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ABSTRACT

This thesis deals with the behaviour of slabs 1n coupled shear
wall structures considering the nonlinear behaviour of reinforced
concrete.

Nonlinear behaviour of reinforced concrete 1S introduced through
modelling of concrete 1n its precracking, cracking and post
cracking (with yielding of steel) stages. A nonlinear 3-D finite
element'programme using 20-noded brick element is used Design
of slabs for gravity and lateral load is done by direct design
approach using a linear 2-D finite element programme with plate
bending element.

Overall flexural behaviour of slab is stu~ied by determining the
resistance of slab against wall rotation. In this work, wall
rotation 1S applied incrementally until failure of slab-wall
junction, the equivalent wall moment transferred from wall to
slab being determined in each increment. From moment-rotation
relationship, the variation of bending stiffness of floor slabs
.with the increase in load is calculated.

Effect of amount of reinforcement on flexural behaviour of slab
is also studied. The relative influences of a range of structural
parameters on the stiffness and effective slab width are
evaluated and design curves are presented to facilitate their
determination.

The variation of stresses and strain 1n slab and crack
propagation 1n slabs are also studied and presented. Flexural
stiffness and effective width are found to be influenced by
physical dimensions of shearwall slab structure. It is also found
that the effective slab width gradually decreases with increase
1n load. Several graphs and charts relating stiff~ess and
effective width of slab to var10US geometrical dimensions of
slab-shear wall structure are presented to facilitate their
determination.
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CHAPTER 1

INTHODUCTION

1.1. General

Recent yea~s have seen a rapid inc~e~se lP the number o~
tall buildings,for commercial and residdntial purposes thrbughout
the world. This increase has highlighted the necessity for a
greater knowledge of the behaviour of these structures,and, 1n
particular,the necessity for producing methods of analysis
capable of giving rapid and accurate assesments of their overall
strength and stiffness as well as detailed information about any,
local stress concentrations.

As buildings 1ncrease 1n height,it becomes more important to
ensure adequate lateral stiffness to resist loads which may arise
due to wind,seismic or perhaps even blast'effects.This stiffness
may be achieved in vari~us.ways.ln framed structures it may be
obtained by bracing members,by the rigidity of the joints,by
complete shear truss assemblies acting in conjunction with the
frame or by infilling the frame with shear resistant panels. An
obvious simplification of the latter is shear wall construction,
in which the relativley high in-plane stiffness of the walls both:
external and internal,is employed to resist lateral forces. The
floor slabs which are extremely stiff in their own plane, serve
not only to collect and distribute the lateral forces to the
walls but by a complex structural interaction with the walls,
increase the lateral stiffness of the buildings.

In principle,in any structural system,all of the load
resisting systems and components should be equally active and
ideally should work together under all types and combinations of
design 10ads.In other words,the parts of the structural system
that primarily resist horizontal loads should be able to
contribute to the resis~~nde ~6 vertical loads as ~eJ.l. The most
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1.2. Choice of Structural Systems

,
. I

resistanceof the lateral loadprOVISIon

does not increase floor and column sizes beyond those required

Designers are always 1n search of new structural systems which
shall be capabla of resisting lateral loads more economically
without endangering safety of the occupents.Shear walls become
natural choice for the buildings rising higher than 20 stories.Dy
definition the shear wall is a "structural system providing
strength,stiffnass and stability against lateral forces deriving
its stiffness from inherent structural form". For higher

for gravity loads.

econOffi1C consid~ratiorlS and other requirments.

From a str~ctural engineerin~ standpoint one of tilE rna.jor

distinguishing characteristics of a tall building is the need to
resist large lateral forces due to wind or earthquake The
lateral load resisting system m"st do this and at the same time
must prevent eX98sslve deflections or accelerations and must help
to provide stability. A lateral system is generally considered,
to be efficient if the

When high-rise buildings are designed using conventional
beam-column frame the effect of the lateral forces on the column,
is very pronounged.The economic use of this type of structural
system can be made upto a building height of about 20 stories.
Moreover, as it is simply impossible to make a truly rigid beam
column joint,t~e amount of sway produced due to lateral loads 1S

also a limiting factor.

efficient structural system 1S the one that manages to combine
all the structural subsystems or components into a completely
integrated system in which most of the ele'Gents take part in
resisting the loads. However,this id~Rl case is unlikely to be
fully achieved in practice,due to constraints such as efficiency
and ease of assembly and construction,manufact\lrin~ of .ioints,
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1.3. Shear W~ll-Slab System

4

aas

(Fig.!.!)

considered

by the fact that the structure ,though designed for gravity loads
only,the internal stresses remalns ,~ell within allowable over
stresses whep subjected to lateral loads.

In short, the most efficient structural system for any
proposed higq-rise building should be selected from those
mentioned above taking into consideration the expected behaviour
of the building under lateral load.The efficiency is being judged,

A popular form of high rlse structure,is a slab-coupled
"shear wall structure.The reason is that the height of majority of

the high ris~ buildings fall within the limit upto which the
shear walls are economic.From the constructional and
architecturaJ view point,it is relatively easy to make tile final
structure ae~thetically pleasing.

Fig.I.2(a) shows a pers~ective view of a shearwall str"cture
with a typical floor plan.The special features of this type of
building are that the two rows of apartments are connected by a
common corridor and the partition walls are treated as shear
walls. As no projecting stems of beams run across the corridor,

perforated t4be,a framed tube or a latticed tube as shown in
Fig.I.! .To have a perfect tubular effect the central core is
also treated as a structural member. Sometimes the shear walls
are also use4 to act as stiffners inside the tubes.For higher
b 'ld' g t b" d t g th "bundled tube"Ul In s, u,es are groupe a e er as
and it is more efficient than the previous one.

a solid tube is not possible,they may be

For buildings rising above 30 stories, perimeter ,~alls are
used as a structural member. The walls behave as a tube stiffened
by the floor slabs which have very high inplane stiffness. Since,

structural efficiency rigidly jointed frames interconnected with
shear walls are also used.



(a) Perspect Ive view of a shear wall building .

. (b) Plan of a typical shear wall building.

Fig. 1.3, : Different wall conflgurfitlons.

5
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there 1S no need for false ceilings and the height of the
building 1S a~preciably reduced thus acomodating more floors 1n
the same heig~t.

Shear walls may be defined as planar vertical elements
distinguished by their relative thinness and substantial length.
As it is not always possible to construct solid shear walls.
pierced walls adopted to make room for corridors and other service
facilities.Therefore the shear walls are further identified as
having few openings or penetrations such that they have little or
no flexibility due to the flexure of individual pieces of the
wall.Their flexibility is generally limited to the sum of overall
shear deformation and overturning flexural deformation. Shear
walls are also used to enclose lift shafts and stair walls to
form partially open box structures which act as strong points 1n
the building.Thus,in practice.shear walls of various shapes such
as planar,fla~ged or box-shaped,may be coupled together in shear
wall-slab structures.The different types and layouts of shearwall
are shown 1n Fig. 1.3.

1.4. Structural Actions of Shear Wall-Slab Structure subjected to
Lateral ~oad

In practipal structures ,the walls are interconnected
through floor slabs and resist both lateral and gravity loads.
Special considerations must be given to provide sufficient
stiffness in all directions against lateral loads .When subjected
to lateral forces ,the shear wall is dominated by its flexural
behaviour and:~h~ar effects are insignificant.

The shear walls resist the lateral loads on the structure by
cantilever beqding action which results 1n rotation of the wall
crosssections. The free bending of a pa1r of shear wall 1S
resisted by tHe floor slabs ,which are forced to rotate Rrldbend
out of plane where they are connected rigidly to the walls (Fig.
1.4(b)). Due to the large width of the wall. considerable
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differential shearing action is imposed on the connecting slab,
which developes transverse reactions to resist the wall
deformations (Fig.1.4(c)),and induces tensile and compressive
axial forces into the walls.As a result of the large lever arm
involved,relativly small axial forces can give r1se to
substantial moment of resistance,there by reducing greatly the
wind moments in the walls and resulting tensile stresses at the
windward edges. The lateral stiffness of the structure is also
considerably in~reased4

A similar situa~ion ar1ses if relative vertical deformation
of the wall occUrs due to unequal vertical loading on the walls
or due to differential foundation settlements.The effect onthe
slab is similar to that produced by parallel wall rotations
caused by bending (Figs. 1.4(d)& 1.4(e)).

1.5 Purpose of this study

The structural analysis and design of slab-coupled shear
wall structure can be performed if the behaviour of slab in the
system is adequately known.As we know that the shear walls are
provided to give lateral rigidity to the structure and connecting
slabs playa significant role in resisting lateral load ,the
lateral stiffness of the walls cannot be calculated unless the
stiffness against wall rotation is known.The stiffness of the
slabs is dependent upon a number of parameters such as corridor
width ,the thickness and width of the shear walls,the span of the
slab and the shape of the shear walls.Again, to have a complete
idea of the behaviour of the slab, overall study which includAs
cracking of slab concrete, crack propagation in slab and
behaviour of steel in slab is to be performed. Previous work as
discussed 1n C~apter 2 has been concerned with the determination
of bending stiffness and effective width of slab considering the
linear behaviour of reinforced concrete. A survey of the
available literature revealed that very little information 1S
available on the behaviour of slab-coupled shear wall structure
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at the onset of cracking, yielding of steel and crushing of
concrete which cause nonlinear behaviour of the system

The objects of the work reported ln this thesis are:
(al To pevelop a nonlinear 3-D finite element programme for

analysis of ~oupled sllear wall structures, based on avai.luble
finite element programs.

(bl To study the behaviour of slab ln coupled shear wall
structure copsidering nonlinear behaviour of reinforced concrete

(c) To ~nvestigate the variation of equivalent wall moment
(M) with change in wall rotation(0) ,until failure of the slab.

(d) To evaluate the'variation of stiffnesss from M/0 graphs
and hence th~ variation of effective width of slab for different
wall slab copfiguration using planar walls.

(e) To investigate the effect of slab reinforcements on ti,e
behaviour of slab.
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CHAPTER 2

LITERATURE REVIEW

2.1 General

The structural analysis and design of slab-coupled shear
wall system can be conveniently performed using the technique
developed for beam-coupled shear wall system provided the
effective width of the slab can be established. In a coupled -wall
system ,the stresses are not uniform acrossthe width of the
slab.In order to design the slab safely ,it is necessary to know
the magnitude and distribution of stresses developed through the
coupling action.It is also essential to determine accurately the
interactive forces developed at the slab-wall junction.In this
chapter ,a brief critical review of prev10us experi,mental aIId
analytical research work done in the following fields is given:
a)Analysis of shear wall structures to determine the stresses due
to lateral loaqs.
blEffective st~ffness of slabs coupling shear walls.

2.2 Analysis of Shear .Wall

The analysis of shear walls pierced with regular sets of
similar openings, l.e., coupled shear walls ,has attracted
several investigators. A simplified analysis has been produced by
assuming that the discrete system of connections ,formed by
lintel beams or foor slabs as shown in Fig.2.1,may be replaced by
an equivalent bontinous medium ,as sho,~n in Fig 2.2. By assumi_rl~~
that the axially rigid lintel beams have a point of contraflexure
at midspan ,the behaviour of the system can be defined by a
single second order differential equation A general closed form
solution of the problem can be obtained.

Using the above simplified approach ,Rossman (1) first
derrived solutions for a wall with one or tl~O symmetric bands of
openings,with various conditions of support at the lower end.
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2.3 Effective Width of floor slab

the

2 • 4 )

)n

(2 .2 )

(2 .1 )

Once the value of T is

So,if q is the shear force

the above equation can be

x

x

and Y depend on the load and the

1)(Cosh""x - 1) +( (3/"" ) x

measured from the top of the wall as

The portion of the slab which acts as

"-oC T =

2
Y/'"

Making use of certain simplifying assumptions,

- ( 2 (l/o<.'

the shear force and bending moment in the connecting

d' T / dx'

T =

T = Cl Sinh o<:x

T = C, Sinh "",",,

where x 1S the distance ,

related to the:unit length, the axial force in the wall is
X

5 q.dx
. 0

12.

A direct mathe~atical solution of

The shear wall-slab structures subjected to lateral loads

geometrical properties of the shear wall.

the governing differential equation takes the form

as the statically redundant function.

Deformations due to bending moment and normal forces on the walls
and flexural and shear deformations in the connecting beam were
also taken into account.The axial force in the walls was chosen

shown 1n Fig.2.2.

The co-efficients

obtained for any loading case. Equations (2.3) and (2.4) show the
~:general solutions of above differential equation for the case of

concetrated la~eral load at the top and uniformly distributed
lateral load re,spectively.

known
beams can be e~sily calculated using equilibrium conditions.This
is also knol~n as continous medium method.

deflect and the rotation of the walls generate moments

a beam connecting the walls and is active in resisting the moment
slabs as shown in Fig.2.3.



Fig.2.3 : Slab deformation due to wall rotation
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D=Et'112(1- )I')

( 2 • 6 )

of the connecting
to express the

( L' I (L+W) )

6EI(L+W)' I L'

~/(L+W)

Mle =

( M/12EI

2.

D 1S the flexural rigidity of the slab,W is the width of

K = MID e

and e =

1= Ye.t' 112

1S called effoctive width of the slab IFig.l.4(a)).
The resistance of the floor slab against the displacements

imposed by the shear walls 1S a measure of its coupling stiffness
which can be defined in terms of the displacements at its ends

and the forces producing them.Thus referring to Fig.2.3, the
stiffness of the slab may be defined as rotational stiffness
,M/e,.The relationship between M/e,EI and the effecti~e width is
as follows:

Reffering to Fig.2.3 and using the moment area diagram to
determine the relation between M and e. Let the deflection equal
the moment of area abo about o. Then:

Therefore ,

where
the wall I 1S the second moment of area of the beam of effetive
width Ye and slab thickness is t .

The effective width can then be expressed 1n terms of the
rotational stiffness factor ,10 non-dimensional form,as,

where EllS the " equivalent beam stiffness "
slab. Using a nondimensional parameter K
stiffness of the slab :



restricted in finding the effective width of the slab.

The aforementioned theory in section 2.2 1S concerned with

,
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the

acts
wall

1S

( 2 . 6 )

analysis

(4) and
widths.The

shear
which

varl0US

investigations were

(3),Qadeer

coupled
the slab

2

of

the entire slab width as

used Rossman theory with

slabs of
Choudhury

width

( 2 )

by

by

beam or its corresponding structural
the

2

connected
same paper

can be assessed. So previous

walls
of the

,provided that
as wide coupling

(5) revealed that taking

Ye/Y .. (K/6(1- Y ))(L/Y) (L/(L+W))

Barnard and Schwaighofer

discussion
Michael

performed using existing techniques of beam

Choudhury (6) tested an asbestos cement model and foundout
that only 25% of the total width was effective. He came to
similar conclusions through an analysis of floor slabs by finite

simplificatiop to solve for stresses 1n shear walls connected
solely through slabs.They assumed the entire width of the slab to
be effective and verified the theoretical analysis by model tests

effective rnayflead to a ser10US error 10 the calculation of
stresses .It has also been discussed that the simplified Rossman
theory can not be put into general us~.

of shear

effectively
stiffness

structures

and design Rf a slab-coupled shear ~all system may be readily
shear walls iI1terconnected by beams only.The structural

2.4 Behaviour of Slab in Coupled Shear Wall Structures

This theoretical basis for calculating the flexural stiffness and
effective wi~th of the slab was used by several investigators
Coull& Wong (12), Qadeer & Stafford Smith (7),Huq (11), has also
been used in this thesis.

where Y is the bay width or longitudinal spacing and
poisson's ratio of the slab material.



element method.

,6

the1Sthe slab width and Ya1Scorridor ~~idth ,Y
width of the slab.

the1S

effective

(LjY + 0.8 )( 1-YejY)=0.9 ,where
L

Coull (91 tested a perspex model with closer transverse
~pacing of orthogonal system of walls and found that the
stiffening effect of the close-spaced walls upon the floor slab
1S a major factor 1n calculating the effective width of the
coupling floor slab.He also used Rossman's theory in calculating
the resulting stresses which compared favourably with those
obtained experimentally. He 1S of the op1n1on that 1n the
particular type of cases the value of effective width is greater
than the full width of the slab.

Mahmoud (10). They used finite element technique to obtain ti,e
stiffness of slab -coupled shear wall system.The configurations
of the wall systems included slab coupled planar walls ,T-section
walls and box core walls.Their final aim was to prepare design
curves interms of the effective width of the slab between shear
walls. They pointed out the fact that the additional stiffening
effect from the coupling slab is significant only when the wall

The influence of orthogonal walls acting as flanges has been
examined theoreti.calJ.y using the fini,te element method by l'so and

Qadeer and Stafford Smith (7) analyzed the slab by finite
difference method and through experiments which gave rssults very
close to those from theoretical studies.They produced a set of
curves with slab width,cantilev~r ~idth,corridor width and the
width of the shear walls as variables for effective width. From
those curves it is seen thst effective width is a function of allp
these parameters ,while a close ins~ection reveals that the slab~'
width and corridor width have the most significant effect on the
effective width. Michael (8) showed that a single curve ,can be
drawn with ~ll the data presented by Qadeer and Smith .He also
tried to fit into it another curve,having equation
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opening is small.

Huq (II) tested a number of steel models He attempted to
prepare a set of suitable design curves for effective width of
slab In flate plate structures ..He evaluated the effective width
for different shapes of shear walls.He also evaluated effective
width as a function of corridor width and width of the slab
itself.According to his investigation effective width increases
with icreasing corridor width / slab width ratio.

Huq also tested a mIcro concrete model to find the
variation of effective width of the slab with increase in load.
Although no definite conclusions could be drawn from a single
test ,he found that the strain and consequently stress across the
slab is not uniform ,when it is subjected to lateral loads The
model failed along a transverse section passing through the
interior edges of a wall. Also the effective width decreases with
the increase in load .

Coull & Wong (12) analysed coupled shear walls with
different shear wall configuration by finite element method and
prepared a set of design curves .They investigated theoretically
the variation of effective width of slab or stiffness with
different geom.etrical layout parameters.The effective slab widths•
as a function of wall length, slab width,wall opening width for a
paIr of inline plane coupled shear wall configuration were
evaluated .They concluded from the curves of Ye/Y vs. W/L for the
two raatios ot L/Y - 0.5 and 1.5 that the effect of variation in
wall length may be disregarded in the evaluation of effective
width if the ;atio of the shorter wall length to the wall opening
is greater than 0.5. It was also concluded that the influence of
slab width is strong when Y/X is smaller than L/X,bu~ when Y/X IS
larger than L/X the influences of slab width .diminishes rapidly.
The influence of L/X on Ye/X for a particular value of Y/X IS
almost identical to the influence of Y/X on Ye/X for the same
value of L/X. A generalized curve Ye/Y= L/Y(I-0.4L/YI was also
formulated to relate effective width with L/Y. The effective slab
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2.5. Nonlinear Analysis of Reinforced Concrete StructuTes

,.,

aJso

throughly
was

stiffeningtension

analysis

no

that the mseh S1ze has
the yield point ,but it
load. For the slab model

six to twelve elements.

Hith

Nonlinear(17)

it Has found that the failure load decreases

some of the above parameters werethe

It was concluded that tI,einfluence of external wall

of

The high convergence tolerance

influnces
investigated bu Elnouno
carried out b~ Bari (18) Hho found
insignificant effect on the strains upto
has a considerable effect on the failure

about 20% Hhen mesh is refined from
analyzed by him

Kotsovos 113,14 ,15,161 provided mathematical expreSS10ns for
deformational as well as strength properties of concrete suitable

..~
for use in nonlinear computer based methods to analyze concrete
structures after doing c6mprehensive investigations. Detailed
description is given in chapter 4.

Nonlinear ~nalysis of reinforced concrete needs suitable
modelling of its behaviour ,that is,modelling of concrete in its
precracking and cracking stages and modelling of reinforcement.
Although the steel behaviour 1S better defined and generally
agreed upon ,co~crete behaviour shows considerable statistical
scatter A re~nforced concrete model should handle suitably the
cracking of concrete ,crack propagation and yielding of steel.

The parametprs which have an effect on the numerical solution
of nonlinear analysis are - mesh size,tension stiffening ,tensile
strength of concrete angle of crack shear retention factor of
cracked concret~ and the norm of convergence tolerance. The

considered.
flanges may be safely disregarded. Typical non dimensional design
curves for effective width of slab are shown in Fig. 2.4.

widths were evaluated for flanged shear wall configuration and
found that the presence of external wall flanges 1ncreases the
effective width,of the slab by less than 4% for tI,eextreme case
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model has a considerable advantage over the tension stiffening
model in that it requires a smaller number of iterations tp keep
the residua.l forces within tolerance and hence less computer
time. From ~revious study by Bari (181 it was found that the
strains are not affected by the value of shear retention factor

upto yield point of steel but the ultimate failure load is
affected.

Numeric&l treatment of postcracking behaviour of concrete l~as

studied by ~abir (19) He proposed that after the formation of
the numerical crack the stress normal to the crack should be
reduced gra4ually to account for the tension stiffening effect .

.,
Reducing the crack normal stress to zero soon after the formation
of crack ~ay significantly underestimate the actual behaviol1r.
Treating co~crete as a no tension material 18 perhaps not
numerically desirable specially ln the context of smeared
cracking moqel (discussed in chapter 4 The convensional

tension stiffening schemes are based on uniaxial stress
relaxation procedures lJhich depend on strains normal to crack.
The adopti~n of a biaxial stress criterion for cracking and
uniaxial stress decay for tension stiffening may lead to a
mathematica+ly inadmissable state of stress at a cracked point.
To overcome such difficulty an alternative simple scheme had
been postulated by Kabir (19) which performed quite well. It
should be noted that while this alternative scheme continously
decreases tqe crack normal stress in every subsequent iteration
it fails to correlate the strain normal to crack with the
correspondi~g stress Considering the complex nature of the
crack propa~ation such co-relation is not essential

The norlinear scheme was employed by Bari (18) to study the
behaviour of shear wall slab junction The wall was assumed to
have zero thickness To study the effect of wall thickness on
the behaviour of slab .a nonlinear analysis was carried by him
,which showed that the ultimate strength of the structure was
slightly lower and stiffness was slightly higher considering the
thickness of shear wall.
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Bari lIB) tested several models of shear wall floor slab
junction to establish suitable design method for shear wall slab
structure usj,ng shear reinforcement and verified the results by

nonlinear 3-D finite element analysis.He considered the effect of
lateral load as a concentrated load applied at the point of
contraflexure of slab. He treated the slab as a cantilever
extended from shear wall.Lateral load effect was applied as
vertical load at the tip of the slab at point of
contraflexure.From load deflection curve he tried to find the
stiffness of the slab.He found that the stiffness of the slab
gradually decreases as the load increases.This stifness may not
be considered as flexural stiffness of the slab because the wall
does not rotate and slab deflect as a true cantilevr from shear

"wall.

2.0. Conclusi9ns

Reviewinr the preV10US works ,it 1S clear that all the
investigator'~ doing research on bending stiffness of floor slab
1n shear ~all structures perform their investigations
considering the linear behaviour of slab material.Most of the
Researcher's try to present suitable design curves and equations
for calculati~g the effective width and stiffness of slab with
respect to geometrical parameters such.as Y/X, L/X or L/Y and
effect of reinforcement is not considered. But reinforced concrete
1S a composite material which exhibit nonlinear response to
progressive loading.Hence the behaviour of slab will be
influenced by the factors responsible for nonlinear response with
those of geometrical parameters.
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be unimportant.The
elastic theory 1S

to
byfound

forces

analysis applies to slabs which
deformations to be insignificant

moments and shears

DESIGN OF REINFORCED CONCRETE SLABS

(1) The equilibrium conditions are satisfied at every point 1n
the slab.
(2) The bopndaryconditions are complied with, and/3) Stress 1S

proportionai to strain; that 1S, bending moments are proportional
to curvature.

The gov~rning equation is a fourth-order partial differential
equation in terms of the deflection of the slab at general point
(x,y) on tl)e slab, the loading on the slab, and the flexural
rigidities-of the slab section. The solution of the equation
gives the distributions of bending and torsional moments and
shear forces throught the slab.

-] .

3.2 Theory ?f Elasticity 1n Slab Design

Classic~l elastic theory of
are sufficiently thin for shear~
and suffici~ntly thick for in-plane

"-distributior of
such that :

3.1 Introduytion

There are a number of possible approaches to the analysis and
design of reinforced concrete slab systems. The var10US
approaches available are elastic theory, limit analysis theory
and modific~tions to them. Such methods can be used to analyze a
given slab, system to determine either the stresses 1n the
slabs and the supporting system or the load-carrying capacity.The
methods can also be used to determine the distri bution of
moments and: shears to allow the reinforcing steel and .concrete
sections to be designed.
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so that compreSSlon

3.4 The Yield Condition

so
areonly ductile failures

moment redistribution,

The yielq condition defines the combination of stresses
necessary to cause plastic flow at a point. Let us Consider the
slab element ~hown in Fig.3.1 under the moment field Mx, My and
Mxy. The sigf) convention adopted here 1S such that all moments
acting on the element are positive as shown 1n the Figure. The
following simplifying assumptions are made in order to derive the
yield criterion in terms of three moment components

1. The concrete is assumed to have a zero tensile strength.
2. Bar di~meters are small 1n comparison with slab depth, and

that they can carry stresses only 1n their original
direction. Accordingly, kinking of bars across a yield
line i$ not considered.

3.The slab element is lightly reinforced,
failure,ls not permissible and
allowed'. This 1S necessary for

3.3 Theory of Plasticity in Slab Design
This theory recognizes that because of plasticity,

redistribution of moments and shears away from the elastic
distribution can occur before the ultimate ,load 1S reached. Any
solution to the ultimate load has to satisfy the following
conditions of classical plasticity which assumes unlimit,ed
ductility

alThe Equ~librium Condition The internal stresses must be
1n equilibriu~ with the externally applied loads

blThe Yi~ld Condition The yield criteria defining the
strength of the slab sections must nowhere be exceeded.

clThe Mephanism Condition Under the ultimate load,
sufficient plastic regions must exist to transform the structure
into a mechanism.

If conditions lal and (bl are satisfied we get a lower-bound
'.solution. While on the other hand, if condition (e) 1S used 1n

conjunction 'with virtual work,then we get an upper-bound
solution.
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Taking the,normal to the yield line at an angle 0 to the x-
axis and considering the equilibrium of the element shown 1n

( 3 .3)

( 3 .2)

( 3 . 1 )

(3 .4)

M*x = moment of resistance in x-direction.where

Mnt = 1/2 (Mx ~ My) sinZe + Mxy cos20

Fig.3.3, we shall have

2 2
~In= Hx case + My sine - Mxysin2e

2 2
~lt = Mx sine + My case - Mxy sinZe

The normal moment Mn should be compared with the
resisting moment Mn.This resisting moment at the yield line can
be expressed assuming that both x and y steel are at yield, as
follows

that the slab elements can reach their ultimate strength at
sufficient number of sections, to convert the slab into a

mechanism.
4.Hembrane forces do not exist; It 1S acknowledged that the

coexistance of such forces with flexural fields on the slab
elements, will considerably effect the resisting moment of
the slab: element depending on whether they are compress1ve
or tensite and the restraint existing at the boundary of
the slab.

For simplicity, the reinforcement 1n the element 1S assumed to
lie parallel to the element sides as shown 1n Fig. 3.2. The
element may be reinforced on the top and bottom surfaces.The
basic idea 1S that, if at any point 1n the slab element
(Fig.3.2), a line with a normal n and direction t is examined,
then the normal moment Hn ,must not exceed the value M*n, where
H*n 1S the moment of resistance that the reinforcement 1n the
slab could develope 1n direction n.This 1S therefore a normal
moment criterion.
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(3 .5)

( 3 • 9 i

(3.8)

(3 .7)

(3.10)

*Mxy/(M y- My)

moment of resistance in y-direction.
'*M n must alw8¥s be greater than Mn, hence

tane =

3.5 Direct Design Nethod

With the widespread availability of finite element
programs. it ;is possible to des ign slabs at ul tima te load us ing
elastic stress fields 1n conjunction wi th the Wood-Armer yield
criteria for slabs (equation 3.10). This method called 'direct

Substituting tani 1n equation (3.7) and rearranging

This equati~n 1S the yield criterion for orthotropically
reinforced concrete slabs.This is often called Wood-Armer(20,21l
yield criteris>n.

2(N*y - My) tane + 2 Mxy = 0

then

At the yield line, the left hand side of equation (3.7) will be
minimum.Diffeuentiating with respect to tane, we have

•

dividing by cose

Substituting (3.1) and (3.4) 1n (3.5) we have

N*y =
The value of

(~l*n- Nn) = 0



3.5.1 The Eq~ilibrium Condition

thus obtained, the
satisfy the yield

by Wood(20) and extended by
tested by Bari1181. The steps

iiI if M*x

(1')1'f'I*v 0 th M* 'I 12 /• '. en x = .x - ~ xy My

3.5.2 The Yield Condition
"

To sa~isfy this condition, the elastic stresses must be 1n
equilibrium with external loads. Since the distribution of
stresses 1n this method is found using finite element method
which 1S derived from equilibrium equations, this condition 1S
aut 0mat icall y sat isfie d . 0win g to its s imp 1i'city and
versatility,the method can be applied to any type of slab problem
with any edge condition.

iiilif M*x and M*y not equal to zero;

Havins obtained Mx,My,Mxy we have to derive M*x and My so
as not to violate the yield condition as given by
equation (3.10).This can be done as follows:

criterion of equation (3.10).
iiilFlexural steel area is then calculated to resist the

corresponding ultimate design moments M*x and M*y.
The method' satisfies the fundamental requirements of
equilibrium,yield and mechanism conditions at ultimate collapse
as dictated by classical plasticity theory as follows

determined by the finite element method.
iiI Using the moment triad IMx,My,Mxyl

design momints are calculated so as to

design method' was suggested
Armer( 21I and later applied and
involved are as follows:

il the elastic distribution of moments at ultimate load 1S



(3.12)

(3.11-b)

(3.11-a)

(3.11-0)

(M*x - ~lx) > 0or

= 0

2 2
bf/b~l*x = + ve

> 0;

~lxy

~lxy

~Ixy

~lx

when My =

when Mx =

*M y = My +

M*x = Mx +

M*x - Mx = Mxy

2' * 21 - M xy/ (M x - Mxl

Both M*x and M*y = 0 when Mx. My = M2xy

For positive moment fields;

From equatiory (3.10),

For m1n1mum of 'f'

or

Taking positive sign from equation (3.11-b), we have

For m1n1ffium or maX1mum of 'f'

or

We need to find minimum of (M*x + M*y) = f

From equatiory (3.10)



3.5.3 Rules for Placing Orthogonal Reinforcement

(a) Compute the normal moments

(3.19)

(3.18)

(3.171

(3.14)

(3.16)

(3.15)

(3.13)

and ~l*y are negative, then no bottom steel 1S

N*x = Hx + ~lxy

N*y = My + Mx

if ~1*x < 0 then

N*y = My - (M2Xy/~lx),with ~l*x = 0

if ~l*y < 0 then

M*x = Mx - (M2xy/My) with ~l*y = 0

M*x = ~!x Mx

M*y = My Mxy

if M*x > 0 then

M*y = My (M2xy /~lx) with M*x = 0

29

3.5.3.2 Top Steel

required.

3.5.3.1 Botto~ Steel

(c) If both N*x

(bl If still in (3.15) and (3.16) one gets a negative sign, then
put such nor~al moment equal to zero, 1.8., no reinforcement 18

required.

(a) Compute the normal design moments
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H* . - 0x

Jv( x = 0

Jv1 M =x y

H' . - 0y

J.S

Fig. 3.4: Design eqllatlons for bottom steel.
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lSsteeltop

programme based
calculate the

no

(3.20)

The flow chart is shown

then

computer
used to

gets a positive sign. then
1.8., no reinforcement "is-

one
zero,

positive,

to

with

and (3.20)

then

(3.19)lnIf still(b)

Beca~se the necessary resistance 1S made equal to the
"calculated'stress at every point 1n the slab, it 1S anticipated

that all Slab parts "ill attain their ultimate strength under the
design loap.. Accordingly "ith m1n1mum amount of redistribution,
every point "ill yield, at the design load, thus converting the
slab into mechanism. Because of the fact that m1n1mum
redistribution is needed to achieve collapse by this method, the
demand for ductility which depends on the difference between the
first and last yield 1n the structure as normally emphasized by
the theory of plasticity will obviously drop.

,C>/'-

3.5.4 The Mechanism Condition

1n Fig.3.4, while those for top steel ln Fig.3.5. Fig. 3.6
shows the two branches of the yield hyperbola and indicates the
directions of the steel to be provided at any point. (Primed
moments refer to top steel).

A two dimensional finite element

on this direct design approach was
flexuralre~nforcement needed in the slab.
in Fig. 3.7.

required.
Figs.3.4 to 3.6 glve i detailed picture of these rules. I'nr

general US~I the diagrams are sketched in a nO!ldimellsionaJ. forni.

The designer I after establishin,~ the point (Nx/: I"Ixy :, ply!: ~Jxy:

on the dia~ram. can easil,~' Itno'~,~hich equation to use to get the
required design normal moments.Bottom steel equations are gi.ven

put such normal moment equal
required.
(c) If both ~l*x and ~l*y are
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then all the nodes along line ab,cd,ef and gh will have

34

,-'.

slabs
had the
slab of

of of designing slab
followed A linear

procedure
Hhich was

a general
discussed

1'1 = ~w/ax= ~HI ~y =0; and all nodes along line bc and fg will
have ~w/h=o.

~H/bx = rotation about y-axis;

If 1'1 = translation ln z-direction (normal to paper)

Gravity load per node was calculated from the area of
sorrounding that node.By applying loads per each node we
reinforcements required for the slab were determined.A
200 mm thickness Has used for all the models.

In this article
reinforcements will be

~H/by = rotation about x-axis;

3.6.2. Design for gravity loads

Gravity loads include selfweight of slab and live load. A
live load of 40 psf was used in design.Finite element mesh used
in gravity load design is shown in Fig. 3.8. A complete panel Has
used by divided it into 24 elements .The boundary conditions used
are as folloHs':

3.6. Procedure Adopted for the design of a typical model

3.6.1. General

2-D finite element computer programme based on direct dessign
approach was used to calculate the flexural reinforcements for
gravity and la~eral loads.The slabs were divided into an assembly
of plate bend~ng elements having three degrees of freedom at
each node and advantages of symmetry were used in analyzing the
slabs.A floor plane of a typical shear wall structure is shown in
Fig. 1.4(a).
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3.6.3. Design for lateral load

An equivalent static wind load of 0.6 kip/feet was
uesd.Assuming the wind pressure to be constant with height, the
maX1mum wind shear Vw,indduced in most highly stressed slab was
calculated by continous medium method making use of the
recommendations of Coull and Wong for the effective width (see
Figs.2.4l A slab thickness of 200 mm and a floor to floor
height of 3m were adopted to analyze all the structures having 20
storeys with rectangular shear walls. Fig. 3.9 shows the f-inite
element mesh for wind load design where use of symmetry was
made.The boun~ary conditions used are as follows:all nodes along
line bc and ~f will have w = /,w//'x = /,w/~y = 0: and all nodes
along line ap,and de will have ~H/ i;x = 0 .The slab Has then
designed by a\"plying the maX1mum wind shear Vw distributing it
among the nod~s along line ad For two cases applying Vw
downHard and t~pward,reinforcements 1n the slabs Here foundout.

3.6.4. Determ*nation of combined effect

At the pentre of each element, the computer programme gave
.,l

the moment triad (Mx,My,Mxyl due to wind and gravity
loadings.Using the moment triad the values of design moments
M*x,M*y were:;evalua ted according to the des ign method. Flexural
steel req'uired to resist these design moments at ultimate
conditions ,,,alilcalculated using the recommendations of BS 8 [10
with materiais safety factors assumed to be unity.The finite
element programme results 1n a variable reinforcement pattern
and the amount of steel given were per element. For
example,amount of steel 1n Model TMOD1 for gravity and two case's
of wind loadtng are shown in Fig. 3.10. Only quarter panel 1S
shown because for nonlinear 3-D analysis only one quarter of a
complete panel was used taking the advantage of symmetry and
antisymmetry.To find the total steel in an element maximum of the

>,

two cases due to wind was added to that due to gravity. Now
chossing suit~ble bars reinforcements Here placed in the slab.

,



3 .10; Reinforc~ment Calculation for ~iodel 'l'HOD1
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4.2. Finite Element Formulation

CHAPTER <l

threefor
reinforced

an approach
analysis of

4.2.1 Discret~sation by Finite Element

The 'finite element method started as an extension of the

stiffness method of analysis of skeletal structures and Has

applied to b-;o and three dimensional problems 1n structural

<l.1 Introduction

MODELLING OF NONLINEAR BEHAvtOUR OF REINFORCED
CONCRETE USING FINITE ELEMENT TECHNIQUE

concrete is presented.

The finite element method 1S now well documented,no attempt
will be made to describe it in detail. But 1n order to define

terms for the sake of completeness a brief review of the method

will be presepted instead.

In recent years, the finite element method 1S firmly

established as the most powerful general method for structural

analysis and has provided engineers with a design tool of very

w'ide applicability. In the case of r'einforced concrete

cracking,tension stiffening, nonlinear multiaxial material

properties, c~mplex interface behaviour, creep, sllrirlkage urld
other effects were previously ignored or treated 1n a very
approxima te manner. All those parameters can now be cons ide red

rationally by finite element method.The application of the finite

element method to nonlinear problems is associated with a

considerable ipcrease in numerical work as compared with lirtear

,problems. How",ver,development 1n the last two decades have
ensured that high speed digital computers ,,,hich meet this need,
are now available.In this chapter,

dimensional npnlinear finite element
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Thus

where [N] 1S the set of interpolation' functions termed as shape
functions ~nd rae] the vector of nodal displacements of the
element. The strains within the element can be expressed in terms,
of the element nodal displacements as

where r0'] and r €] are the stress and strain vectors
respectivelY, (~] the displacements at any point, Ip I the hody
force per unit volume and [q] the applied surface tractions.
IntegratioDs are carried over the volume 'V' of the structure and
loaded surface area'S' .The first term on the right hand side of
equation (4.1) represerits the internal strain energy and the
second and third term~ are respectively the work contributions of
the body forces and distributed surface loads. In the finite
element di~placement method, the displacement is assumed to have
unknown values only at the nodal points so that the variation
within any element is described in terms of the nodal values by

means of interpolation functions.

'mechanics'. However, unlike skeletal structures, there are no
well-defined joints where equilibrium of forces cun be
established. So the continuum 1S divided into a ser1es of
elements of arbitrary shapes which are connected at a finite
number of Boints known as nodal points. This process is known as
discret1sation.

For struptural applications, one convenient method of
obtaining the governing equilibrium equations 1S by minimizing

"

the total potential energy of the system. The total potential
energy,1\ , can be expressed as
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[NJT 1'1) ds

J INIT IqJdsSc

] for the element results 1n

[ri]TlpldV- r .. lbO)T
. .' ('
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[6']= [p] [E]

IFC]

,

Hhere

are the equivalent nodal forces, and

the nodal di~placement [
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where r'Cpresents the total potential of element 'e' which,
using equatiqn (4.1),can be written as

Provided that no singularities exist 1n the integrands of the
functional, the total potential energy of the continuum will be
the sum of the energy contributions of the individual elements.,

where Ve is the element Volume and Se the loaded element surface
area. Performance of min-imisation' for element J e' with respect to

where rB] 1S the strain matrix generally composed of derivatives
of shape funptions.Finally, the stress lIIaybe related to the
strains by use of an elasticity matrix [D] as follows

Thus
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4.2.2 Element Type

4.2.3 Shape Functions

(4.9)J [IlIT [Ill [Ill
Vc

local spatial coordinate system
origin at the centre of element
ranges from -1 to +1 only.

Shape functions are interpolation functions which describe
the variation within the element of the displacement 1n terms of

The selection of the element type 1S always related to the
type of problems to be solved. As three dimensional nonl inear
analysis 1S the prime concern of the analytical portion of this
study, the 20-noded isoparametric brick element as illustrated
1n Fig. 4,.1, 1S used throughout this ,,,ork to represent
concrete.Reinforcing steel 1S simulated by bars embeded inside
the concrete element at their actual locations 1n the structure
without imposing any restrictions on the mesh choice. The
mathematical derivations of these bars can be found in Reference

17 I.This element was chosen to consider the effect of the S1X
stress components Ox Oy. O'z ,'XY I ':vz, 'zx (Fig.
4.2) .Each nodal point has three degrees of freedom,
viz.,translation in x-direction = u, translation in y-direction =
v, and translation 1n z-direction = w.Each element has its OHn

E, 't,:;) (Fig. 4.1), with the
such that each local coordinate

1S termed the 'element stiffness matrix'. The summation of the
terms 1nequation (4.7\ over all the elements, when equated to
zero, results 1n a system of equilibrium equations for the
complete continuum. These equations are then solved by any
standard technique to yield the nodal displacements. The strains
and therefore the stresses within each element can be calculated
from the displacements usin~ equations (4.3) and (4.4).



where Ni is the shape function at the i-th node at which the

nodal displacement is~i.
The efficiency of any particular element type will depend

on how well the shape functions are capable of representing the

true displacement field. The isoparametric family are a group of,
elements in which the shape functions are used to define the

geometry as well as the d.isplacement field. This leads to reduced

computational effort and efficiency. The isoparametric elements
are better known for their accuracy and versatility over simpler
type of elements. Moreover a considerable saving of computer
effort is obtained, even though a complex element requires more

time to formulate. This IS because it. requIres fewer elements

compared with more simple elements.
For three dimensional applications, the displacements field

at a particular local coordinate ((.,/,1) are ui!.,'I,n, ''''..".').

w(i .'/.!) and are defined using three displacements degrees of
freedom ";, Vi .•.... ; l at each of the twenty nodes and a quadratic

interpolation scheme.The coordinate values x( (.'I,r ), y( t."I.1

and z( ~,'J.!' at any point '~"I,t within the element may be

defined by the expressions

(4.10)

20
t tJj

( , 'J. I ) :"1,
i-I

)(1

L tJi ( ( 'I. i ) ::( ( 4 1 1 )
1-1

~()
~: Ni It 'I, \ ) :....i"i-I

11.2:: [Ni] [~i
i,\

the nodal displacement

z(t, 'I, n

)'(t,'I,n

,n , 'J, !)
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and !'ii(!. ,1/, ;-)

the present
nodes were

( <I • 16 )

~ I

VI

1.l1

11 i -- ~ .I

2(1

20,.

,.,.

I-I

1-1

i..)

20

v(E .'1, n

\I(t,'I,n

fnr ('Ornl'r Ilodes ~ i ~ : l

Itit U , lJ, I) •.. if (ll:. ~ j ) ( I I 'PI i ) r,' 1 I ': i i ) (~!,i I 1/11 i I \ •• 1 .. ;:)

ror mid-side nQcle t 1 - ! 0 'II - ; 1 (" - !.1

"1«( ,ry, n 1
(1-( 2) (H'iry i) (H n 1)- I, (I; . 13)

ror rnld-sid~ Ilode t I - • 1 1) i - ! 0 I . - !. ,

III(E,'I,n
1

(H(t 1)(1_'17)(11 il I)- I, ( II . ] I, )

for mid-side node ~'i - ~ 1 'II - ~ ( I - ; ()

III(E,'I,n
1

(lin i) (H'1'1I) (1- (2)- I, (1'.1")

Each of the twenty shape function has a value of unity at the
node to which it is related and zero at other nodes.To calculate
the displacements u( ~,,).I) , v(. C'),i ) and w( E,'I,!) at any point
within the element, expreSS10ns similar to (4.10) may be written
as follows

and where (xj,Yi'zj) are the coordinates of node J i J

are three dimensional quadratic shape functions. In
work, such shape functions of each of the twenty
obtained from reference(16) as follows
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')'xy ,and

( I, , 1 I )

(4.17)' may

relationship from theory of elasticity may be

(t (y. (z are the normal strain components

are the shear strain components. Equations
in matrix form as follows:

f
Z

~ dV':/()z

~ ~"/,),, -I ,Jv,I,):-:
I ;.:y - ~ .'

In t~ree dimensional linear analysis, the strain

Strain Matrix

(x (l/e):-: I) (J \I

(y I) cl/()y () \'

(z 0 (l J/(l7 W

I ( I - ( I, , 1 1\ ))'xy a/i!Y (1/,):-; ()

,'yz Il ,1/,1" t":l/c1y

')'z;..: ~ I,j '. () rl/e);..;-, ",

4.2.4

displacement
written as

ln which
I'yz. )'zx

be written
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using the finite element idealisation ~4e can write

(4.20)

20
[ ( I - c: [1l;1 [nil

i= 1

D:-:/,}:', ,I y/,i:: (I"./ ,I:.

[ J I -- ,);oJ ,) I] ~~,/(117 (I ','.j (11/ (/1 21 )

,l "./ ,) : ,Iy/,I i ,"l__.;',.11

. (l~Ji/();-: I) 0 \Ii
;';"~.

0 (In i /~~' 0 vi

20 0 0 ClN i /(1/, wi
[ ( ) - ,-

i-I (IrJj /dy (ItJj/(1;.:, I) (I'.l~)

IJ (IIJi /(l~'. JI~i j~y

(lrJ i /-::1;-', () ,)11 i j')' ,

or simply

where rBi] Js the 6x3 strain matrix 1n equation (4.191 which
contains th~ ca~tesian derivatives of the shape functions. Since
the shape functions Ni are defined 1n terms of the local
coordina tes of the elemen t ((,'7,I) a trans forma tion from local to
global coor~inates 1S required to obtain the [B] matrix in
equation (4.19). This is done through the well known Jacobian
matrix which is written as



thus

~~L x I
dN ,1Nl,.•i. YI :ir .zi, (\t . ,,

20
aN~ ,1N iI J I - L xi v. ~!"!iZj (/' . ?2)() 71 a.]' . I (1711-1

(fN. ()N-L ,) N.d,l'XI y. ;ITJ .. :'-Y. i
I ;q . . I

The lnverse of the jacobian matrix will be

;:jt (l,/ a I
c)x ~::: J:::

[ J J -] - ,~lN i () U I ,:q
dy ~)~ :;;;: ( I, . ? J)

ilNi ,IN i ill
(IZ dz J7:

Therefore the cartesian derivatives are given by

,) N i
_Or"
e} ~

47



where [D] 1S the elasticity matrix which takes the form

( <I.25 )

IJ

I)

Il

()

Il

( 1 -), )
7(j:-;;)

IJ

{I

{I

()

()

n

Il

( I --;> , )
;> (j-'::~)

,-

SYlnlnC try

[<r] = [D] [E]
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wherere 'E' lS the Young's modulus of elasticity and Y 1S
Poission's ratio. The concrete nonlinearity as considered in this
work lS only -the material nonlinearity and all changes 1n
material properties enter through the changes 1n elasticity
matrix rD].

I

4.2.5 StrJss - ptrain Relationship
I

Fori linear analysis of uncracked concrete, and 1n the
abscence lof initial stresses and strains, the stress-strain

relations~ip may be written in the form
I
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4.2.6 Numerical Integration

Analytical integration of equation (4.9) 1S
impossible.Therefore some form of numerical integration must be
resorted to.In this study Gauss-Legendre quadrature rules have
been used exclusively because of their higher efficiency over
other forms of quadrature. For n sampling points they can
integrate exact;ly a polynomial f( Eo) of degree .(2n-1). Also they
are suitable for isoparametric elements because the range of
these integration rules are +1 on element boundaries. A 2x2x2, -

Gauss rule was used for monitoring nonlinear behaviour especially
cracking, as shown in Fig.4.3.

4.3 Simulation of Steel Reinforcement

In modelling reinforced concrete by finite element
methods,at least the following three alternative represantations
of the reinforcement have been used: (a) distributed, (b) discrete
and (c) embedded. For a distributed representation (Fig.
4.4(a)),the steel is assumed to be distributed over the concrete,
element,with a particular orientation angle. A composite concrete
reinforcement constitutive relation need to be used 1n this
case.To derive such a relation, perfect bond must be assumed
between the concrete and steel.A discrete representation of the
reinforcement, .using one-dimensional elements (Fig. 4.4(b)), has
been widely used. Axial force members are assumed to be p1n
connected with three degrees of freedom at the nodal points. Tile
one-dimensional reinforcement element 18 superimposed on a three
dimensional finite element mesh representing concrete. The
approach is si~ple and it is possible to account for possible
displacement of the reinforcement with respect to the surrounding
concrete. A serious disadvantage, hDl,ever, 1S that the location
of steel oftef\ dictates the concrete mesh. This may result 1n
slender elements, where the reinforcing bars are too close



Fig. 4.{1 (L) : [dscretC: representation of steel
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A comprehensive programme(13,14,15,16) ofinvestigation into
the behaviour of concrete under complex states of stress was
c~rried out"at the Imperial College, London. After analysing the
,ilresults, Kotsovos provided mathematical expreSS10ns for
/>1-, ."def6rmation.l as well as strength properties of concrete s~itable
&for. use 1n nonlinear computer based methods to analyze concrete
,.~~;ruc.tures. These expressions ~.ere. successfully impleniented .10

.y.lecomputdr program by Bari(18~and used in the present wprk .
Fo~ the construction of the constitutive equations for

concrete, tre geometrical represen:~ation of the stress state at a
pq"int 1S very useful. Since the stress tensor O"i.j has S1X
independent components, it 1S of course possible to consider
these components as positioin~l co-ordinates in a six-dimensionnl

;}I,
",

Kotsovos' Constitutive Laws for Concrete4.4 •

r.i
Having obi:ained such experimental data, it must be transformed
into sets of mathematical formulae, adequately describing the
basic characteristics to be of real use to reinforced concrete
analysis. These mathematical formulae are normally called
'lconstitutiye equations" or sometimes, "constitutive models" for

concrete. No one mathematical model can completely describe the
complex behaviour of real materials under all conditions. Each
material model 1S aimed at a certain class of phenomena and

"captures their essential features and disregards what 15

considered to be of m1nor importance 1n that 'class of
applications. One such set of laws, used 1n this work to model
concrete co~pressive triaxial behaviour, is due to Kotsovos et a1

13,14,15,'16 ). As cracking of concrete 1S probably the ma,]or
cause of nonlinearity in most reinforced concrete structures, a
separate tQree dimensional cracking model 1S developed and
incorporated 1n the finite element programme. Particular
attention i~ paid to proper modelling of shear transfer across a
cracked concrete surface. A biaxial stress-strain law is used for
reinforcing steel. Full bond is assumed between concrete and

i 'steel.

..
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IF,

can be

principal stresses
as co~ordinates and represent

the three-dimensiona.l stress

take the three
err >, cf;l. ~ ((3

at a point .~n

+ 6"2 + <T3 ) /./3

Toct = 1/3/( 0'1- 6"2)2 + ( CT2- 6"3)2 + ( (f3- <l1)2= r//3
Similarly, tHe normal (Eoct) and shear (Yoctl octahedral strains
are defined as follows:

55'

e = 600 for <l1 > <l2 = 03
The hydrostatic and deviatoric components can also be expressed
in terms of the normal ooct) and shear (Toct) octahedral
stresses which are defined as follows

o = 00 for

g =

The variable,! 'g' and 'r' define the hydrostatic and deviatoric
components respectively, of a stress state, ,~hereas the variable
'e' defines the direction of the deviatgric component on the
octahedral pl.aneas shown in Figure (4.6) and varies from

03 such that
the stress state

cose = 1/6 [( 6"t + 62 - 26"31/r]

space. However it 15 too difficult to deal with. The simplest

transformed into a cylindrical co-ordinate system g, r,e and the
two systems are related by the following eguations:

space. This orthogonal co-ordinate system

alternative 15 to



(4.30 )

< 2.0
f'c

<r oct
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principal strains.The mathematical
the deformational and strength
a range of concretes with uniaxial

1

J + C (loct/f'C)d-J

1+ 2Ib-1) .b.A- 2b(b-J)A (~oct/f'c)-J

1

= --------------------------------

= -------------------------------- for
1 + A ( ~oct/f'C)b-l

where EJ, E2, E3 are the
formulae r",ported here for
properties ~re applicable to

Gs

Ks

Ks =
3 f oct

lJoct

2 Yoct
Gs =

cylinder co~pressive strength (f'c) varying from about 15 to 65
N/mm2 .For the deformational properties, use has been made of the
secant bulk (Ks) and secant shear (Gs) moduli which are expressed
as follows

Ko

Ko

Ks 1 ( 4 • 3 J )

= ------------------------------------- for ifoct/f'c> 2.0

Go

The deformational behaviour of concrete under increasing
stress can .pe completely described by the relationships between:
(a) hydrostatic stress, lJoct and volumetric strain,toh;
(b) deviatpric stress, Toct, and deviatoric strain,Yoct;
and (c) de~iatoric stress, 70ct and volumetric strain, Eod.
The ~oct- Eoh and Toct - Yoct relationships can be described by
the mechanipal properties of the model as follows:



Ko and Go (in KN/mm ) are the initial values of the moduli Ks and
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materialthe

(4 .34 )

(4 .33)

for f'c>31.7 N/mm2

, or

which depend on

,or

for f'c > 31.7 N/mm2

parameters

0.516

for f'c < 31.7 N/mm2

for f'c < 31.7 N/mm2

() int = 3 Ks. E od

b to, dare

suer that

1.0 + (0.0027)(f'c-31.7)2.397

2.0 + 1.81 x 10-8f'c (4,461)

0.516

~.573
------------------------------ for f'c~31.7 N/mm2

1.0 +0.0134 (f'c_31.7)1.414

=

=

=

= 2.12 + 9.0183 f'c

= 3.573 for f'c < 31.7 N/mm2

= --------------------~----------

= 2.7

Ko = 11.0 + 9.0032 f'c2

Gs ;and At

properties

A

b

c

d

Go = 9.224 + 0.136 f'c + 3.296 X 10-15f'c (8.273)

In order to evaluate the effect of internal stresses on
deformation, ~se is made of the artificial concept that the
volume strain ;(i.e. E.od) under deviatoric stress is due to the
hydrostatic co~ponent of such stresses, ~int. Since
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states

for B =

for e =level

level

stress

(4.35)

strength data, Kotsovos
to describe the strength

int IS equivalent to three

strength level for any values
may be given by the following

The hydrostatic component

The strength of concrete under multiaxial stresses IS a
'1

function of the state of stress consisting of SIX

principal stresses (/1 = <'2=..:: <J:l :::: (lint; and its effect on

deformation, (od.will be the deformational response of the model
under these principal stresses. Equations (4.31) and (4.32) when
used with equation (4.30),the resulting value of oct (in 4.30)
will be toh, thus the total octahedral normal strain will be

,

expression:

properties of concrete under biaxial or triaxial
which can be pr.esented as follows:
Toe is the value of Toct at the ultimate strength
o degree;
Toc is the value of Toct at the ultimate strength
60 degrees;
the value of Toctat the ultimate
of B such that 0 <B < 60 degrees

components.Based on an analysis of
derived mathematical expreSSlons

If isotropic material behaviour IS assumed, equation (4.36)
may be used to define a six-fold symmetric (about the space
diagonal) ultimate strength surface,provided the variations of oe
and Toe with (oct are established (Fig.4.7). Fig.4.8 shows the
normalized combinations of octahedral stresses at the ultimate
strength level obtained from triaxial tests. The envelopes l,n
this figure ar~ considered to describe adequately the strength of
most concret~s likely to be encountered In practice. A
mathematical description of the above strength envplopes "as
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Criteria such as yielding, initiation of cracking,
load carrying capacity, and extent of deformation are generally

used to define failure. In general, concrete failures can be

divided into two types:tensile type and compressive type. Tensile

type and compressive type of failures are generally characterised

by ductility and brittleness, respectively. With respect to the

present definition of failure, tensile type of failure is defined

by the formation of ma.Jor cracks and the loss of the tensile

strength normal to the crack direction. In the case of

compreSSive type of failure, many small cracks develop and the
concrete element loses its strength completely. In this work, it

is assumed that concrete suffers a crushing type of failure if:

(a) the failur~ surface presented in equation(4.36) is violated,

or (bl the maximumprincipal compressive strain is greater than a

specified valu~ (which is taken as 0.0035 according to BS 8ll0)

Condi tion (a) holds for isotropic (uncracked) c6ncrete

material, and it IS found that condition (b) will never be

satisfied prl?r to condition (a) as long as the material is

isotropic. But when a crack exists, condition (a) IS not

applicable; thus only condi tion (b i holds. After crushing, the

current stresses drop abruptly to zero and the concrete IS

assumed to lose its resistance completely against further

deformation. Therefore the rigidity matrix [D] will be zero.

In this study it IS assumed that concrete will suffer a

These express;ons are used In this work to define an ultimate
strength surface.

j

4.4.3 Failure Criteria of Concrete

obtained as follows
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cracking type of failure if:
(a) the failure surface presented In equations(4.36 & 4.37) IS
violated, or (1:))the maXImum tensile principal stress exceeds a
specified value~ A value equals ft/2, is approximately the value
on the failpre surface for uniaxial tensile stress
state.Conditiop (a) holds for isotropic (uncrackedl concrete
material. Unde; multiaxial stress state, condition (bl will never
be satisfied prior to condition (a) as long as the material IS
uncracked. Whe':)at least one crack exists at any point due to
condition (a), only condition (b) IS applicable to check against
a second or a third crack.Once a crack has formed, the tensile
stress across the crack drops abruptly to zero and the resistance
of the materiaJ against further deformation normal to the crack
direction is reduced to zero. However, material parallel to the
crack 15 assumed to carry stress according to the uniaxial or

biaxial conditions prevailing parallel to the crack.

4.4.4 Modelling of Concrete Cracking

4.4.4.1 Gener~l

The tensile weakness of concrete results In cracking which
IS regarded as a major factor contributing to the nonlinear
behaviour of reinforced concrete structures. Early studies on

modelling of reinforced concrete nonlinear behaviour resulted In
two methods of representing the cracking of concrete. The first
approach, termed discrete crack representation (18,19) uses a
redefined disdrete crack system. The major drawbacks of this
procedure, however, are that the topology of the structure has to
be continusly altered as cracking progresses and that a previous
knowledge of the crack pattern might be necessary. The second
approach, known as the smeared crack model (18,19)assumes the
cracked concrete remaIns a continuum. This implies that an
infinite number of parallel cracks occur at a specific point if a
certain cracking criterion IS satisfied. By using the smeared
cracking approach the problem of changing the topology of the
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structure witl1 crack propa~ation 15 overcome. Moreover th~~

initiation, or~entation and propagation of cracks at the samplirlg
points are automatically generated resulting In complete
generality. Fig.4.9 illustrates both cracking models as applied
to two dimensional analysis. The selection of l~hich crackin~
model to use depends largely upon the purpose of the finite
element study undertaken and the nature of the output desired.
Generally, if overall load-displacement beha~iour, without regard
to local stresses and'realistic' crack patterns IS desired, the
smeared crack representation is probably the best choice. If, on
the other hand! detailed local behaviour is of prime importance,
adaptations of the discrete cracking model is useful. The element
type, SIze and grid pattern have significant effects on both
models. The smeared crack approach IS the most commonly used
because it IS, easy to implement.In this study the overall
behaviour of the model IS of particular importance
is used to represent concrete with embedded bars to simulate the
reinforcing ~teel at its exact location In the structure.
'rherefore tqe smeared crack simulation IS adopted. The maIn
features of the smeared cracking model may be summarized as

,,'

follows:
i) cracking In one, tHO or three directions IS allohTed ,knoHn

as fixed crack analysis.
iiI cracks are allowed to open or close during the load increment
iii) no tensiop stiffening but shear retention is allowed ,known
as no-tension analysis.
In the fixed crack direction analysis, (18) In the three
dimensional stress spaces <1i ()z «3 cracks might occur
normal to any principal stresses Fig.410 It IS quite
possibJ..e for any point t.O be crnch:ed ]_n more -than one d i rpct.:i on.

Upto three cracks at a point are allowed In this analysis
provided that they are orthogonal to one another once a crack
occurs its direction in the cartesian xyz space IS fixed and
retained as such in all subsequent 10ading.In this method ,matrix
(D] IS modified such that the modulus of elasticity 'E' of the
concrete is reduced to zero in the di rection normal to the cracl,.
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(Fig.4.10(a)) the rigidity matrix will be

(4.39 I

()( 1 - 7 " )
Ie]::;:)

and with reference to the adopted
concrete 15 cracked In direction 1

S Y tlll 11'_' t 1.Y

Determination of Rigidity Matrix for Fixed Crack
Anal~"'sis

() (J IJ (I () ()

I1n I1n () () ()

11 \J n () IJ
( Dc I 1

(I(; () 0
SYJll1!lf.' t "Y

I)," , ()
" _JJ

(if ;

,. ,.
( I .. ,. ) (j~)

(I () (I

,.
(j"::';~) (I n 0 (4 .38 I

[OJ - E( 1 - ,. ) 0 0 0
(Ti~~)(j":'2T-)

(1-:")
nr=T-) 0 0

In principal ~tress space,
cracking criterion, if the

4.4.4.2

The traxial rigidity matrix for uncracl<ed isotropic
concrete IS

Further a reduced shear modulus 'a' 15 assumed on the cracited

plane to account for the aggregate interlocl<ing .Because of the
fact that shear stress is allowed to act at the cracl<ed surfaces,
this procedure. allows tensile stress to b\lilt up on surface other
than cracl<direction.



where Dij are the cor~esponding values 1n the [D] matrix and " 1S
the shear retention factor, 0 (,(J ('1 .• '0' 1S the shear modulus
of the material; its value will be the value obtained from the
constitutive'laws prior to cracking. If the concrete 1S said to
be cracked in direction 2 Fig. 4.10 (b) the rigidity matrix
will be

1)11 0 f.l J) 0 0 ('

0 (I n I) 0

1Jj3 II 0 I)

I Dc ) 2 Synuo0t ry ( <I • 40)

CC 0 0

lie 0

1)(, fl

and if it is said to be cracked in direction 3 (Fig. 4.10(c)) the
rigidity matrix will be

Il J 1 Ill? (I () 0 0

D22 0 0 0 0
r ~.

I) I) I) 0
[ Dc I ) S yrnrn(' try

1)/, .I, 0 0
(<1.41 )

iJ<.: 0

(ie

Depending on the stress situation, cracks may occur 1n more than
one direction at a single Gauss point. In this case combinations
between IDc I. Il)cl2, :I,,,.! IDcl.1 may be necessary as follows: If
cracked in d rection 1 and direction 2, then D ~atrix is given by



'7., I

IJ 11 () () (1 (1

11 " (1 () ()

Ill, \ n 11 " (~ • ,1 ;, )
1\: ] 1 ,2 s :.'1ll1n'~try

riC (1 (1

(JC (l

(I';

if cracked 1n direction 2 and direction 3, then D matrix 13 given
by

Il I I () " I] I) ()

() () I) I] 11

() IJ () ()

I lie 12,3 S yrllTll~ try
( <I • <13)

OC () ()

(:r; ()

IlC

if craeked 1n direction 3 and direction I, then D matrix 13 given
by

II () () () I] II

Il?? () () () ()

() I.J I) I)ne h,l s :-"111111'_~ l ,.y
Ii'; () f)

(:'( . [) (<1.44)

Ill;
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(<I. <151

[11 C 1

directions it 1.8

of resistin~ any
principal
incapable

T~J

[ a ]=

"I)

"
Il J ,.

[ Dc]",,)

o
1\11 I.

[ Dc 1.',y,7, --

Hhere VI.111\. "1 are the direction COS1nes of the first principal
stress; Q2. 1112, 112 are those for the second principal stress; and

where [T is the transformation matrix for strain tensor wt\ich

takes the folloHing form:
c'

Depending on the number of cracks Hhich occur ata Gauss point at
a particular level of loading. the appropriate rigidity matrix
Hill be eva'luated at that Gauss point and for simplifying the
discussion it Hill be merely termed hereafter as [Dc] and used in
the evaluation of the stiffness matrix.The rigidity matrix [Dc]
1S defined Hith respect to the directions of principal stresses
at the Gauss point under consideration. To enable its use 1n the
global x,y, z space, a process of transformation must be folloHed

and finally if cracked In all three
assumed that this cracked point 1S
stress. Therefore
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4.4.5 Shear Retention Factor used 1n This Work

(7) concrete

(4 .45 )

mode of failure.In the smeared
and roughness t

P=G'/O

factors are: (I) crack spacing, (2) presence or otherwise of
reinforcement crossing the cracks, (3) bar size, (4) total number
of bars crossing, (5) bar orientation relative to the crack
direction, (6) aggregate Slze
strength, (8) crack width and (9)
cracking approac~ the shear transfer is modelled through the so-
called "shear retention factor", (J, which varies between 0 and I
and is defined as:,.

contribution tow~rds the total shear transferred. The main known
!.-

material cracks tn two directions, all the principal di.rections
will be fixed, and the values of the 'offending' principal
stresses will be .set to zero.

(l~, 1l11. III are for the third principal. stress.The three principa.l

directions are orthogonal to each other. The three principal

directions at a point can vary during loading before cracking 15

initiated, but trey are fixed if at least, two cracks exist at
that point. One crack fixes only one principal direction but
constraints the other two to be perpendicular to the crack.Once a
crack occurs due. to any principal stress, say 61 this stress

will be set to zero and the crack plane must be perpendicular to
the direction of this principal stress. In subsequent load,
cycles, the directi.on of crack will be fixed and a two
dimensional analysis on the crack plane will be followed to
evaluate the values and directions of the other two principal
stresses (in fact they will not be principal stresses due to the
fact that shear "tresses will exist also as in Fig. 4.10 .If the

After crac~ing of concrete two ma1n mechanisms develop
through which shear is transferred from the weak cracked section
to the surrounding sound concrete; namely (l) aggregate
interlocking on the two adjacent surfaces and (2) dowel action of
any reinforcing bars crossing these cracks. The tHO mechanisms

are interrelated and several factors. govern their relative,



4.5 Nonlinear Method used In This Work

(4 .47)

(for uncracked concretelEtat m <for1

f3 = 0.25 E to/ Em

where Gt is the reduced shear modlllus for cracked concrete and G
1S the shear ~odulus for the uncracked concrete.

To achieve the alm of incorporating a realistic shear
retention f~ctor to model shear transfer across cracked
concrete,the .following .nonlinear relationship based on the
average of the three principal strains at any cracked point IS
used,Bari (18 ).

4.5.1 1}8rH~rc-:.l
A nonline~r structural problem must obey the basic laws of

continuum mechanics, l.e" equilibrium, compatibility, and the
constitutive relations of the material. Displacement
compatibility is automatically satisfied In the displacement
fini t.e element- technique. Common nodes betHeen elements p-nsure

continuity and compat{bility of displacements along element
boundaries, and polynominal shape functions ensure continuity and
single valued displacements internally. Therefore it becomes
necessary only to enforce that the nonlinear constitutive
relations ar~ correctly satisfied whilst at the same time
preserving the equilibrium of the structure.There can be several

where (3 is the shear retention factor; EOm IS the average of the
three princip}ll strains at a cracked point; and t to 1S the
cracking tensile strain which was taken as 0.0001 The above
relationship s~ems more realistic than a constant factor because
the physical cpntact between the two faces of the cracked planes
weakens at larger crack widths, thus decreasing the aggregate
interlocking forces.In the present work, irrespective of the
number of crae'ks at a single Gauss point one shear retention

factor IS used for all the cracks at that point.



b) Iterative (Newton methods)

c) Incremental-Iterativelmixed procedure)

III a structure, which can be

1) ~laterial nonlinearity, 2)
~lixed material and geometric

where ,the nonlinearity occurs in the stiffness matrix [K] which,
in the case qf short-term behaviour of reinforced concrete, 1S a
function of nonlinear material properties.Details of the methods
are given in reference 122 ).

causes of nonlinear beilaviour
divided into three categories:
Geometric nonlineari ty and 3)

A nonlinear solution 1S obtained by solving a serles ~f
linear problE1ms such that the appropriate nonlinear conditions
are satisfied at'any stage to a specified degree of accuracy. One
way of achieving this goal 1S to ensure that at any loading
s.tage, the splution results In stresses consistent wit.h th8

displacement field and satisfying the given constitutive
equations. These stresses will be statically equivalent to a set
of internal nodal forces which should be in equilibrium \-liththe
externally applied loads. In general, these equivalent nodal
forces are not equal and the differences between the external and
internal forces are termed "residual forces". These residuals::
must be removed by repeatedly applying them on the structure
until an acceptable tolerance 1S achieved.The solution of
nonlinear problems by the finite element method are usually
attempted by one of the follo"ing three basic techniques:

a) Incremental (step-wise proced"re)

non linear ity .Stres s-strain reI ation s are a IIIa.J0 r sou rceo f

nonlineari ty. Onl7v~ nonlineari ty caused by short-term nonlinear

behaviour of concrete and steel 1S considered in this study.
r~.

These include the tensile cracking of concrete, the nonline'ur.
stress-strain relations of concrete, and the yielding and work-
hardening of steel.



A modified verSIon of the mixed procedure IS. 'Jsed in i:tlis
work.The modifi~d "Newton- Raphson " approach is uesd to evaluate
the stiffnesses.The stiffnesses are evaluated usin~ n second

equations

results

F. the
the constitutive

= 0

reduced

R

the
are stored in core 1.11 H

increment
( 18) that,vary inl;(the the

such

() ] dv

as

vnrinbJ.0.s

B ]I

formed
eliminat.f.~dto

F.

rigi.dity matri~ and it was found
stiffnesses at second iteration in each

where [(j] are the actual stresses depending on
law being used, R is external load vector
residual forces!

corresponding
the structure 1S never

cheapest solution. For the calculation of unbalanced nodal forces,
a modification of initial stress method is used,termed the metllod
of "Residual Forces" (23). The basic technique is that ,at any
stage ,a load system equivalent to the total stress level 1S
evaluated and checked against the applied loading system. The
difference between the two will result in a set of residuals that
are a measure of lack of equilibrium.These residuals are then
applied ln the structure to restore equilibrium.The process 1S
then repeatedly continued to dissipitate the out-of-balance

::.
forces to a sufficiently small value. Thus for equilibrium it is
required that

temporary array called a buffer area.As soon as tllis array IS

full,the information l.Sthen transferred to disc.This saves the
core storage an~ computer time through proper house keeping
Another important feature lS that ln frontal solver node
numbering is irrlevent and it lS the element numbering that
matters for storage allocation.

In this work a verSl0n of frontal solution originally
introduced by Irons (241 and later modified by Hinton & .Owen
(25),is used.The main features of the frontal solution technique
lS that it assembles the equations and eliminates the variables
at the same ttme .This means that the total stiffness matrix of



load-deflection curve ,but it is an importaant safe guard against
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be

the

rate

convergence.The
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must
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obtain

merits and the selection of a

1n

to specify a maximum number of

to

convergence

its

by the user through what is called

influence the predicted shape of the

beeen

external

determine the accuracy of equilibrium

has

required

trying

may

have

that
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specified

also

convergence criteria must be used to terminate

A global approach is adopted ,where convergence

the

effort

1S

1S

values

criteria
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iterations

much

this study force convergence criterion 1S used.

of

N is the total number of nodal points

accuracy

A

In

three a+ternatives

and Ri

whatever criterion is chosen ,care

i

where

it 15 a direct measure of equilibrium between,.

15 monitored using norm as follows
internal forc~s.

iterations,irrespective of the slate of

cracking stage when large forces are suddenly released
system.

number

unlimited and often unnecessary cycles of full

denotes the iteration number ,F., 15 the residdual forces at node

~erhaps needl~ss accuracy. Special attention must be given to the
spending

stiffness).It

"convergence tolerances".These

the
suitable one depends on many factors.The,
depends on the method used in the solution

convergence criteria and (c)Energy convergence

quantitative

analysis tnam~ly,(a) Force convergence criteria ,(bl Displacem~nt

acceptable to the user and it must be

the iteration process when the desired accuracy has been
.The

convergence

4.5.2 Convergence Criteria Used 1n This Work



4.5.3. Analysis Termination Criteria

can also be used.In this study ,however ,the growth of iterative
a

13

and

The

Hith

.- .• ,I
I ,~

theof

rigidity

iterations

analysis

norm

associated

coupled with

case

rnax~mum

appropriate

also

Hhich

the

displacements

of the stiffness matrix to

Hhich illustrates the basic

was

A maximum deflection can be

a particular iteration 1.

using

nodal

terms

at

values

[IO

R ],due to the influence of the material

be sustained.

diagonal

analysis

can

negative
the

the

It Has found that the negative or zero pivots Here
or

nodal forces

loading

through

Consider

;,] = [K (eT,E) ]-. [R]

external
nonlinear relationship betHeen~

displacement~ are cakculated according to equation

laws on stiffness matrix
matrix [D]x, 'y".

4.5.4. Procedure Adopted in the Program for Analysis

alHays associated Hith very large displacements at or immediately
beyond the failure loads and always occured after 2-3 unconverged

severe cracking ,yielding and crushing situations.

search

detect zero
terminated

displacements is used to detect failure.This is

used as a criterion to stop the analysis.The

The program must have some means of detecting the collapse
of the structure.The failure of the structure takes place when no
further

(sometimes diverged) increments.This

residual forces becomes less than a specified tolerance times the
norm of the total applied forces.

criteria states that the convergence occurs if the



(6) Check for concrete tensile failure criteria .If violated aa
crack will occur ,thus a neH rigidity matrix l Dc Jx, y, z wiJ. be
formulated according to the number directions of the cracks.

= 0.0

"Ei.,

[Djx,y,z

[tll-[f;-J

q',
( 13

(7) If pr~viously cracked 1n one direction ,it is required to
check for further cracking as follows:

(a) for the previous load cycle,the principal stresses "\ ,~"
had the direction COS1nes (I, ,m, ,n, );(1, ,m, ,n, .and
,m3 ,03 ) .These directions are termed here as x1 tY' ,z' as

(5) Check fOF concrete compressive failure criteria violation.If
violated ,all the stress component at this gauss point will be
set to zero 1n this iteration and in all subsequent load cycles

~( = 0.0 also the components of the rigidity matrix will
be set to zero for stiffness calculations in all the subsequent
load cycles.

(3) Check whether this stress sampling point has suffered from a
tensile cracking situation in any of the previous load cycles,if
so, step(7) w~ll be executed,
(4)Using the stress-strain relationships described 1n the
concrete material law, evaluBate the total actual stresses 1n
concrete [ ~i 1 which correspond to the linearly calculated total
strains.

(Z)Check whet~er the sampling point under consideration has
suffered fro~ a compresslve crushing situation in any of the
previous load cycles,if so,stepIB) will be executed.

(1) For every stress sampling point ,evallIute incremental vaJ.lIes
of strains DEl and stresses [A(), J using the appropriate
rigidity matrix [Dlx, y,"
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our

thus

which

J.n

COSlnes

deviated

crack

COSlnes

0'). n'.l

direction

the

",ill be (see Fig.4.111

caused

[" 'I

"f y'

2

2T ~,~.r ~-

-1- (}~.
'.

11~, - 0.',. ..

~ith respect to the global x,y,z space ,we [Ieed to

~s the transformation matrix for stress vector
(0

,
cr] [ T <T ][ (J ]

,
if [ (J] = [A) [~]

in xJ ,y' ,zJ space by

~3 'we are dealing with a t.wo dimensional problem of which

tall ? ()'

If
, ,

} , If J

(d) Having obtained the" ,and knowing the
of x,y,Z axes

already fixed ~irection of ~ which
example.This cap be done as follows:

where (' ~s the ,ngle by which the directions of

and for the ins~ance of a cracked caused hy if) , the value of a-x l

will be set to ~ero ( crt = cr,' I,and to evaluate the new values of

calculate the direction cos~nes ofU"2;I1'Jwhichare (l,',m,',n,.')
,(13 ',m3 ',n3 '),such that their plane remains perpendicular to the

from y', z' axes in the event of cracked caused by 1'1 (Fig.4.121.

to [ cr'

the active. stress component.s are~~

The ne'" transformed stress tensor

were obtained from the previous load cycle were used in stiffness
calculation. to evaluate the new stress vect.or [()) ",ith regard to
the appropriate rigidity mat.rix [Dc].

(e) Now for principal stress calculation 1n cracited material
,the new strress vector { ~] will be trallsformed froln x,y,z space

shown in Fig.4.11.
(b)ln the present load cycle ,these direction

",here [T

0""2 7 and



(lOICheck for convergence

4.5.5. Nonline~r 3-D Finite Element Program

cone T.l'~te

1 dv

I

[ er J

[B JT

II

[ er ]=[C

"[ er 1 =[C] [AJ[ If J

[Pi 100 • c

and

then

element
(81 Evaluate the equivalent nodal forces contributed by

[Pi ] = [P, 0 0 no] + [Pi 1st •• I

where [A] and [C] are the appropriate transformation matrices.The
product [C][A] will contain allthe required direction cosines of

II

the new principal stresses contained in er ].
(e) These nine values of direction cosines will be the ones

to be used in the next load cycle for stiffness and new stress
vector calculations;and the values of the principal streses If, I,

~ I will be u~ed to check against the cracking criterion because
~ was set to zero (in this examplel.lf the cracking criterion 1S

violated furt~er cracks "ill occur and the appropriate rigidity
matrix [Dc] must be used.

The program analyses nonlinear three dimensional stress
problems using 20-noded isoparametric brick elements for concrete
and embeded bars of reinforcing steel The bars can br embeded
any ~here within the elements ,the only restriction being tha~

(91 Add the equivalent nodal forces contributed by concrete
element to those contributed by steel reinforcement to get the
total equivalent nodal forces of the element,[Pil
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weighting factors for numerical integration.

the required fubrDutines for data checking

of

by

fl

b.v

of

the

boundary

output is

so1ved

solve

subroutines

10 order to

developed

the
Because of the

to

Coordinates

are

area

other

Df

cracking model and a

used1S

equations
storage

concrete

Gauss i point positions and

cDntrDl

stress etc.

smeared

The program includes a triaxial

the

method

buffer
resu.lting

sampling

varl0US arrays to z,ero for accumulation of

dimensional

The

output

the

displacements

including

of

up

ZERO

three

material prDperties fDr concrete and steel and calls

a

equat.ions.

sets

initializes

amo\Jnt

incr~mental-iterative

Technique

reactions

This

This
Subroutine

5. SubrDutine GAUSSQ

1. Program MAIN
This is tre master program frDm which all

3. SubrDutin~ INPUT
This read~ the required infDrmatiDns fDr geDmetry ,

loads

conditions

2 .

are called. Flow chart is given in Fig. 4.13.( 10

4. SubrDutinb NIDSID,
This cDmp~tes the cDDrdinates of the midside nodes for the 20

noded iSDpara~etric brick elements.

enormous
generally left tD the user.

4.5.5.1 List of Subroutines with their brief description,

The

reduce the cost of the analysis

bilinear stress-strain law for steel
Automatiq mesh generator is not included

midside nodes are always automatically generated

Frontal

short term constitutive equations for

nonlin~ar

Kotsovos

they must be parallel to the local coordinates (~. ~
the basic concrete elelnerlt.



81

14. Subroutine ALGOR

the

within

element

accounting

reading

reformulation

brick

embeded

Gauss points and

the

bars

all

for

of

and their derrivatives

matrix
crushing and the material laws of

and adds them into the app~opriate

coordinates

element

the

cracking

its inverse and determinant

state prevailing at the Gauss point in question

stiffnesses depending on the algorithm choser.

the

concrete

for

strE7ss

calqulates

element

the

basic

the

This

This computes shape functions,

10. Subroutine JACOB3

12. Subroutine MOD3D
This eval~ates the material property matrix [ D

of

13. Subroutin~ DEE
This calculates the stress matrix DB

This indicates by resolution index "KRESL" whether or not the

11. Subroutine BMAT3D
This calculates the strain matrix B ]

•

the current load increment and the current iteration

ready for stiffness calculation
for

7. Subroutine BARSTF
This comp~tes the stiffness of all the

system of equations is to be accompanied by a full

places in the stiffness matrix

Jacobian matrix

the

This computes the stiff••ess

9. Subroutine SFR3

8. Subroutine LOAD3D
This computes the equivalent nodal forces after

relevent data for any combination of load types.

accounting
concrete

6. Subroutine STIF3D
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This calculates the deformations due to the incremental loads

15. Subroutine INCRE~I
This increments the load applied.n subroutine LOAD3D

and

their

using

usin~

and due t,o

stresses

process

X,y,Z space

strains assuming

Fig. 4.7 )(16)

true

iterations

and

Fig.4.14 shows the flow
the

iteration

find

stresses

subsequent

I 6

total stress tensor of the structure and

.In case of

incremental

the

the equivalent nodal forces

evaluates

c~mputesThis

This calculates the principal stresses and strains and

This

in case of first iteratjorl of every load increment

r deviatoric aXlS

r=!3Toct

22. Subroutine ZRTETA
This calculates the coordinates z,r,e .n the principal stress

z hydrostatic axis in the principal stress space
z = f3 6--0 c t

directions at all gauss points in the element in

20. Subroutine PRNPAL

19. Subroutine RESUAL

This checks the convergence of the
residual force method

16. Subroutine CONYER

evaluates

21. Subroutine OCTAH
This calculates the octahedral stresses and strains,

17. Subroutine LINER

space to determine the failure surface as

Frontal Sol~tion Technique.
the residual loads

linear elas~ic behaviour
18. Subroutine FRONT

calls the r~quired subroutines to

chart of th~ subroutine .1



•

~--

'''''oct' (uryt

I

,
I
I

I

I
I

I
,

I
I

-'--
I

{oct {check •

(al °nel f(\( t C1.lf\'C

Fig. 4.15

I'OCI

I

I

/

I

_______i-
/'

I

T OCt

(Joct



its

same

within

The

from
This also

1, S

E-10.
Having found the

stress

4.33&

Gs from initial value Go

curve

is increased or decreased

4 .31
modulus

which specifies the devihtion of

subroutine calculates the correct

bulk

a ~ \3

This also calculates the octahedral

equations

this

for Toct- Yoet

plane

the failure surface envelope uS1ng Kotsovos

Iterations are continued until ~check 18 very
other Hise <foct

To c t

2 Gs

using

= --------

\,' .

adopted
with acceptable tolerance of 1.0

(Fig.4.15l

on the

1S

determines

4 • 15

value

6"1

1

=---'-, (r.o

the a~gle of similarity

failure ,surface
For the gauss point at which the state of

This calculates the shear modulus

This

"

Fig.

the

close to toct

26. Subroutine ASCEND

procedure

3 K,

normal and shear stresses by direct internal iterations Ech~ck

obtained fro~ subroutine EPSLN must equal to ~oct obtained froJ

0'"' 0 c t

E: ch(>ck .-

using equations 4.32 & ~.33

25. Subroutine GAMA

subroutine OCTAH

as follows

initial

shear strain, YCheck on the octahedral shear stress-strain curve

on the normal stress strain curve iFig. 4.15) as follows: ( 1 a)

24. Subroutine EPSLN
This calculates the secant

23. Subroutine FAILURE

failure criteria with equations 4.36 & 4.37

r from

calculates the corresponding octahedral normal strain
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27. Subroutine BARSTS
This subroutine evaluates reinforcing bar stresses and brings

down the stresses to the yield value in case of yielding of steel
"

transform the stresses and strains to the required directions
to

and

used

principal

termination

normal.

Hith

of concrete using
offendingthe

crushing

tile corresponding

and

detect the error in data supplied.

cracking;For
crackingwith

to zero and the appropriate crack directions areset

deals

1S

For cru!hi,ng ,all stresse are set to zero

This gives the required output of the analysis.,.

This

31. Subrouti.ne 9HECKl
32. Subroutine ~CHO
33. Subrouti.ne CHECK2

Subroutines 31, 32 and 33

This subrouiine sets up tIle traIlSformation matrices

Flow chart 1S given in Fig.4.16 .(")

28. Subroutine CRKING

29. Subroutine TRNSF.

30. Subroutine OUTPUT

appropriate criteria

shear stresses are than caJ.clIJ.ated from
6"i j = 2 Os t:i j + bi j 3 I(s-2Gs) t:.oct

and gives the informations about type of error
of execution

fixed
stress

correct values of <Jo c t and 10 c t



CHAPTER 5

significantly on hoI' Hell the post cracking behaviour is modelled

1S

of

of

by

3-D

The

tot.al

models

depend

the

struc"ture

initiation of

behaviour

nonlinear

to

stI"uctur{-~s

responses.

response

The

slab

The

nonlinear

concrete

Hall

of concrete is well ltnown

material

problem.

deflection
In the cracking envirollrnerlt

structures.

total

shear

such

of

the

reinforced

load

nonlinear
is centred around a suitable model for

relationship

Chapter 4 and used in this Hork,

of

of

concrete

plan

its

1n

of

part

the finding's. of tl1eor-etical investigations have

overall

of

analysis

floor

a

anal :...5 is

the:..

effects

On the other iland, iIlitiatiofl of cracks 1f1 corlcrete 10

stress-strain

discussed

only

element

typic;3.1

description

A

5.2.1 Finite Element Discretization of Models

In this cllap~er.

program,
in the numerIcal solution of

TIIEORETICAL NONLINEAR STUDY

5.2 Procedure Adopte(i tor NtiIlli,rlear Study

been discuss~d systematically.

nonlinear behaviour of concrete.

suitably the nonlinear material responses of I"einforced concrete.

presented in Fig. 1.4(a). For the models studied, the slab panel

nonlinear

concrete,

early stages of loading contributes significantly

Nonlinear

cracks at a sampl.ing point 1_11 no \.n.lY indlcaLes a c()mpJeLf.~ failure

of t.hat poin~. Rather it. should be t.reated as a starting point. of

nonlinear

concrete.

5.1 General

finite
the

and form
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Fig. 5.1

z

Typical finiteeiement mesh with four el.ements



5.2.2 Investigation on Boundary Conditions

structure adequately and was used throughout the study.

of

due

each

one.

Hi th

(El )

boundary

only one

with

result

of

simulate

Therefore the

<.l.Ila]yzed

a

to

appropriate

be

As

compared

Effect
stiffness of slab and

the

to

Three cases 'of bour~dary

20-noded brick elements

and

node.

2 .3 .

needs
A typical finite element mesh

select

each

to

studied

panel

at

article

and an~isymmetry In ttle sl,ab,

other

assumbly.of 3-D,

1n

an

complete

investigations CASE I '....as found t() represent. the

wall moment (~II resulting from structural actions

symmetr:-'

the

into

qpundary conditions.

1S provided 1n Appendix
on slab deformation flexural

described

of

the procedure discussed In articJ.e 2.3.

After

of

divided

equivalent

other
crack propagation in slab Has

and compared Hith each

studied. The rotation iElJ was applied incrementally and 1n each

increment the behaviour of slab such as propagation of cracks and
stresses and strains 1n steel and modes of failure Here

investigated through nonlinear analysis. Appropriate boundar)'

conditions
conditions were imposed in fini.te elenlellt mesll

conditions
conditions

behaviour of slab in resisting the rotation of the wall
following

Detailed description of the investigations on different boundary

of coupled sh~ar wall str\Jctures as di,scussed ill article 1.4 ,~as
to

conditions wer~ imposed and the behaviour of the slab Has studied

having four elements with node numbering is shown in Fig. 5.1.

The purpose of the st"dy was to investigate the behaviour of
slabs 1n coupled shear Hall structures. For this the flexural,
stiffness and effective Hidth of floor slabs Here studied

quadrant
appropriate

having 3-degrees of freedom
conditions

was
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5.2.3. Determination of ~l arId 8 from Firlite EJemerlt SOJ.llti,OII

Equal di~p],acement S I were prescribed at ,~all fl()des to
produce rotation e of t~all as shown iTI ~ig. 5.2(u) TIl enctl

increment,the finite element solution furnished the
displacements, stress resultant values at all nodes and al.so
reactions at the restrained nodes as shown In Fig. 5.2(a). The
reactions at the wall nodes provided the static equivalent wall
moment M and the total shearforce, Q transferred from the wall
to the slab as shown In Fig. 5.2(bl when wall undergoes the
imposed rela~ive translation due to rotation e.

Rotation (al of wall was increased at each increment by a
factor until failure of tile slab and in each increment wall
moment was evaluated corresponding to wall rotation. In tllis ,~ay
M-9 relatio~ship throughout the entire stages of loading were
evaluated. ijence using the equations 2.5 and 2.6, flexural
stiffness K and effective width of the slabs and their variatiol's
throughout the entire loading history were evaluated.

5.3. Idealization of ~l-a Curve

For di~cussion purposes and to analyze the M-9 curve
critically, each curve is idealized In the manner as sho,~n In
Fig. 5.3(a) The slope of the initial linear part of the M-9
curve Cab' 1S the precracltirlg stiffTless Ko~ Ttle point lb' 0[1 tIle
curve IS rgughly an indication for the first appearance of the
cracks. After cracking of concrete, the first part of the
nonlinear cq~ve is approximated by a straigllt line tbe' arId tile
slope of thi~ part will be called 'cracked section stiffness
JKer'. The 'point Ie' on the curve is roughly an indication for
the first yielding in flexural reinforcement. After yielding the
second part 9f the nonlinear curve is approximated by a straight
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line ted' and the slope of this part Hill be called post cracking

,',, '

(D)

The

moment

because,

s ti f frH~SS

stiffnesses

Fig.5.3(bl.

the concrete

1S

rigidity

respectively.

The

of

This

points exactly.

graph.

flexural

yielding

idealized M-8 curves will

yielding

Ide' indicates t.tle probabJ e modp}

respectively.

of, steel

and

So calculated values

~ and U will be termed as ~rackirlg

the points Cr'and ~"represent the start of

portion

points Cr and y on ide~lized curve represent
and 'start

The

But after cracking of concrete ,the value of D of

find cracking

t Ep 1 •

and ~(p Hill be evaluated 'from idealiz'ed N-(j curve USJllg

to

reinforced concrete was the slab material~

in analysis,

Kp ) will be lo",er than the actual values.

As

For all the models investigated,

Kc r

~ typical idealization of ~l-e curve is SllOWIl 1n

this

(Ke ,

5.4. Material Properties of Models

Ko ,

be drawn showing the actual points on the

using equation 2.5 ,precracking value of
will be used .
the slab will be reduced

moments at poi~ts Cr,
Me" yield mom~nt ~I. and ultimate moment M. respectively.

and steel properties were assumed and are presented in Table 5.3.

equation 2.,5. In calculating the value of stiffnesses (KQ ,Ke, ,Kp)

possible

Whereas

fai.lure.

during ,analysis rotation was applied incrementally and it was not

In
start of cracking

cracking and yielding of steel

stiffness



In all the models, reinforcements were provided according to
the desi,n as discussed in Chapter 3. Large diameter bars were
used to minimize the number of bars in the slab. this was done to

typical yalues of bay width (Y), corridor width (LI and length of
slab pa~el (X) as shown in Fig. 5.4. Shaded area shows the one
quadrant of the panel analyzed for each model. Table 5.2 shows
the geometric dimensions of all the models investigated in tllis~~.

offor a rangeThe investigations have beerl carried out

save the com~uter time during exectJtion.

work.

COflcrete Properties

TABLE ii.

Steel Properties

Placing of Reinforce.ment in Models

--------~---------------------------------------------------

--------------------------------------------------------------

--------------------------------------------------------------

5.4. Geo~etric Dimensions of Models

-------------------------------------------------------------

Yield strength, f,. = 345 N/mm'
Modulus of elasticit~. E, = .210 E + 06 N/mm'
Yield strain, ~y = 0.001642

Cube crushing strength, fe u = 27.6 N/mm'
Modulus of rupture, f, = 2.76 N/mm'
Modulus of elasticity, Ee = 0.210E +05 N/mm'
Poisson's ratio of slab material, Y = 0.15



n( "~)

y

j

.

.------ ~ -------1

I-- 'j'-- -- .----.- Vi

C=_.============1

i
I
i,
'J,.

----1

+

Geometric dimension of ModelsFig. 5A

\.

J Vi :r-..__=oJ



TABLE 5.2

-----------------------------------------------------------------

0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20

slab

thicklless(t)

6.0
6.0
6.0
6.0
5.4
4.8
4.2
3.6
3.0
2.4
5.4

4.8
4.2
3.6
3.0
2.4

5.4
4.8
4.2

3.6
3.0

2.4

5 . 4

4.8
4.2
3.6
3.0
2.4

Width of
w,d 1 (Vi I

7.2

7.2

4.8
4.8
4.8
4.8
4.8
4.8
2.4
2.4

2 .4
2 .4
2.4

2.4
1.2

J • 2

1.2
1.2
1 • 2

1.2

6.0
6.0
6.0
6.0
7.2

7.2
7.2
7.2

Bay
width (YI

,n m

7.2

2.4
2 • 4

2.4
2.4
1.2

2.4
3.6
4.8

6.0
7.2
1.2
2.4
3.6
4.8
6.0
7 . 2

1.2
2.4
3.6
4.8
6.0
7.2

1.2
2.4

3.6
4.8
6.0

14.4
14.4
14.4
1 4 • 4
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0

12.0
12.0
12.0
12.0

,n m

Length of Corridor
slab (XI widthlLI

']7'

TMODl
TMOD2
TNOD3
nlOD4
NOD61'
MOD62
NOD63
~lOD64
NOD65
MOF66
MOD41
M0D42
MOD43
MOD44
MOD45
MOD46
MOD21
MOD22
NOD23
~10D24
NOD25
~IOD26
MOD11
MODI2
MOD13 .
MOD14
NOD15
MOD16'

'Models are numbered in such a way that the 1st & 2nd numerlC
values in decimal represent the values ofY/X & L/X respectively

Nadel
No.

-------------~---------------------------------------------------

----------------------------------------------------------------
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5.6 Parailleter Stud~

factor of cracked concrete and (f) Norm of conve~gence tolerance.

-------------~------------~--------------------------------------

st,udy,

0.36

0.36

Y.o/Y

Thj S lIIodf.::l "-'as

In this
were studied by

Shear retention

0.3.1

0.30

Effective width
Author" CntJ.ll&h'oll~

Y.o/Y

( e )

3.9

4.04

8.0

9.0

Stiffnesses

36

32

Ib) Tellsion st-iffnelling, (c) Ten~:;i,l(:~

T.-'.BLE 5.3

Idl Angle of crack

345

338

315

296

Moments 111 kn-rn

4?

47

Nc r

Model ~IOD42 was cOllsidered for tllis stlJdy.

analysis are (al Nestl Sl.Z8,

Influences of the some of the above parameters
many authors ~hich was discussed in article 2.5.
influence of mesh S1ze was studied only.

Model No.

Effect of ~lesh Hefinemellt.

strength of concrete,

The param~ters affect.ing: the numerical solution of nonlinear

studied by dijiding it into a 4-element mesh and 8 eight element
mesh. Refined model MOD42 "'as named as HT~lOD.12 The typi cal 8-
element mesh is shOh;n in Fig,5,5, Figs.5.6 shows the plan HiLh

reinforcement. for the models.Fig.5.? presents the idealised ~l-e

curves for the models. To facili ta.te a comparative stud~. Table
5.3 is prepared and presented below.

MOD42

RTMOD42
-------------~---------------------------------------------------
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5.7 ~lodel Investigations on Effect of Reinforcement

5.8 presents the propagation of cracl<s for the two
Cracl< pattern for the two models are similar.Again

points near the interior edge of the shear wall cracl<ed
corridor slab cracked severely.

Figs.
models.
sampling
first and

Tension stiffening was ignored in this study. In order to
m1n1m1ze the number of elements the wall was assumed to l,ave
zero thickness. Other parameters were included 1rl n\lmerical
modelling as discussed in chapter 4

Consideratio~s to Other Parameters

In this study 4-elenlerlt mesh was used tllrou~ho\Jt tile
investigatioI15 to save comput~r time as E-element mesh. required
much more computer time.

In this stage several models named as TMOD1, TNOD2, TNOD3 and
TMOD4 were ~tudied. All the models had same geometric dimensions
but different percentages of reinforcements. Plan with
reinforcement arrangements are sllown in Figs. 5.9.

It 1S found that the both models cracl< approximateb' aL the
same cracl<ing moment although Nyand Mufor model RTMOD42 are 6%
and 2% higher respectively lilis deviatiorls may be considered to
be small. The value of ho for model NOD42 is 11% higher than that
of RTNOD42 But the values ke, and hp for model RTMOD42 are 11%
and 3.46% higher respectively than those from MOD42. The vallue
of Ko from NOp42 is closer to that from Coull & Wong.
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TABLE 5.4

------------7----------------------------------------------------

To

the

15

20

t.O oceul'

0.4%1.=

1S a sudden

the procedure

supposed

0.328

0.328

The part ab of

200/fy

S Leel prov j tied j Il Lh(-~

=
Those steels ~~ere nillch l.ess

p. = 0.061% and in the model

As the imposed displacements

59

59

(Pmi n

represented by the part be of the
forming and there

evaluated folloh'ing1S

P, = 0.784%.

presents N-(~ I'elationships for the mod,,),,;TNODI,

cracks start

18.5

25.0

5. 10

moment,The

The reasorl for ttlis type of betlaviour is

Figs.

------------------------------------------------~----------------
TMOD2 28.5

for providiqg very loh" sLeel .in the slab.

Myeo = ultim.te moment of th~ s}ab section having effectiveh'idth
Yeo.

discussed in article {5.8.41.

----------------------------------------------------------------~
Model Homent at section Stiffness Effective Analytical

at th~ interior edge h'idth
of shear wall
Mb He Ko Yeo/Y ~Iveo {1<N-ml

than that prescribed by ACI Code

model THODI was P.IAs/bdl = 0.074%,
THOD3 was P. = 0.2%,

T~IOD1 28

analyze the ~I-egraphs for the two models, Table 5.4 is prepared.

curve. The mqment ~Ib at poirlt b represerlts the uncraclted moment.

are increaseq,

models THODI and THOD3 dral,s the attention.

decrease 1n, the moment as

graph represents precracking stage.

THOD2, THOD3 and nlOD4. [jut the unsual shape of the ~j-El,.nlphs of

Effect of Reinforcement, on H-El Relationships



10S

h'ere

From

finally

and

0.32

0.32

and

b~'

Effective width
Coull & Wong

reinforcement j.B
=.784%)

the

specified

as
.65%,

0.345

0.345

s tee 1

that
=

for the t\~O models are salile.

Effective width
Y•• /Y

that the cracking moment ~lb from ~1-8

SitOh'S

mInlmum

6.98

6.54

ttle gI"aI)tl disappears. 'ftle Slnoottl curve of
IS due to the fact that the steel provided

5. 10

nlOD4 . I Px

that

he r

n.78

12.57

Stiffness

than

62

62

greater

Precracking stiffness IK.
Table 5.4. it is found

Model

T~lOD4

TMOD2

IS

-------------~--------------------------------------------------

Idealized M-8 curves for models TMOD2 and TMOD4 are presented
In Fig. 5.11, to calculate the stiffnesses for the models. Table
5.5 is presen1~ed Lo compare tht;,~ stiffnesses.

TABLE 5.5

-------------~---------------------------------------------------

Reinforcements were increased in models TMOD2 (P. = 0.52%,

-----------------------------------------------------------------

Effect of reipforcement on stiffness

Therefore, percentages of steel has a remarkable influence all tile
shape of M-8 graphs and mInImum steel specified by ACI code
should be p~ovided to ha,"e the normal bellaviour of rei.IIforced
concrete.

Py = 0.784%) and
investigated. Fig.
increased, the point

the sudden drop In
Model TMOD2 and TMOD4

the
curve is great.er than ttle ultimate moment. ~lyf'o' Therefore, after

cracking, the capacity of the slab secti,oIl reduces as ttle steel
provided in the slab is much less, I'esultin~ in a sudden decrease
of moment.



Fig. 5.1 1: Effect of reiJflforcement on M- '" relationships
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But crack~ng stiffness (K,,) and post cracking stiffness (Kp)

111

as

1 1 (.j

Hith

these

model

cracks

similar

such

that

could be

Geometric

different
In

researchers

slab

of

Increase

Hith

the

Halls.

Therefore,

parameters

of

out

Effect

t.he resul t.s

Corridor

moments

for the models are only

The models Here divided

shear

~lost

the

that

(Y. 0 i

planar

parameters.

earlier.

so

geometrical

ultimate

relate the flexural stiffness and

Study

studied.

for

to

to

Hidth

and

may be concluded franl the models analyzed

geometric
conducted

spacing of shear Hall, Y and slab Hidth X on

it

research

slab '..:as

the effect of
L,

effective

stiffIlP~H;

Here

yielding

Investigations

configurations

their

Therefore,

Crackin.f1: ,

Precracking

Precrach: i r~~

increase in percentages of reinforcement. Craci{ patterns are

investif!;ations,

A systematic investigations Has carried

that the amount of reinforcement has negligible influence on ti,e
precracking s~iffness of slab.

the amount of reinforcement l.nT~IOD4 is 25% higher than

severely as d~scussed in earlier models

Parameters

slab-Iolall
investigations,
corridor wid til,
the behaviour of

effective Hidth with

5.8. ~lodel

6.5% higher than that from Coull & Wong linear analysis.

int.o 4 groups having different ratio of Y/x and in each group th~
rat.io L/x varted from 0.1 t.o 0.6.

compared Hith't.hose established result.s.

for model TNOD4 are approximately 6% higher than those for
T~lOD2..

conducted

similar to the models described

TNOD2.
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Fig. 5.13~a) M - e relationship
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Fig. 5.13(b) : M - e relationship
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Fig. 5.14: Gradual propagation of cracks in model MOD62.
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Models MOD6]. ~lOD62. ~IOD63. ~IOD64. ~10D65 and ~lOD66 having L/X

5. ] 2.

4

Similar

in ~IOD63

MOD63 and

In all the

Plan ~~itil

Id"ali zed ~1-8

shean.all and
In all the models

~IOD62•

crack patterns are
The direction of the

.n MOD66 at 19.6% of

3 and Element

(Appendix) .5

in MOD62 at 23.8%.

4 (Appendix).

taken to study the actual

6 (Appendix).But those crack

1S

21.3% and

x- Y) plane.

it will be difficult to show the

interior edge of the

As

that is Element

for the models MOD61.

interior edge of the shear wall.

started at

corridor slab,

Cracking diagrams

A particljlar model ~lOD62

propagation of cracks 1n three dimension

pass.ng thr~ugh ti,e

direction of cracks

In MOD65 cracks

5. 13.

models,

pattern merely shows

shown 1n two dimensional

MOD64 were also presented in Figs.

Cracking started in MOD61 at 25.3%.

cracking diagrams "ere also observed for models MOD65 arId MOD66.

cracks 1n the fig. represents the direction of principal stresses
causing the arack and the length of the crack at a sampling point
represents the magnitude of the corresponding principal strain.

ultimate load.,

5.8.1 Description of BehrrviQur of Slabs in Theor~tical SLudil':'!s

cracks started from the

cracked severely and failure ~as supposed to occur at the section

gradually propagated towards the edges of the slab.

diagralus l~ere also presented in Figs.
reinforcements of models ~lOD65 and MOD66 are shown in Fig.

at 22.5% and in MOD64 at 23% of ultimate load.

Idealized M-B. diagrams for these models are presented '1' Figs.

0.1. 0.2. 0.3. 0.4. 0.5 and 0.6 respectively were investigated in
this group. Plan with reinforcement of models ~10D6]. ~lOD62. ~IOD63
and MOD64 were presented in Figs.

a) Models ,.ith V/X = 0.6



TABLE 5.6

I I (,

Ratios

Ne , / NuM,~le,

Moment from Idealised
M-8 Curve 10 Kn-M

L/XY/X

ParametersNadel
No.

----------------------------------------------------------------

-----------------------------------------------------------------
NOD61 O. 1 100 467 560 0.179 0.830
MOD62 0.2 78 309 328 0.238 0.940
MOD63 0.6 0.3 63 235 280 0.225 0.800
MOD64 0.4 S7 203 247 0.231 0.820
NOD65 0.5 57 240 268 0.213 0.896
~10D66 0.6 54 212 276 0.196 0.770
-----------------------------------------------------------------
MOD41 0.1 98 319 412 0.238 0.774
~1OD42 0.2 47 296 338 0.140 0.876
MOD43 0.3 38 245 308 0.125 0.795
~lOD44 0.4 0.4 31 161 206 0.105 0.780
MOD45 0.5 30 261 287 0.105 0.910
NOD46 0.6 28 198 236 0.119 0.839
-----------------------------------------------------------------
MOD21 O. 1 68 312 36,1 0.187 0.850
MOD22 0.2 35 219 258 0.136 0.930
~lOD23 0.3 30 19j 202 0.115 0.740
MOD24 0.2 0.4 29 202 259 0.110 0.780
MOD25 0.5 17 157 j 8 1 0.100 0.870
MOD26 0.6 25 121 132 0.189 0.910
------------~----------------------------------------------------
MODII O. 1 54 237 293 0.184 0.810
NOD12 0.2 20 175 198 0.101 0.880
MOD13 0.3 21 lOS 198 0.190 0.950
NOD14 0.1 0.4 17 93 115 0.150 0.810
MODIS 0.5 15 81 108 0.139 0.805
MOD16 0.6 14 95 103 O. 131 0.920
---------------------------------~-------------------------------
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1?7

curves for th~se models are presented in Fig. 5.16. the values of

•

and Nu from

In ~IOD42 at

Figs. 5.15 shaH
Idealized M-6

In ~10D62 at 94%,

MOD45 and MOD46 having~IOD44,MOD43,

But crack started at a smaller percentages

MOD42,

in MOD64 at 82% in ~10D65 at 89.6% and in MOD66

and M. from idealized M-6 curves are presented in Table

0.1 to 0.6 respectively were investigated.
Models MOD41,

Yielding of steel started in MOD61 at 83%,

Yielding of steel started in MOD41 at 77.4%,

5.6.

models were observed.

L/x,

Table 5.q presents the values of ~I",
idealized M-8 curves fur these models.

In MOD63 at 84%,

of ultimate load than the previous models.

bl Models wit~ Y/X = 0.4

As there is a gradual increase in the magnitude rif the
principal strain due to increase in load the length of the crack
in the figure ,is also gradually irlcreased as shown in Fig.5.14.

the plans with reinforcement of these models.

Figs. 5. 17 shoh' the gradual propagation of cracks 1n these

models. Crac~s started In ~IOD4I at 23.8%, In ~lOD'12at 14% , In
~IOD43 at 12.5~, In MOD44 at 12.5% I ,n ~IOD'15at 10.5% and 1n ~IOD'16
at 11.9% of u~timate load. Similar crack pattern as preVlOUS

87.6%, in MOD43 at 97.5%, in MODH at 78%, in MOD45 at 91% and ,n
MOD46 at 83.9% of ultimate load.

at 77% of ultimate load.
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c) Models with YIX = 0.2

Models ~IOD21.MOD22. ~IOD23 • ~IOD24 • MOD25 and ~10D26 havinl( L/X

0.1 to 0.6 respectivel, were investigated in this group. Plan
with reinforcements of models are shown in Figs. 5.18 Idealized
M-B curves for these models sre presented ill Fil(s. 5.19 The,
values of ~lo, • ~ly and Mu are presented in Table 5.6.

Figs. 5,20 show the gradual propagation of cracks in those
models. Crp.cks started ill MOD21 at 18.7%. in MOD22 at 13.6% ,
In ~10D23 at 11.5%. in MOD24 at 11.0%, tn ~10D25 at 10% and in
MOD26 at 18,9% of ultimate load The c~ack patterns are similar
to those described earlier.

Yielding of steel started in ~lOD21 at 85%, in MOD22 at 93% ,
tn MOD23 at 74% • tn MOD24 at 78%. in MOD25 at 87% and tn ~IOD26
at 91% of ultimate load.

d) Models with YIX = 0.1

~IOdels MODll, MOD12. MOD13. MOD14, ~IOD15 and ~IODI6 having L/X

0.1 to O.~ respectively were investigated in this gro'lp, Plan
with reinforcements of models are shown in Figs. 5.21. Idealized
M-9 curves for these models are presented in Figs. 5.22. the
values of moments from idealized curves are presented In Table
5.6.

As the crack patterns are similar to those decribed earlier,
they are not plotted. Cracks started in MODl1 at 18.4%. in MOD12
at 10.1%, tn ~IODI3 at 19%. in ~10D14 at 15%. in ~10D15 at 13.9% and
MOD16 at 13.1 of ultimate load.
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Fig. 5.22(f) : M - 0 relationship
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Yielding of steel started in MODII at 81%, in MODIZ at 88%.

in MODI3 at 95%. in ~IODH at 81%. in ~IODJ5 at 80.5% and in ~IO[)j6

at 92% of ultimate load.

Discussion on Crack Pattern

In this study, cracking means the cracking of sampling points
1n an element. A sampling point can crack in three directions.
Cracking of sampling points located on the tension side (bottom
layer) of the slab are sho~n in the cracking diagrams, only four
elements were psed in the study. so the number of stress sampling
points in the tensiIe region IS not. large. Therefore. t.he
resulting crack pattern is crude. A model was also studied with
8-element havirg more stress sampling points in the tension side,
giving approximately the similar crack pattern. For all the
models, it 1S found from the crack pattern that the cracks
originate from the interior edge of the wall and ill eJ.emerll flear"
the interior edge of tilewall (corridor slab) cracks are more
pronounced as almost all the sampling points are cracked.

So, it may be concluded that the corridor slab is more highly
str~ssed particularly the section passing through the interior
edge of the sh~arwall.

Although pracking of sampling points in the tension side of
the slab are plotted. the sampling points in the top layer of the
slab are also pracked. Some top layer sampling points in Element
2, Elemerlt 3 arId Elenlent'l are found to crack.
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Figs. 5.24 shows the variation and development of stresses i"
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5.23

From the figures it is clear that the sampling points of

bar
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under compression at element 3 and 4.

In this article,

Fig.
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behaviour of ~teel throughout the slab.

with their nu~bering. Table 5.7 presents the stresses 1n
reinforcement at

Each

5.28,

a) Study of Model MOD61

history to co~pare the stresses in the reinforcements.

the

convenience of descriptiof).

computer analysis.

Bottom retnforcements in x-direction are considered for study
as these reinforcements play important rule in resisting flexure.

a bar at
stages.

stresses at sampling poirlts 10 elelnent 4.
elements.

5.8.2.1 Model Descriptions

of all the bars except bar (4) in element 3 are yielded.

5.8.2 Study on Behaviour of steel in Slab

all the bars at element .[and Element 2 are
in comparisoQ to those sampling points at element 3. This is very
clear, when Figs. 5.24 are examined.
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representing tt~e same behaviour of steel as 1n preV10US model.

c) Study of Nodel MOD44

d) Study of ~Iodel MOD22
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Figs.
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Figs. 5.30 shQws the variation of stresses in a bar at different
elements representing similar behaviour. Fig. 5.31 shows tt,e
stresses and strain in steel at element-3.

e) Study of Model MOD23

Fig. 5.23 shows tt,e bottom reinforcement.n x-direction.
Figs. 5.32 shqw the variation of stresses in a bar at different
elements repr~senting similar type of behaviour. Bar 4 furthest
from the shear wall is subjected to tensile stress at element-3
and compress.ve stresses at element-4. Fig. 5.33 shows the
stresses and strains in steel at element-3 for the model.

5.8.2.2 Yielding Pattern of Steel for the Models

Fig. 5.34 shows the yield pattern of steel for the models.
Yield pattern for all ti,emodels revealed that the steel close to
the interior edge of the shear wall yielded first. Steels far
from the shear wall in transverse direction are yielded later.
Only the steels .n element-3 are yielded. Almost all the steels
in element-3 are yielded at sampling point I, before failure of
the slab. All the models are designed according to direct design
method which r~quires yielding of sufficient number points with
m.n.mum redistribution of stresses to convert the slab into a
mechanism for failure. This consideration .s supposed to be
fulfilled by t~e models

5.8.2.3 Discussion on Behaviour Steel

Steel stress diagrams shows that the stresses .n steel
nearest to the shearwall .ncreases at a much higher rate than
those furthes~ from the shearwall. That is stress concer,tration
occurs near the shear wall as load increases. It represents that
the effective width of the slab gradually decreases with increase
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1 i' 1

1n load.

The general ?tee.L beflaviour Cilf1 b.e described as triJ lT1ear'

consisting of behaviour before cracltin~, after cracking arId after
yielding of steel. Before the development of first cracks, very
little strain exists in t.he reinforcing steel and the load-st.rain
relationship can be taken as linear. At this stage, applied load
is resisted mainly by concrete, hence the steel 1S inactive.
After cracking, a gradual 1ncrease in strain occurs J.n the steel
and curves may be taken as linear until yield ..After yielding, a
rapid 1ncrease 1n strain l~ith littl.e increase in load occurs
giving a nonlinear and almost flat curve.



for interpretation of results.

5.8.3 Interpretation Results
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linear
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nonlinear
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their

Y/X
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5.35 shows the
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researcher's

l,id Lh

Smith
theAs

effecLive
the bending stiffnesses 1\0'

Yecr/Y arid Y~p/y are evaluated wtlere Ypo 15

and Qadeer

and

and Table 5.9 compare the ~recracking stiffness

verified.
Wong

Ye c r 15 cracking; and Ye p 1S post cracking effective

&

the,linear part of the nonl inear nnal~-sis (precrncking

to study the effect of various geometric parameters on

5.36

Table 5.8 1S prepared to include all the [leCessary items

stiffness

Coull

used

Fig.

The result~ from nonl,inear analysis are compared
of

part) shouid agree with each other. Fig.
of Y.o/Y with~/X for different values

8%.

experimentally
analysis,

analysis and t~ose from Coull and Won~. Comparative st\ldy Stl0l~S a
close agreement with each other as the variation are only 1.0% to

r

(1\0) of nonlin~ar analysis to those of Qadeer & Smith.

, .~')
I I ,__

a) Comparison of Nonlinear Results to thdse of Coull & Wong (12)
and Qadeer & Stafford Smith (7),

bending

precracking,

equations 2.5 and 2.6,
corresponding Y.o/Y.

~-I-e diagraI~5 are idealized for s.implicit:,-' ill deLfC!rlll.ining the

flexural stiffnesses of slab. Idealized curves for all the models,
are

"idths.
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Fig. ~.36 Comparison of Stiffness
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TABLE 5.9

between 0.08 to 0.22 for the models studied.

to 0.45 and the

Y.e,/Y and Y.p/Y

15% higher than

the slab gradually

K

to

Qadeer & Smith

2

but the rate of increase
Effective width gradually

The ratio of cracking toload.In

to precracking effective wid til ranges

. ,
the variation of Y •• /Y,

Author

1ncrease of L/X,

5.37 shows
"

L/X

Figs.

ratio of po~tcracking

with L/X for qifferent values of Y/X.

1'76'

precracking effective width ranges between 0.25

b) Effective ~idth as a function L/X

Results from nonlinear analysis are

decreases with lncrease

0.2 44.60 38.0
0.3 21.00 21.5

0.6 0.4 12.56 10.6
0.5 1.52 1.2
0.6 6.05 5.4

1ncreases with the

Y/X

these from Qadeer and Smith showing a good agreement .
•

decreases as the value of L/X becomes larger. From the graphs. it

--------------------------------------------------------------
Parameters

can be said t~at the effective width of
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width increases with the increase of L/Y.

.,.

to

to

0.08

It can be
cracking

between

K.e and Kp with L/X for
show that the stiffness

ranges

graphs

The graphs show that the effective

The

stiffness
ranges between 0.25 t6 0.45 and the ratio

V/X.

to K. and Kp to K. are evaluated.

of

stiffness

of"" Ker

values

ratio

Figs. 5.38 show the variation of V•• /Y. Y•• e/Y and.Y.p/Y with
L/Y for different values Y/X

Fig. 5.39 shows the variation of K.,

c) Effective width as a function L/V

inferred from the models analyzed that the ratio of
precracking

different

dl Bending Stiffness asa Function L/X

the

stiffness increases with the increase of V/X. Stiffness decreases
as load increases. This 1S also evident from tileTable 5.8. wl,ere

"

postcracking to precracking

decreases with increase of L/X and for a particular value of L/X

0.22.



5.8.4 Analytical Interpretation of Nonlinear Results

Mc~. can be fbund using equation 5.1.

] n

to

litis

mOHlerl t

derived

evident

made

of

5. I )

Analytical

be

Has

cracked

It

(~onsideriIll(
I, ., .

Hill

capacity

5.40 clearly shoHs

diagrams.

find

the

discussed wittl graptls

Fig.

result.s

to

previously approximat.e the

effort
hTere

and ultimate moment t-lu

yielding

flexure.
to determine the cracked nlOlnerlt of

article,

and

presented

ttna.1ylical

cur\.,-es

t.he tI'unsvers'e ;:3ccLioIl ()HSS i.n~ t-.hJ"ou~h

Flexural sLiffnesses and effective h'idths

moment Ncr

diagrams

\' I I

M-:-e curves

c = t I 2
I = Y. 0 • t 3 I 1 2 + (n - l) As. d 1 '

for a particular vaille of modtJ]tJ3 of r"llptlJre Cfr)

cr;"ck

Mera. = Analytical cracked moment

the

from ideaLized,,~
article. If'!' this

k~'dcrac e

Idealized

As discussed earli.er,

f r = t-:fc r a

where

Therefore

previous

from idealized c4~ves l~ith
corelate

results Hill be derrived on the basis of

the interior edge~of the shearwall is critical.

slab as a beam of some effective Hidth.

section.

from both

a) Analytical determination of cracked moment.

Simple beam theory is used
•the slab sebtiob subjected to

the procedure.
Ti,e follo~ing equation can be used

f-

analytically.

behaviour of the slab.
'iderrive'li

,



Fig. 5.40 Determination of cracking moment
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Table 5.JO presents the nonlinear and analytical results. In
this study, effort Hill be made to correlate and establish,.
relations betHeen them. The basic idea In determining the
behaviour of !lab is that the slab acts as a wide coupling beam
in resisting ex~ernal loads. Simple beam theory was adopted In
formulating the expreSSIons leqns. 2.5 & 2.6) to calculate tile
effective width: of coupling beam. These equations are used to

x can be found, then from equation 5:3. Nuo

Lhe

5.3)

5.2)

de-Lerlll.1 Ili figfOl'

As • f y = 0,67. feu. Y (0. 9x)

Y = Width of the section
d = Effect.ive depth of tension reinforcement
fcu= Cube cr~shing strength of concrete
f. = Yield s~rength of steel
As = total area of tension reinforcement
x = Depth of: concrete reclallgular stress block

Nuo = ultimate moment of slab section having ,.idt.hY.

Fig. 5.4J shaHs U;e st.ress diagram
ultimate moment. According to diagram:

b) Analytical determirlatioll of ulliulale momerlt

The folloHing equation can be Hritten:

Using equation 5.2,
can be determined

c) Relation betHeen Analvtical and Nonlinear Results
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higher than the ultimate moment found from nonlinear analysis.

postcracking stages of idealized curves. Using the precracking
effect.ive Hidt/I as Hidt.h of t.he s.lab and considerjn~ tI"., slab as

!

a beam, the cr~cked rnomerlt ~Icra is calculated using equatiorl 5.1

Considering the bay Hidth Y of the slab as Hidth of the beam,
~;

the ultimate moment ~lu. is calculated for all the models. From
the Table 5.10 the ratio. ~Iu./Hu ranges between 0.90 to 1.40.

be

187'

and

it

crackin.~

So

precracking,HIHidth

ultimate momeIlt determined arlulylicillJ.y ac"et.he

effective

the ratio are close to unity. Mer may be taken as

the

that
In most of the models. Hu• IS larger than Nu,

in most cases,

calculate

In this article Her. are calculated for all the models and
presented in t~e Table 5.10. It is found from the table that the
ratio Mer./Mer for the models MOD61, HOD62, MOD63, MOD64. MOD65
and MOD66 ranges betHeen 0.824 to 1.003, that is Mer is slightly
higher. For other models sometimes Her is larger and sometimes
Mcra 15 larger; The maXlnllJrn rarlge 1.ies b~tl~een 0.80 t:C) J .30. BilL

approximately ~qual to Mer., as the deviation from unity is about
15%. Therefor., the concept of designing the slab as coupling
beam of some effective Hidth is supported from the investigation.

!.

concluded
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FIJRTHER S1'UDY

6.1 Conclusions

The behaviour of slabs in coupled shear wall structures has
been investlgated by fin~.te element method considering lion] :inear

behaviour of,reinforced cor,crete A modified nonlinear 3-D
finite elemerit program is developed for analysis of coupled shear
wall. structures based on a,,-ai1ab10 finite element program PI'om

the theoreti~al arlalysis, the following conclus"ions can be drawn:

il For the models studied it may be concluded that ,Flexural
i

stiffness of slab In precacking stage is not affected by the
"

amount of reinforcemenl but sliffrless In cr"aaking 5t.ages '11'e
Iincreased b'v 6% l~hen reinforcements are 25% higller. ~1iJlilrl\JIII

, ,
reinforcement suggested by ACI Code should be provided to Ilave
normal behavlour of a reinfoI'ced corlcrete slab.

ii) The st~ffness of slab gradually decreases with tile Increase
of loads which is evident from the idealized M-9 curves. It IS
concluded from the study that the ratio of the cracking to,
precracking ~tiffness ranges between 0.25 and 0.45 and the ratio
of post cracl<:ingto precracking stiffness ranges between 0.08 and

(

0.22 for the:models studied.

iii) Precracking effective width Y•• from nonlinear analysis IS
found to be in good agreement with those from linear analysis as
the variatipn ranges between 1,0% and 8%. Also precracking
stiffness K. from nonlinear analysis are only 2 to 15% higher
than those from linear analys sho,~ing good agreelnent. Ttlerefore,
the values of Yeo and Ko from nonlinear :analysis can be used ]_£1

working strength design.

iv) Effective width of the, slab gradually decreases witl, increase
In load similar to the stiffness of slabs. Therefore ti,e val,.es
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prOV1S10n of closing and opening of cracks in reinforced concrete
during loading history.

tTl

of

the

slab

model

be

unit.y.

of

of

for

types

for

toclose

account

var.lOUS

critical

to

are

1S

with

only one band of opening was

done

models

Hall

modified

Values of stiffness in tIle post-

analytically.are hi.gher thull those

be

study

shear

this

also

the

1n

of

determilled

as

the results experimental investigations should be

concluded thal the transveI'se section pas~ing through
;

with those found from nonlinear analysis as the ratios

momerls

program can

which is evident from the cracking and yielding diagrams

1S

verify

shearwall

It

To

Investigations can be done Hith multiple bands of opefting 1n

This progrpm can be modified to study the behaviour

This

from nonlillear analysis.

More investigations should be

failure

Ultimate

vi) Cracking mpments determirl~d a)la~yticllJ.ly are fOlJnd 1~o

made.

shearwalls as in this st\Jdy only planar shear '4a11 was \Jsed.

the interior edge
vI

1n coupled shearwall structures under reverse cyclic loading.

agreement

structures.

discussed in t~is study.

of the tHO moments 1n most of the
!

of Yec.~ and Y~p presented ill tllis study C~ln be tlsed by

the

cracking range TTHJ.Y be used.in thr~ collap8e l.oad rlJH1]y~~i~

using ultimate strength design.

6.2 Suggestions for Further Study,

studied.
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Investigation on Boundary Condition I (Case II

were
line ab

was the

Nidlayer

the shear

numbering.

Prescribed

1 ( b I •

Top layer nodes
(1,2,3,21,22)

figure.

Fig.
the shear wall forcing

layer nodes

element mesh with node flumbering.

4 element mesh with node,

are shown on the

the

and bottom

were prescribed with only z-displacement(w) so

shoHS

Nodel TNODI was investigated with boundary condition

cpnditions
l(a) shows the 4

2('a)

(9,10,26)

Fig.

II .

nodes
that they remained in the vertical plane v-v.

Investigation on Boundary Conditions,

displacement, were imposed at the nodes on
the shear wall to rotate as shown In the

the answer.

Fig.
Boundary

Investigation on Boundary Condition II ( Case II

prescribed w~th x and z displacements (u,w) so that the
could be fprced to rotate with the same angle (8) as
wall. X-displacement were equal to e.t/2 where t
thickness of the slab.

(13,14,15,28-,29,.

Nodel TMODI was studied with this boundary condition. For a
particular rptation 8 (0.4/3000) radian, the z-displacements
produced iri'the slab nodes are shown in Table I. The deflected
shape of the slab is shown in Fig. l(c) with resultant z-forces
at the rest~pined nodes. But downward resultant z-forces at nodes
(2,14) and upward resultant z-forces at nodes (21,28) were in
opposite direction to those of prescribed displacements at these
nodes. Thi~ was considered to be a urlusual behaviour, so to tlad

Boundary conditions were applied only on nodes at middle layer
( Fig.2(b)) khereas nodes at top and bottom layers were allowed



(a) Finite element mesh with boundary condition
V

'.
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V

V

b 9286

i,s{v:\-I,Ol

V

86

z

(b) Slab deformation

x

.Fig. 1 : Boundary Cond ition I (el,SE I )

(V=W=0153

(u=V=W= O)
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'j';\ IJ I. E

-0.25'1
-0.400'
-0.25'1
-0.273
-0.400
-0.254
-0.302
-0.215
-0.302
-0.215
-0.302
-0.215
0.002

-0.294
0.0026
0.000'
0.000'
0.001

-0.294
0.0013

z-disp.
In mnt.

24
26
27
28
29
31
34
36
38
39
41
43
46
47
48
50
51
53
54
55

z-disp. NodE
lT1 01111. no.

CASE 11

0.399
0.200

-o.orn
-0.046
0.130
0.340
0.386
0.400'
0.000'

-0.035
0.340
0.401
0.202
0.007
0.032
0.160
0.340
0.386

-0.27:\
-0.400

5

1
2
3

6
7
8
9
10
1 1
12
13
14
I 5
17
18
19
20
2 I
22

Node
no.

z-di",p.
1n min.

-0.110
-0.400'
-O.JIO
-0.200'
-0.400'
-O.JiO
-0.290
-0.0524
-0.290
-0.0524
-0.290
-0.0524
0.000'
0.000'
O. 000'
0.000'
O. 000'
O.000'
0.000'
0.000'

Node
no.

24
26
27
28
29
31
34
36
38
39
4 1
43
46
47
48
50
51
53
5,1
55

CASE 1

z-disp.
1.n mm.,
0.400'
0.200'
0.000'

-0.016
O. 113
0.350
0.375
0.400
0.000

-0.016
0.350
0.400'
0.200'
0.000'

-0.016
0.113
0.350
0.375

-0.200'
-0.400~

no.

Rotation(BI = 0.4/3000 radian

Node

1'able for cOTnJ,arative stlJdy

/',' :?-/i~, i.'. J: "")J sr, "/ ;;;/ / : /17' ."iJ9- "/-- C1
?o/ /; -/h -< _.1 )ji.J{-f;;, -'/:/--I,~

/,,' e, </ e, I:>' (//1/"" /
nr-:.;-:--l"__ ...l5 7'n)~ 7' __/n',_U_~l n:I.:!.7_yS3 1:1

9 I' 10 I 7~: / 1~ I r;{)

1 '.~- _I ~~~_ - .. ---0----- .'~----H-.----- _

2 3 ]1 n :33 3'. 1,(: I,()

1
2
3
5
6
7
8
9
10
11
12
13
14
15
17
18
19
20
21
22

, Prescribed displacement
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TABLE 2

-0.254
-0.400'
-0.254
-0.273
-0.400
-0.254
-0.302
-0.215
-0.302
-0.215
-0.302
-0.2.15
0.002

-0.294
0.0026
0.000'
0.000'
0.001

-0.294
0.0013

z-disp.
lrt mIn.

24
26
27
28
29
31
34
36
38
39
4 1
43
/16
47
48
50
5 l
53
54
55

z-disp. Node
In mm. no.

0.399
0.200

-0.007
-0.046
O. j 30
0.340
0.386
0.400'
O.UOO'

-0.035
0.340
O. /101
0.202
0.007
0.032
O. J 60
0.3tJ()
0.3R6

-0.273
-0.400

I
2
3
5
G
7
8
9
10
11
12
J 3
14
I 5
17
j R
19
20
2.1
22

Node
no.

Rot.ation (8, )=0.4/3000 radian

7.-cLisp.
III mm.

-0.379
-0.600'
-0.379
-0.038
-0.600
-0.379
-0.452
-0.215
-0.452
-0.215
-0.452
-0.320
0.003

-0.440
0.000
0.000'
0.000'
0.003
0.4 'I a
0.000

Node
no.

2'1
26
27
28
29
3 I
34
36
38
39
4 J
43
4G
47
'18
50
[) '1
53
54
55

z-di"p.
1.Tl rnTJI.

-------------------------------- -------------------------------
0.59~
0.306..'0.009

-0.038
O. 19~
0.53Q
0.58Q
0.600'
O.ooq'
-0.046
0.53Q
O. 60~.
0.304
0.009

-0;050
0.240
0.530
0.580

-0.409:
-0.600

• Precscribed dis~lacement.s

Node
no.

Nodal ~-displacemerlts for CASE II

Rotation(8. ) = 0.6/3000 radian

1'98

-----------~--------------------

I
2
3
5
6
7
8
9
10
11
12
13
14
15
17
18
19
20
21
22
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Comparative Study of Deflected Shapes of Model TMODl

Model TMODl was studied with this boundary condition.Table 2
shows the z-displacements at nodes of the slab for rotations (B)
(0.4/3000) and (0.6/3000) radian. The deflected shape of the slab
is shown in Fig. 2(dl with resultant z-forces at the restrairled
nodes 9,10 and 26.

Table 1 compares the z-displacements of two cases due to a
particular rotation (0.4/3000)radian of the wall Deflected
shapes of Model TMODl from two different boundary conditions are,
superimposed ~n each other for a particular rotation (0.4/3000)
radian 1n Fig. 2(e) for compar1son. In boundary condition I,
shear wall wa~ forced to rema1n straight line as shown by
straight lin~ abcde. But when shear wall was allowed to behave
freely as in ~oundary condition II, the deflected shape of the
shear wall a~sumed the curved dashed line ab' c d'e. Curve ab'c
was convex up~ard and curve cd'e was convex downward. Therefore,
1n boundary .condition I, the points b' and d' were forced to
remain at points band d respectively. For this reason a downward, .

resultant z-force at nodes (bl and upward resultant z-force at~
nodes (d) wer~ found .. Convexity of curve cdJe was increased nlore,
rapidly than ~hat of curve ab'c as rotation B was increased which

,
is evident frqm Fig.2(d).

wall

200

wereto move freely. Equal and opposite z-displacements
prescribed at wall nodes 9 and 26 to produce rotation B of
as shown in Fig. 2Ic).
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Investigation on Case IIIFig. 3
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(b) Slab Deformation

(a) Mesh with Boundary Conditions
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which is evident from Fig. 3(b).

boundary condition I.

Discussion on three Cases of Boundary Conditions

it

z-

not

nodes

3 (b) •

Only

does

Hesultant

1IIf.~llllH~r:-ill~.

Fig.

Therefore,

1n

wall.

nodp

aIIQI,ed.

203

In this conditior., the
"lith

not

Case III

mesh

ab was

r.~I cment

line

may produce lengthening of the shear wall

of

restrained nodes had the same directions as in

This

forced to rotate in such a way that the line ab

the

rotation

Has

the continuity at the line of symmetry.
It reduces the rigidity of the stlearwall and

at

3("i shows thp. ,j

loading.

wall

1S

Boundary cqndition III gives a more rigid structure as

Fig.

entire

maintain

Boundary condition II gives more flexibility 1n the behaviour

the flexural stiffness.

on the shear wall rema1n 1n the same vertical line throughout the

Boundary Condition I, maintains the rigidity of the slab as
well as allows the rotation of the vertical nodal lines. It also
maintains the qontinuity of the slab at line of symmetry. Before
conducting th~ main investigations with this boundary condition,
several models:were studied with boundary condition III and I for
a comparative ~tudy.

does not maintain condition discussed in article 2.3 to determine,

of slab.

z-forces

was always remained on same vertical line v-vas

displacements were prescribed at nodes on shear

shear
Boundary condition'S are ShOHrI on the Fig.

That

Investigation on Boundary Condition III
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Effect of Boundary Condition on Bending Stiffness of Slabs

Boundary conditions I and III were imposed on models MOD61,

1n

are

those

it is

III

than the

For t.he models

slab such as

MOD62 and MOD64 are

two cases are presented

the Case III gives much higher

From the M-8 curves it is clear that

for models MOD61,

The values of Ko, Kcr and Kp are evaluated

Procedure for idealization of M-9 curve i.s

Therefore,

from ~I-e curves' that the cracking moments

from boundary condition I.

crack propagation and yielding of steel. Plan

5.

the values Ko from Case I are 71% to 94% of

the values of Ko, Kcrand Kp from Table 3,

~vident:)

10 article 5.3.,

1S

MOD63 and MOD64 to study the behaviour of

It

Comparing

from Case III and,
those from C&.se III.

..

stiffness thlfn Case I.

investigated.

Comparison of M-8 Curves

from Case II~, the values Kcr from Case I are 54% to 74% of those
the values Kp from Case I are 34% to 50% of

clear that the values obtained from boundary condition
higher than' those

(Mer), yield moments (~Iyl and ultimate moments (Mul for Case III
are higher than those for case I. For comparison Table 4 are
presented.

Comparison of Stiffness

presented in Fig.
presented
the boundary.condition III makes the structure stiffer

bending stiffpess,
MOD62,

from the idedlized curves for the
Table 3.

boundary conqition T.

with reinforc~ments for the above models are shown in Fig. 4
Idealized M~~ diagrams



TABLE 3 Ibl
-----------------------------------------------------------------

\

he, /Ko K. /ho

h. II )/K. (III)

CASE III

he r

he , ( 1 ) / he , ( III )

TABLE 3 ial

CASE I

ho ( I ) / Ko ( I I I I

Ke,KoNo

207

MOD61 187.7 48.7 19 0.26 O. 101 200.7 66.2 37.7 0.33 0.19

,
MOD62 44.7 ~.8 4.2 0.22 0.094 52.5 15 .2 6.98 0.29 O. 13'

MOD63 20.6 ~.9 1.8 0.29 0.090 28.5 IJ .0 5.50 0.39 0.19

MOD64 12.6 2.9 1.14 0.24 0.091 17.6 5.58 2.69 o.n O. J 5

Model

-----------------------------------------------------------------. .

Model No.

---------------------------------~-------------------------------

-----------------------------------------------------------------

----------------------------------------------------------------

MOD61 93.5% 73.56% 50.4%
MOD62 85.0% 64.3,1% 60.0%
MOD63 72.3% 53.60% 34.0%
MOD64 71.4% 52.45% 42.3%
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Fig. 5 (d~ : comparison of M - 0 curves for Case I and Case III c
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TABLE ,I

---------------------------------------------------------

---------------------------------------------------------

..
c

/

III

of an element

21.13% of x,y and z

(1,3,5,7)
(bottom layer) of the slab are

surface nearest to the sampling

.(Fig.4.3).In the cracking diagram

~lc, of case I ranges between 75% to

tension side

III and N. ranles bet~een 82% to 96% of Case III.

~how the propagation of cracks in models for Case I
There are eight sampling points in an element and

from the investigation it may be said that Case

on the
~rom the crack pattern, it is clear that the cracks

For the models studied,

,gradual cracking of sampling points

distances fro~ the boundary
!;

points considered ) of the element are

shown.

dimensions of the element

Fil(s. 6

and Case III.
are equally distributed to the top and bottom layer. Their x,y,z

(Fig.4.3)

Comparison of Crack Pattern

yielded higher cracking moments and ultiamte moments.
Therefore,
83% of Case

Nodel No. Case I Case III

Nc, ~h ~l" ~lc , ~h Nil

Values are 1n kn-m Values are 1 n )Ul- TIl,
---------------------------------------------------------

"

NOD61 100 467 560 126 530 585
i;

MOD62 7~ 309 330 104 356 400

NOD63 66 235 280 79 263 330

MOD64 5'{ 203 2<17 70 248 ~W2
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,
originate from the interior edge of the shearwall at element-3.
for both cases. Cracks propagate from the interior edge of the
shear wall towards the peripheT'~'of t.he slab. It.may 1", snid t.hat
element-3 is cracked earlier and then element-4. For the Case I.
element 3 and element 4, that is, corridor slab, cracks severely
than the elements. and 2. But for Case III. Element.-3 cracks
severely and also the element 1 and element-2 are found to crack
while for case I. little cracks are observed In element-l aTld
element 2. ~Ot for Case III, elements containing the shear wall
are cracked more than those for Case I. The reason may be due to
the fact th~t in case III. rotation of the vertical nodal liTles
are not alloped and nodal liTles are always remaIn on the same
vertical lipe. This definitely causes the lengthening of the
shear wall as the shear wall undergoes rotation. But in Case T.
simultaneous z-translation and rotation of vertical nodal lines
are alloHed l"hich ll1injmi7,f:~s the Jf~n~t.hpni.ng effpct..

From the crack pattern it may be concluded that. t.he critical
section is ~he section which passes t.hrough t.he interior edge of
the shear wall.

~ --"l
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