

elements are'in orthogonal direction, so two types of beam
;-- ,

elements are tlsed, one in x-direction Fig. 3.9 and other in
Y-direction Fig. 3.10.
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Fig": 3;9-' Beamel'emenj; hmx-d'irection.

"

Fig, 3.'10-, Beam element V-direction.

•
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Lintel beam is assumed to act compositely with th~

for both types of beam element are shown in Appendix-A.

3.5.5 Rigid Links (Composite Elements)

The element stiffness matrix with 5 degrees of freedom

slab. Usually the neutral surfaces of the plate and beam

are not coincident. Therefore, to keep displacement compati-

bility between beam element and plate and to reduce the total

number of nodes, beam stiffness matrix is developed for the

degrees of freedom of the adjacent plates node connected

with the beam. A standard preliminary treatment is to connect-

adjacent plate and beam nodes by rigid link, so that d.e;f

of the beam are replaced by d.o. f of the plate;' The usual

now described.
assembly is then possible. The necessary transformation is

,
./

Fig. 3.11 Nodes 1 and 2 of a beam element are'rf!'adeslave
to nodes ~ and 1 by rigid links 1k and 21.



stiffness matrices are r' and k'. Similar d.o.f. are used

-'---
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uk

wk

exk

eyk

0 0 0 e . 3. , 9,
-1 0 c 0
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:beam neutral plane)~ ..
i

The beam element used has '0 d.o.f _ 5 at node 1 and

':' ---

o
o
o
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associated with d.o.f at nodes k and 1 , a~e
/

,/

5 at node 2. With reference to these d.o.f, element load'and

at nodes k and 1 of the rigid licks lk ,and 21. The "master"

d.o.f. at node k and ."slave" d.o.f at node 1 have the relation

where e,. = eccentricity between plate node and beams centroidal

\node •.(ol-veif plat~ ''.OJ. neutral plane is above the
-"".

A similar expression is written for link 21 by replacing

subscripts , and k by 2 and 1 • The transformed arrays ~J and

,u,

v,

w,

ex'

ey'

where [lJ
~



3.5.6 Degrees of Freedom of the Floor Slab(6)

'\

.
-

\
, A6, A2 A] 81 82

Z As
'77.

•
~

,
! . A4

.
In general, each nodeal point in the flat shell has

necessary in the overall"analysis of the structure ,for only

those degrees of freedom which correspond to the unknown

fiveoegr'ees of freedom u,v,w, '8x' 8y' In the case of flat

shell sup~prted on walls and columns, stiffness values are

~isplacements of the walls and columAs. For example, in

Fig. 3.12 Fihite element idealization of floor slab.

Fig. 3.12, stiffness of nodes A1,A2,A3,A4,A5,A6 and 81,82,

83 will be sufficient in carrying out the overall analysis of
/



categories:-

This implies that in order to maintain full compatibility with

relationship with each other.

and hence their displacements bear a linear

/

i) nodes which are completely. free to displace and
hence no nodal forces produced.

\.
ii) nodes which are rigidly connected to other nodes

the structure. Thus, it is not necessary to incorporate the

In the analysis of walls, it is assumed that plane

46

full finite element stiffness matrix of the 'slab in the

analysis of walls. Instead, stiffness values corresponding

to only those nodes which are coupled to the walls will
suffice.

sections of the walls before bending remain plane after bending.

the walL displacements, the displacements of the floor nodes

directly connected to the walls (viz. A1,A2,A3,A4,AS,A6,81,82

83 in Fig. 3.12) must also be linearly related. Consequently,

displacements for all the nodes connected. to .any particular

81 and 82 may be referred to the displacements of 83), So the

nodes in the floor slab may be classified into the following

.-

• wall may be referred to only one node (6i'z. displace0ents of
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30' 35

12 16 21

Wall I \ Wall 2\,
\

\
'\

In Fig. 3,.13, nodes 2, 3;4,J7,22, 32,33, 34 and 35 fall

1

v y

The displacements of all nodes lying on wall 1, node

into the first category,

nos. 2,3,4, are linearly related to each other and these may

be expressed in terms of the displ~cements of any of the 3

nodes. Taking node 3 as the reference node:

- \u2 = u3_/

v2 = v3' as we neglect the inplane rotation

w2 =: w3 - ( l'3- y2) e x,3 + (x3- x2) e y, 3
e x,2 = ex,3
e y, 2 = e y,3

,/
[02J [T2J P3Jor =

, r - Fig ;-' 3.,.13,'u. "ihi:te~el,eme nt'i deal.i zati on' 0 f,- floor' sl ab.
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3.22

"

= {p}

\
u4 = u3
v4 = v3
w4 = w3 - (Y3-Y4) ex,4 + (x3 - x4) e y,3
ex,4 = ex,3
ey,4 - ey,3

Let

nod~ may be selected arbitrarily, as long as it lies on the

wall, these stiffnesses have to be transformed to correspond

u is the displacement vector which refers to all the

Although, in the analysis of the floor slab, the reference

or

and

Similar equations may b.e written for the 'other walls.

the equivalent frame programme for the analysis of walls •

to the wall-centroids before they can be incorporated into

48

••

3.5.7 Condensation of the Stiffness Matrix(6)

represent the nodal equ~librium equations for the finite
" - '--------

.--' ..element idealization of the floor.

displacements.

and P is the load vector corresponding to th~se displacements •.~ I

, ~ is the stiffness matrix assembled by;,the superposition
>'--[;'fnodal stiffnesses, obtained f.rom eleme~'~ stiffness matrices.

•
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3.24

3.23

of displacements:. '

,/
j

ii) !:!.2which refers to the displacements of the nodal

points rigidly connected to the reference nodes in (i)

i) ~1 which refers to the displacementsof nodal

pOints"taken as reference points.

The stiffness matrix K may be partitioned to giveethe sub-

matrices corresponding to the three groups

and iii) ~3 which refers to the displacements of all other

nodal points that are not on the walls (i.e, free nodes).

Let the load vector P be partitioned into vectors ~1'~2

and ~3 corresponding to the disp~acements, ~1' ~2 and ~3

respectively.

points). Let this displacement vector be partitioned into

three vectors:

The displacement ~ contains all the possible degrees

of freedom of the discretized structure, 5 x (number of nodal

So {~r = ~1 and {E} = ~1

~2 ~2

~3 ~3

and, [KJ ~1 = ~1

" ~2',~' ~2

~3 ~3

"
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Form displacement
vector .!;!1

Form the displacement
vector .!;!2

Form the displacement
vector .!;!3

.!i11 .!i12 .!i1 3 .!;!1 = !:.1

.!i21 .!izz .!i23 .!;!2 !:.2 3.25

.!i31 .!i32 .!i33 .!;!3 !:.3

Displacements of nodes 3,17, and 34

Displacements of-nodes the remaining
nodes

Displacements of nodes 2,4,22,32,
33, and 35

Fot example, in the plate shown in,',Fig. 3.13, taking

I

,/

50

where 11 is a linear transformation matrix.

-,.

Since the displacement vectors.!;!1 and.!;!2 are related

to each other linearly,--'

3 respectively, •.

nodes 3, 17 aAd 34 as the reference nodes for walls 1,2, and

particular; wall must also lie on the same plane after bending.

Hence, the slopes at the nodes must be the same and the vertical

deflections must be linearly related.

The transformation matrix'~"JO.::~~ting.!;!2and .!;!3'may iJ'e'

written by inspection of the defle~ed shape. Keeping in view

that; as plane sections of the wall before bending are assumed

->--~to remain plane after bending, all the. nodes connected to a

•
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3.27

/
J

e y,1 7

e y,34

e y.3

I I.?;110 0
--+----,---
A I 0 I 0
-2 - I -
---J-.---_- -
o I .?;3 . I 0
---+----, --
o '0 I A

I 1-4
---T- - - -, --
Q I Q I .?;5__ -L +- _
o I 0 I A

6I 1-

\

=

W22

e
x,22

e y,22

:x; 4

x,2

y,2

...

W35
ex, 35'

e x,35
e y,35

,
The transformation matrix Tl' may. from E qs. 3.21.

•

.'

\
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themconforming for multiplication with the appropriate vectors.

\,
.;.,.

3.30

3. 31

3.32[.~'; K - l~ [::J = [~;J £:1 = [~:].!:.2

!:'.3 /
I

j

[~:J= [l;] !:..1

!:..2

!:..3

i
I
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and I represents unit matrices, of such order as to make

Applying the contragredient relationship that exist between
the forces and displacements to Eq. 3.28.

E q. 3.24 may now be rewritten as

[~J [I2J ["'] = .!:1

!d3 ' .!:.2
p ..:.-3

\

"--premul tiply ing both sides by ..!2',.'
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3.34

3.35

~1

o
=

,I

,f

= [~lJ

=
r' ..~

Writing K in its partitioned form, as iA neq. (3.25) and
3fsubstituting the val Ues of ..:!:.2'and 1:2,

[~
3*

:]T .' ~ 11 ~12 ~13 I 0 ~1 = £:1-1
3.33

0 ~21 ~22 ~23 11 0 ~3 £:.3

.!S31 .!S.32 ~33 0 I

54

Carrying out the matrix multiplication, and noting that, since

the displacem.ent vector u3 refers to nodal displacements which

do not have any external restraint imposed on them, the corres~

~._--

ponding load vector P3 must be zero,

.!S.31 + ~32.!:.1' .!S.33

Eliminating ~3 from Eq. 3.34,

or
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3.36

i
't

as flat sh~ll element or beam element. Explicit expressions

The basic floor data, such as the number of elements,

by means of matrix condensation.
that instead of solving for externally applied displacements

This programme differs from other finite element programme in

3.6 Computer Programme

Fig. 3.14 shows a flow diagram of the computer programme

developed for the evaluation of the floor slab stiffnesses •

being referred to one node point for each wall.W the reference

respect to the reference node.

the matrix Kc may be transformed by using a transformation

matrix defining the location of the centroid of the wall with-

is the condensed stiffness matrix of the plate, the displacements

where

node for a wall does not correspond to the centroid Of the wall

,for the stiffness matrices of the elements have been calculated

and these are, used iii evaluating theesttffness matrix. It,i's
.-worth noting-.that an orthotropic flat. shell ele;ment may be

' \ , . . 1/ .

included with very little modification iRllthe data entry.
\

number of nodal points are .read fir~t. '..The' data describing

the element proper.ti'8smay be generated partly and partly read- - - \ .. -' .

_in it. Fr6m the element property data the elements are taken,

•
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The concept of bandwidth is used in storing and operating

on the assembled stiffness matrix. By careful numbering of
nodes, the b and width may be kept a minimum.

,
Any external restraint, e.g. those imposed d'ueto

pont{nuity of the plate or fixity of the plate, may be applied
before condensing the stiffness matrix.

The condensation of the stiffness matrix involves the

solution of eq. 3.35. The matrix T1 is usually large, but

has few non-zero elements, consisting only of submatrices
"

A.'s which one of the form shown in eq. 3.21. In the1

programme only these '. 's are formed with a consequent saving
1

in the storage required.

A listing of the computer programme together with an

explanation of details and form of data input is given in
Appendix-B.

- .~.

\
\

I
.j
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Flow diagram of the programme for the
finite element. analysis of flqor slab
stiffness.

Read basic floor data

Rread and generate the detail s of finite
Plate or beam element

Read element property and connectivity
data and distinguish whether quadratic

Plate or beam element

Fihd the width of band in
Stiffness matrix

Evaluate eiement stiffness matrices and
add to the corresponding nodal stiffness
in overall structure stiffness matrix

-
- - .. . .. '-".

Apply boundary restraint

Condense the overall stiffness
matrix

Print stiffness matrix for floor



CHAP TER 4

RESU LTS,AN0 01SCUSSION S

4.1 Introduction

In order to study the composite coupling action of

beam and slab connecting a pa~r of shear walls, the plate

in Fi'g. 4.1 (a) was analysed. The. dimension X is length, Y is

width of the slab, L is the clear opening between walls,

Z-is the flange width of walls (in case of T-shaped, I-shaped

walls), W1 and W2 are the ler\gths of two watls. In order to

study the effect of different\~allconfiguration, in-line plane

walls, T-shaped walls, I-shap~~walls and one T-shaped and

~nother,plane, walls_were_taken_in the study. The,different

wall configurations used are shown in Fig. 4.1.

Line 81 82 indicates the position of beam connecting

the two walls. In order to study the effect of beam stiffness

on the effective width, different sizes of beam are considered
in the study.

_:>-_----

Since the.rotational stiffness KOf the composite beam

is affecte~ directly by the change in the linear distance

''-~D'etweenwall centres as the wall, cont;iguration is changed,--~ .;
, , ,
the results for the stiffness factor do not give a clear. I

picture of the actual influence of the wall configuration and

beam size o_n,the effective coupling slab width. Hence, in order

to assess more succinctly the influence of wall configuration
. . N

and beam size, reference is made only to the results obtained

for the effective width to the slab width ratio, Y IY.
. e ,



Fig. 4.1 Different wall configurations.
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-I

W2

-
B1 B2
----

I-

B1 82~--+---------I

(eJ' T -shaped ,land plane
wall. ,;

.(c)T-shaped walls

I. W1 -, L -I-
I- x

( a) Typical slab panel
\
\
\
\.,

-- - - - - -- -- - - - - -- - - - - - - ~-

B1 B2- - - - - - - -

-- - - ---- - - - -- -- - - - - - --- --

81 B2r---' ----------I

(b) Plane walls

\ -- \

r

B281--- -
-

(d) I-shaped walls

•
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FotIsame' figure.
- . Ii '

L,IX constant and varying Y only,
'.\

the\ratio of wall opening to slab

is studied and Y IY vs. L IY cUrve is shown ine
width (L IY)

81 82 is analysed. Keeping

the variation of Ye/Y with

Fi~: 4.2~'Frbm the design curves-given by Coull and-Wong(12)

the values of Y IY for various L IY ratios are plotted on thee

same Fig. 4.2 and these give close agreement with the observed

4.2.1 Plane Shear Walls

the papers.
to compare the results of this study with those available in

4.2 Coupling Action of Slab (without beams)

There are several papers on the coupling action of slab

The plate shown in Fig,. 4.1 (b) without, connecting beam

results. Similar results are observed from the design curves
by Tso and Mahmood (22) •

in shear wall structures. Figs. 4.2 and 4.3 have been prepared

4.2.2 T-shaped0Shear Walls

for differe~t_L/Y ratio~ are plotted in the

the higher range of L/Y ratio, these give close agreement but

/ The p'late shown in Fig. 4.1 (c) without beam 81 82 is

>a-nalyzed. K,eeping L ,X and Z constant and varying Y only the,
i

vaFiation ~f Ye/Y with.th~ ratio of wall opening to slab-width
,'

L/Y is studied and shown in Fig. 4.3 as a firm line., From the

design curves, given by Coull and Wong(1~, the values of Ye/Y
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at the lower value of L /y these give some deviation (e.g. 3.7/"

higher for L /Y = 0.375) from the observed results.

4.3 Coupling Action of Slab and Beam

To demonstrate the effect and influence of beam flexi~

bility on the effective flange width of the composite coupling

beam various plates shown in Fig. 4.1 were analyzed and the

results are shown from"Fig. 4.4 to Fig. 4.13. Only one paper

has so far been published on this topic, viz. by Coull and
- - \

Wong(13). The paper considers"only. planar shear walls with
.~'.

connecting beams. On the concluding remarks they stated that

"tileinfluence Of thecouplirig action 'is'significarit only when

the beam is relatively flexible. That remark can also be made
from the study done here.

4.3.1 Plane Wall Configurations

It has been showrl by Coull andWong( 12) that in walls

coupled'byslabs alone, the effects Of dissimilar wall lengths

may,-be drsi:egardid, provided that the length of smaller wall
/-' .. .

...-// . :- ...

/~ is greater than about half the "length of opening between walls.
i

.This willibe true in almost all practical situations. In order
I -

to verify whether these above conclusion is valid for slabs

with beams also,the variation of Y /Y with the ratio of one
e ,

wall lengt~~o another wall length W2/W1'forJ~ifferent beam

depth is studied and the result is shown in Fig. 4.4. -for three

•/'

," .','.
'(.
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",

;

L/Y is plotted/for two valuesvs.

Effect of Wall Opening Width

the increase in L/Y ratio, Y /Y increases, rapidly for d/t = 2e

(e'.g;'incr'easingL/Y' ratio from D'~4't'o0'.7, the 'value'of' Y /Y
e

changed from 0.33 to 0.51 for W2/W1 - 0.5) and slowly for

d/t = 6 (e.g. increasing L/Y ratio from 0.4 to 0.7, the value

of Y /Y changed from 0.15 to 0.215). Fig. 4.10 shows thee

variation of Y /Y witb~ different d/t ratios for two ratiose

of L/Y - 0.75 and D.375.'Hera both the curves show that

,
slab thickness d/t is shown, in Fig. 4.4 for different ratios

of wall opening to slab Widt~. The trends of the results for

the two cases are different but both the cases show that with

ratios of W2/W1 - 0.5, 0.25 and 1.D. The trends of the results

,
The variation of Y /Y with the; ratio of beam depth to8 _. ~ -

for the three cases are similar and the curves for~each beam

size are almost coincident. 50 the effect of dissimilar wall

length may be disregarded whether beam is present or absent.

Effect of Different Beam Size

of d/t - 2 and 6. For both the values of d/t, Y /Y increases
\ , e

with the increase of L /Y•

_0- _

increase in beam depth decreases the"y',/Y ratio, rapidly within_ e

the range, to 2< d/t< 5. Thus it can concluded that beam reduces- \ - ,
/,'" ~ '

'- the influence of slab in the coupling action in coupled shear
" I

wall system.

•
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.. --~-Let us consider the pair of ideatical T-shaped walls'
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From Fig. 4.4 it can be concluded that with increase

longitudinal walls of similar construction to the cross-walls

in Ye is 1~ ,of slab width and 7;1,of slab width for d/t = 2

and d/t = 6 respectively.

For the increase in L/Y rati~ 0.4 to 0.7, the increase

Flanged shear walls occur frequently in cross-wall

structures as a result of making th~2corridor or facade

increases.
in opening size, coupling action of the connecting slab

4.3.2 T-section Walls

longitudinal stiffness, or simply for convenience in cons-
truction.

Effect of Flanges

shown in Fig. 4.1(c) which are symmetrical with respect to the

lateral forces, it may be anticipated for design purposes that
/

the res,ults'will apply with sufficient accura,,cyto most prac-
tical situations.

pa':lelcentre line-so Previous study' showed that the effectssof

-/dissimilar wall lengths may be ,disregarded. Thus, although the

present study iS,confined to a study of composite beams

coupling equal walls which rotate equally under the action of

•
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L /Y ratio.

and 6 with the increase "in L /X ratio,
I

i/Y /Y increases buttthe amount of increase issquite a small'e

value. As an e'xample, Y /Y for L /Y = 0.6, and L /X = 0.15 is .855e ,
I,,

increase in Y is from 2a ,to 28.~ ,of slab width. From thee

curves it is observed that for d/t = 6, flange does not affect

For d/t = 6, the effect of flange is not so much prominent,

In the above example, for increase i'nZ/L from 0.5 to 0.75, the

example, for increase in z/L from 0.5 te 0.75, the increase

in Ye is from 6~ ,t~ 7i1, ,of slab width for L/Y = 0.5. Approxi-

mately similar amount of increase is observed for different

the effect of flange is promiAent. The Y /Y ratios are
e

obtained for Z/L ratio of 1.0,0.75,0.5 and 0.0. The trends

to be produced showing'the variation of the effective width

ratio Y /Y asa function of the wall opening ratio L/Y fore

various flange width ratios Z/L for the two, d/t ratios of

2 and 6. Thes~ are shown in Fig. 4.5 , Fi~. 4.6 aAd Fi~. 4.7

for three L /X ratios of 0.15, 0.333 and 0.5. For-d/t = 2;

,width increase with the increase in flange length. As an

of the results for the four cases are similar, the effective

A finite element analysis enabled a series of cUrves

much in the lower value of L/Y rati~ but it is significant
~ ,\ '

for'higher' L /Y ratio., .-/' I,-
To, investigate the effect of slab length, i.e slab length

I

on the Y /Y, Fig. -4.5, 4.6 and 4.7 shows the variation ofe

effective width Y /Y with L/X ratio. And it is found that for'" ' e
both the d/t ratio - 2,-.
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for Z/L = 1 and for the same case but with L /X = 0.333, Y /Y =
, ' e

0.91. Thus, the effect of slab length on the coupling action

may be disregarded,

To, demonstrate the effect-o,f:~beam size on coupling

action of T-section walls, Y /Y as a function d/t is shown, e

in Fig. 4.12 for two r-tios of L /Y 0.75 and 0.375. Here,

as in the case of plane ~all configuration, both the curves

show that increase in beam depth decreases the Y /Y ratio,e
rapidly in the range 2 < d/t < 6.

4.3.3 I-section Walls

Figure 4.1(d) shows a configuration with. flanges at

t~e interior ends as well as flanges at the exterior ends of
the cross walls.

Effect of Flanges

In ~i~. 4.9 Ye/Y is shown as.a.function of the ratio

of openiRg distance to slab width for three ratios of Z/L _ 0.75,
.-'" \ ,- ; . .

0.5: and 1.0. The results show the same trends and values as
-_/ '

/' in T-sectidn walls with same fla'nge lengtR~

Fi~ure 4.13 demonstrates the effect of beam sizes on

effective slab width; this also gives the "same trends and values

porithei-T -section walls. Thus, the effect of 'exterior flange
,- --, /

i
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4.3.4 Plane Walls and T-shaped Flanged Walls

As before curves have been produced Fig. 4.8 showing

the variation of Ye/Y as a function L/Y for various ratios

of z/L. The trends of the results are similar as in the
T-shaped walls but value is less.

To.demonstrate the effect on beam sizes on an effecti~e

slab width, Fig. 4.11 is drawn. This figure also gives the

same trends as in other configurations. Here as in other

cases increases in beam depth decreases the Y IY ratio, rapidly
e

in the range 2 < dlt < 5.

4.4 Effect of Shear Oeformafron of the Beam

The design curves presented are obtained neglecting
shear deformation in the connecting beam.

To.demonstrate the effect of shear deformation of the

connecting beam on the effective width calculation, Y IY vs.. e
dlt are plotted in the Figs. 4.10 t~ 4'.13 for various wall

configuration considering shear deformation in the beams.. ,
-And it is found that consideration of shear deformation decreases

the effective width of the slab by less than ~ Of the slab

width for the extreme case considered (e.g. in the Fig. 4.10,

for L/Y = 0.75 and for dlt = 7.0, consideration shear deforma-
tion decrease, the value of Y IY from 0.22 to'O~17).

. e . J/

\
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\

4.5 Discussions

From the results it is observed that theemost signifi-

opening distance. For all the cases studied, it is found that

with the increase in wall opening length, the coupling action

provided by the slab becomes more and more significant. This

agrees with the empirical conclusions based on determination

of effective width by assigning angle of dispersion Fig. 2.1.

--It is also observed that length of the slab has negligible

effect on the coupling action. Also dissimilar wall lengths do

not have any significant effect on the coupling action. These

can be explained by the f~ct that the coupling action is

influenced by the property of the opening zone only.

From the observation of results for a system where one

T-Gection wall is coupled with a planar wall, it is found that

the effective width of slab is more than that when both the

walls are planar and less than that-when both the walls are

of T-Gection. This ii due to the action of walls flange in- \

dist~ibutihg the curvature farther along the slab width. Thus
_/

it is possible that the use of ~eam can be ommited when T-,

shaped walls are used.

Fihally, the most si9Dificant observation is that the

use of beam decreases the coupling action of sl~b. viz. in a' .~- ,
! i
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coupled I-section walls, as dlt increase for 1.0 to 6.0,..the

value of y IY is found to be reduced from 0.7 to 0.18 fore
L/y=0.375.

The results obtained are neglecting shear deformation

in the connecting beam and consideration of shear deformation

in the connecting beam reduces the effective width of slab

but the reduction is by less than ~ of the slab width for

the extreme case considered.

/

/
\
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Fi~. 4.4 Effect of unequal shear wall length in
planar wall configuration.
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5.1 ',Conclusions 1

CHAPTER ,5

•

- ----. -

,
Significant reductions in the wind str,~ses and deflec-

The composite action of beam and slab coupling a pair

iii) ,Beyond certain depth of beam (d/t > 6), additional.' . \. .

width. have been provided for the normal range of structural

"ffiNCLU5IONS AND SLGGESTIIJNS FOR FURTHER STUDY

ii) Dissimilar wall lengths have little influence on the

and 'the relative influences of a range of structural parameters

on the effective flange width of the composite coupling beam

have been evaluated. Design curves for calculating the effective

of shear walls has been investigated by a finite element method"

dimensions encountered in practice. From the limited number of
analyses, the following conclusions can be drawn.

i) For the coupled planar shear walls coupled by slab
onl y the equation Y /Y = L /Y (1-0.4 L/Y); given by Coull ande
W (12) for calculating effective flange width be used.
ong can

effective flange width of~ the connecting T-beam in'coupled

width for: all the wall configurations considered, i. e two

shear walls.

planar walls, two T-section walls, two I-section walls, one
planar and other T-section wall.

tions iRi,the walls may be achieved by including the composite
action when the lintel is relatively shallow.

.~beam depth has almost negligible effec: o~ the effective flange! .-

"

•
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iv) Interior flange length of flanged wall has the most

significant effect on the effeftive width or slab and it has

been observed that for I-section walls exterior flange have

negligible effect on the effective flange width. Thus the

corriadr edge property have marked influence on the calcula-

tion of the effective flange width whereas exterior edge

property of wall does not affect significantly on the same.

Therefore it can be conclud~d that although the de~ign charts

are provided for one band of opening these can also be used

for mUltiple bands of opening.

v) Shear deformation in the connecting beam reduces

the. effecti.ve".slab, width.eIn one~ o.f the, extreme.'casesc consi-

dered, consideration of shear deformation decreases the value

of Y /Y from 0.22 to 0.17, for L/Y = 0.75 and d/t = 7.0-ine
planar wall configuration.

5.2 Suggestions' for FUrther Study

To. verify the results experime.ntal investigation should
be made. ,,

. _.--" To. verify the inference that these results should hold-
~qually good for coupled shear walls with multiple bands of

opening, one should investigate a model of coupled shear walls

theoretically and experimentally.
/
;/
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APPEN DIX -A

CATA.lDGUE OF STIfFNESS MATRICES

\,

I. Stiffness matrix for a Rectangular Plate Bending Element.

Displacement fUnctiDn:,. w =

Displacement vector: d = w1 e e w2 ex,2 ey,2x, 1 y, 1
,r . __•

/w3 e x,3 ey, 3 w4 e x,4 ey,4
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B5

The generalized element stiffness matrix k for the

rectangular plate of 12 degree of freedom is given below. All
elements of this matrix

(k) . . -_-Ci, j)
- J.J

which are different from zero are listed for the case of

isotropic material and constant el~ment thickness. The indices
irJ denot~ row and column number respectively.

Since k is a symmetrical matrix~ only the elements on
and below the main diagonal are given~

The' following symbols are used

13 - b/a
V = Poisson,1s ratio

MF = 14-4v

MiJ = 1 + 4v

MM = 1 - v

BTl = 132 + 13-2

I~.B: All expressions must be multipl"led by
\

(1,1) = 4B Tl, + MF /5 (7,1) = 2BTl, + MF/5
(2,1) = - ( 2 13-2 + MO /5) b (B,1) = ( - 13-2 +MM/S)b
(3,1) = (2132 +_MO/S)a (9,1) = ( 132 - !liM/5)a

i
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2 '=(13 -MM/S)a

= ( 132/3+MM/1S)a2

= -2( 2132_13-2) -MF /S

= (13-2-MO/S)b

= -( 2132 + MM/S) a

= 2(132 - 213-2)_MF/S

= -( 213-2 + MM/S) b

2= (13 - MO / S) a

..

;/

( 10, 6)

( 12, 6)

(10,7)

(11,7)

(12,7)

(10,1)

(11,1)

(12, 1)

= (4132-/3 + 4MM/1S) a2

= (-13 2 + MO/ S) a

2 ) 2= (213 /3-4mm/S a

= 48TI,j-MF/S

'2
= - ( 213 + MO/S) b

2= -( 213 +MO/S) a-

( 6, 6)

( 7,6)

( 9, 6)

( 7,7)

( 8, 7)

( 9, 7)

(8,8) = (413-2/3 + 4MM/1S)b2

(9,8) = -Vab

(10,8)= (13-2 _ MO/S)b

(10,10) = 4BTId MF/S

(11,10) = (213-2 + MO/S)b

(12,10) = (2132 + MO/S)a

(11,11) = (413-2 + 4MM/1S)b2

( 11 , 1 2) = vab

, 2 -2
(4,1) = -2(213 -13 ) - MFIs
(S,1) = (~13-2+MO/S)~

( 6, 1) = (213 2 + MM/ S) a

(9,9) = (4132/3+4MM/1S)a2

2. "(.1 °i9) = (213,'''"+cMM/S) a

•
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3

E = Young's Modulus
A =~Cross-s~ctional a'Fea
L = ,Length of beam element
I = Moment of inertia about Y-axisy
I = I~oment of inertia abo ut z-axisz
J = Polar moment of inertia

G . - Shear Modul us

/\~,
88

(neglecting shear deformation)

II. Stiffness Matrix for Beam Element

given

Since ~'.is a symmetI'ic matrix, only the element on and
above the main diagonal which are different from zero are

ox DIRE£THlN

The followi~g symbDls are used;.

•
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(1,1) = 12EI /L 3 ( 3, 4) = 6EI /L 2z
x

( 2, 2) = AE/L

( 3, 3) .= 12 EI /l3
x

( 4, 4) = 4E1 /L
x

( 5,5) GJ/L
"

=
,

( 6,6) = 12EI /L3 ( 8, g) = - 6El /L 3z
x(7,7) = AE/ L

( 8, 8) = 12E _/L 3
x- .

( 9, g) = 4EI /L
x

(10,10) = GJ/L

( 1 , 6) /L 3 ( 4, g) 2EI /L
.= -1 2E1 =z

x•

6El /L 2
(2,7) = -AE/L ( 3, g) = x( 3, 8) = 12EJ /L 3 ( 4, 8) = - 6EI /L 2x

x( 5, 10) =- GJ/L

". ~-
-'"'---

...~

" ,
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