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ABSTRACT
This thesis deals with the behaviour of slabs in coupled shear
wall structures considering the nonlinear behaviour of reinforced

concrete.

Nonlinear behaviour of reinforced concrete 1s introduced through

modelling of concrete in 1its precracking, cracking and_ post
cracking (with yielding of steel) stages. A nonlinear 3-D finite
element -programme using 20-noded brick element is used ., Design

of slabs for gravity and lateral load is done by direct design
approach using a linear 2_D finite element programme with plate

bending element.

Overall flexural behaviour of slab iz studied by determining the
resistance of slab against wall rotation. In this work. wall
rotation is applied incrementally until failure of slab-wall
junction, the equi#alent wall moment transferred from wall to

slab being determined 1n each increment. From moment~rotation

relationship, the variation of bending stiffness of floor gslabs

with the increase 1in load is calculated.

Effect of amount of reinforcement on flexural behaviour of slab
is also studied. The relative influences of a range of structural
parameters on the stiffness and effective slab width are
evaluated and design curves are presented to facilitate their

determination.

The variation of stresses and strain 1n slab and crack
propagation in slabs are also studied and presented. Flexural
stiffness and effective width are found +to be influenced by
~ physical dimensions of shearwall slab structure. It ismalso found
that the effective slab width graduall} decreases with increage
in load. Several graphs and <charts relating stiffness and
effective width of slab to various geometrical dimensions of

slab-shear wall structure are presented to facilitate their

determination.
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Corridor width

Length of the slab

Bay width of the slab

Width of the shearwall

Thickness of the slab

Effective width of the slab
Equivalent wall moment

Total shear force

Wall rotation

Shear force per unit length

of the wall

Axial force in the wall

Flexural rigidity of the slab -
Imposed nodal displacement
Modulus of elasticity of the
slab material

Poisson’s ratio

Second moment of area of the
effective beam

Nondimensional parameter to express
stiffness of slab

Applied moment field on the slab
Normal moment

Moment of resistance 1in normal
direction {n)

Moment of resistance in X-direction
Moment of resistance in Y-direction
Total potential energy

Stress vector

Strain wvector

Volume of the structure

Loaded surface area

Shape function

Strain matrix

Elasticity matrix
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l.Local co-ordinate system

Jacobian matrix

Cylindrical co-ordinate system
Three principal stresses

Normal octahedral stress

Normal octahedral strain

Shear occtahedral stress

Shear ocfahedral strain

Three principal strain

Secant bulk modulus

Secant shear modulus

Cylinder compressive strength
3lobal co-ordinate system

Eeduced shear modulus

Shear retention factor
Transformation matrix for strain matrix
Direction cosines of principal stresses
Average of the three principal strains
at a cracked point

Cracking tensile strain

External load wvector

Residual forces

?otal number of nodal points
Denotes the iteration number

Total equivalent nodal forces of
the element

Nodal displacements 1in x,¥,2
directions respectively

Cube crushing strength of concrete
Modulus of rupture of concrete
Modulus of elasticity of concrete
Yield strength of steel _'
Modulus of elasticity of steel
Yield strain of steel
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Cracking stiffness
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CHAFPTER !
INTRODUCTIONr‘
Ll.l.rGéneral S

7 _.Reeént Yeafs have seen a rapid:fhcjeésé in the numbér.q?'
téll buildings, for commercial and residéﬁtial purposeé tHfbﬁghout
‘1 tHe world. This increase has‘highlighted the neéessiff for a
greafer knowledge of the behéviour of these structures,and, in
particular,the necessity for producing methods of analysis
capable'bf giving rapid and accurate assesments of their overall
strength and stiffness as well as detailed information about any. __

"local stress concentrations.

As buildings increase in height,it becomes more important to
ensure adeguate lateral stiffness to resist loads which may arise

due to wind,seismic or perhaps even blast effects.This stiffness

may be achieved in various ways.In framed structures it may be
obtained by bracing members,by the rigidity of the joints,by
complete shear truss assemblies acting in conjunction with the
frame or by infilling the frame with shear resistant panels. An
obvious simplification of the latter is shear wall construction,
in which the relativley high in-plane stiffness of the walls both?®
external and internal,is employed to resist lateral forces. The
floor slabs which are extremely stiff in their own plane, serve
not only to collect and distribute the lateral forces to the |
walls , but , by a complex structural interaction with the walls,

increase the lateral stiffness of the buildings.

In principle,in any structural system,all of the load
resisting syvstems and components should be equally active and
ideally should work together under all types and combinations of
design loads.In other words,the parts of the structural system
that primarily resist horizontal loads should be able to

contribute to the resistance to vertical loads as well. The most




efficient structural system is the one that manages to combine
all the structural subsystems or componenfs into a pompletely
integrated system 1in which most of the elements take part in
resisting the loads. However,this ideal case 1s unlikely to be
fully achieved in practice,due to constraints such as efticiency
and ease of assembly and construction,manufacturing of Jjoints,

econeomic considerations and other requirments.
1.2, Choice of Structural Siystems

From a stryctural engineering standpoint , one of the major
distinguishing characteristics of a tatll building 1s the néed to
res;st large lateral forces due to wind or earthquake . The
lateral load registing svstem must do this , and at the same time
must prevent exéessive defiections or accelerations and must help
to provide stabjlity . A lateral system is generally considered
to be efficient(if the provision of the lateral load resistance

does not increase floor and column sizes bevond those required

for gravity loads.

When high—fise buildings are designed using conventional
beam-column fra@e the effect of the lateral forces on the column
is very pronounced.The economic use of this type of structural
system can be m%de upto a building height of about Z0 stories.
Moreover, as it is simply impossible to make a truly rigid beam

. columﬁ joint,_tﬁe amount of sway produced due to lateral loads is

also a lihiting factor.

Designers are always in search of new structural systems which
shall be capablg of resisting lateral loads more economically
without endangering safety of the occupents.Shear walls become
natural choice for the buildings rising higher than 20 stories.Dy
definition the sShear wall is a "structural system providing

strength,stiffness and stability against lateral forces deriving

T

its stiffness from inherent structural form”. For higher
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structural efficiency rigidly jointed frames interconnected with

shear walls are also used.

For buildings rising above 30 stories, perimeter walls are
used as a structural member. The walls behave as a tube stiffened
by the floor slabs which ‘have very high inplane stiffness. Since,
a solid tube is not possible,they may be conasidered as a
perforated tube,a framed tube or a latticea tube as shown-in
Fig.l.1 .To have a perfect tubular effect the central core 1is
also treated as a structural member. Sometimes the shear walls
are also used to act-as stiffners inside the tubes.For higher
buildings,tubes are grouped together as "bundled tube” (Fig.l.l)

and it is more efficient than the previous one.

In short, the most efficient structural system for any
proposed higﬁ—rise building should be selected from those
mentioned abéve taking into consideration the expected behaviour
of the build}ng under lateral load.The efficiency 1is being Jjudged
by the fact ﬁhat the structure ,though designed for gravity loads
only, the intgrnal stresses remains Neli within allowable over

stresses when subjected to lateral loads.

1.3. Shear Wall-Slab System

A populgr form of high rise structure,is a slab~coupled
shear wall sprdcture.The reason is that the height of majority of
the high rise buildings fall within the limit upto which the
shear walls ére economic.From the constructional and
architectural view point,it is relatively easy to make the tinal

structure ae%thetically pleasing.

Fig.!.2{a) shows a. perspective view of =a shearwall structure
with a typical floor plan.The special features of this type of
building are that the two rows of apartments are connected by a

common corridor. and the partition walls are treated as shear

walls. As no projecting stems of beams run across the corridor,




(2a) Perspective view of a shear wall building.
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" (b) Plan of a typical shear wall bulldingj

Fig. 4.3 : Different. wall configurations.




there 1s no need for false ceilings and the height of the
building is aépreciably reduced thus acomodating more floors in

the same height.

Shear walls may be defined as planar vertical elements
distinguished by their relative thinness and substantial length.
As 1t is not always possible to construct solid shear walls,
pierced walls adopted to make room for corridorsand other service
facilities.Thefefore the shear walls are further identified as
having few opénings or penetrations such that they have little or
no flexibility due to the flexure of individual pieces of the
wall.Their fléxibility 1s generally limited to the sum of overall
shear deformation and overturning flexural deformation. Shear
walls are also used to enclose lift shafts and stair walls to
form partially open box structures which act as strong points in
the building.fhus,in practice,shear walls of wvarious shapes such
as planar,flaqgedror box-shaped,may be Coupled together in shear
wall-slab str%ctures.The different types and layouts of shearwall

are shown 1in Fig.l.B.

-~

1.4, Structural Actions‘of Shear Wall-Slab Structure subjgected to

Lateral load

In practical structures ,the walls are interconnected
through floor slabs and resist both lateral and gravity loads.
Special considerations must be given to provide sufficient
stiffness 1in éll directions against lateral loads .When subjected
to lateral forces ,the shear wall is dominated by its flexural

behaviour and ‘shear effects are insignificant.

The shear walls resist the lateral loads on the structure by
cantilever be@ding actioﬁ , which results in rotation of the_wall
crosssections. The free bending of a pair of shear wall is
resisted by the floor slabs ,which are forced to rotate and bend
-out of plane where they are connected rigidly to the walls (Fig.

1.4{b})). Due to the large width of the wall, considerable
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differential shearing action is imposed on the connecting glab,
which developes transverse reactions to resist the wall
deformations (Fig.l.4(c)),and induces tensile and compressive
axial forces into the walls.As a result of the large lever arm
involved,relativly small axial forces can give rise to
substantial moment of resistance,there by reducing greatly the
. wind moments iq‘the.walls and resulting tensile stresses at the
windward edges. The lateral stiffness of the structure 18 also

considerably increased.

A similar situation arises if relative vertical deformation
of the wall occurs , due to unequal vertical loading on the walls
or due to diffe%ential foundation settlements.The effect onthe
slab is similar to that produced by parallel wall rotations

caused by bending (Figs. l.4(d)& L1.4(e)}.

1.5 Purpose of this study

The structural analysis and design of slab-coupled shear
wall structure can be performed 1if the behaviour of slab in the
system 1is adequately known.As we know that the shear walls are
provided to give lateral rigidity to the structure and connecting
slabs play a significant role in resisting lateral load ,the -
lateral stiffness of the walls cannot be calculated unless the
stiffness againét wall rotation 1is known.The stiffness of the
slabs is dependént upon a number of parameters such as corridor
width ,the thickness and width of the shear wallg, the spahAof the
slab and the sﬁépe of the shear walls.Again, to have a complete
idea of the behaviour of the slab, Dverall study which includes
cracking of slab concrete, crack propagation in slab and
behaviour of steel in slab is to be performed. Previous work as
discussed in Chapter 2 has been concerned with the determination
of bending stiffness and effective width of slab considering the
linear behaviour of reinforced conérete. A survey of the
available literature revealed that very little information is

available on the behaviour of slab-coupled shear wall structure




at the onset of cracking, yielding of steel and crushing of

.

concrete which cause nonlinear behaviour of the system .

The objects of the work reported in this thesis are:
(a) To develop a nonlinear 3-D finite element programme for
analysis of goupled shear wall structures, based on available

" finite element programs.

{b} To study the behaviocur of =lab in coupled shear wall

structure considering nonlinear behaviour of reinforced concrete

(c) To investigate the variation of equivalent wall moment
(M) with change in wall rotation{®),until failure of the slab,

(d} To evaluate the variation of stiffnesss from M/® graphs
and hence the variation of effective width of slab for different

wall slab cobfiguration using planar walls.

(e) To investigate the effect of slab reinforcements on the

behaviour of slab.
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CHAPTER 2
LITERATURE REVIEW
2.1l General

The structural analysis and design of slab—coupled.shear
wall system can be conveniently performed using the technigue
developed for beam-coupled shear wall system provided the
effective width of the slab can be established.In a coupled -wall
system ,the stresses are not wuniform acrossthe width of the
slab.In order to design the slab safely ,it 1s necessary to know
the magnitude and distribution of stresses developed through the
coupling action.It is also essential to determine accurately the
interactive forces developed at the slab-wall junction.In this
chapter ,a brief critical review of previous experimental and
analytical research work done in the following fields 1s given:
a)Analysis of shear wall structures to determine the stresses due
to lateral loads. 7 |

biEffective stiffness of slabs coupling shear walls.
2.2 Analysis of Shear Wall

The analysis of shear walls pierced with regular sets of
similar openiﬁgs, i.e., coupled shear walls .has attracted
several invest;gators. A simplified analysis has been produced by
assuming that. the discrete system. of connections ,formed by
lintel beams or foor slabs as shown in Fig.2.1l,may be replaced by
an equivalent éontinous medium ,as shown in Fig 2.2. DBy assuming
that the axialiy rigid lintel beams have a point of contraflexure
at midspan ,the behaviour of the sygtem can be defined by a
'single second order differential equation‘. A general closed form
solution of the problem can be obtained.

Using the above simplified approach ,Ressman (1} first
derrived solutions for a wall with one or two symmetric bands of

openings,with various conditions of support at the lower end.
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Deformations due to bending moment and normal forces on the walls
and flexural and shear deformations in the connecting beam were
also taken into account.The axial force in the walls was chosen
as the statically redundant function. S0,if q 18 the shear force

related to the:unit length, the axial force in the wall is

X
T = j;q.dx {(2.1)
where x is the distance , measured from the top of the wéll as

shown 1n Fig.2.2. Making use of certain simplifying assumptions,

the governing differential equation takes the form

LY

2

dz T / dx? - &£T = = X ;o (2.2)

A direct mathematical solution of the above egquation can be
obtained for any loading case. Equations {2.3) and {2.4) show the
general Solutions of above differential equation for the case of
Concetrated lateral load at the +top and wuniformly distributed

lateral load réspectively.

. 2 .
T = Ci: Sinh ex - Yiee } x {2.3)
T = €y Sinhex - ( 2 B/« ){(Coshex - 1) +( B/ } x { 2.4)
The co-efficients o , B and Y depend on the load and the
geometrical pererties of the shear wall. Once the value of T is

known + the shear force and bending moment in the connecting
beams can bé easily calculated using equilibrium conditions.This

1s also known as continous medium method.

b

2.3 Effective Width of {loor slab

The shear wall—slab'structures,subjected to lateral loads
deflect and the rotation of the walls generate moments in the
slabs as shown in Fig.2.3. The pdrtion of the slab which acts as

a beam connecting the walls and is active 1in resisting the moment
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Fig.2.3

Flg 2.4 . : Deslgn curves for efflective width

of slab (planar walls).




is called effwctive width of the slab (Fig.l.4(a)).

The resistance of the floor slab against the displacements
imposed by the shear walls 1is = measure of 1ts coupling stiffness
, which can be defined in terms of the displacements at its ends
and the forces producing them.Thus referring to Fig.2.3, the
stiffness of +the slab mav be defined as rotational stiffness
,M/G,;The relationship between M/9,El and the effective width 1is
as follows: ' ' '

' Reffering to Fig.2.3 and using the moment area diagram to
determine thé'rélation between M and ©. Let the deflection equal

the moment of area abo about o. Then:

oM
1

{ M/lZEI Yo L /{L+W))

and 8 = 2. O/(L+W)

Therefore , M/e = BEI(L+W)2 / L3
where EI 'is the " equivalent beam stiffness " of the connecting
slab, Using a nondimensional parameter K to express the

stiffness of the slab
K=M /Do : {2.5)
where D is the flexural rigidity of the slab,W 13 the width of
the wall I is the second moment of area of the beam of effetive
width Ye and slab thickness 1is t .
D =1 £3/ 12{i- w2)

I= Ye.t? /12

The effective width can +then be expressed 1in terms of the

rotational stiffness factor ,in non-dimensional form,as,
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Z p
Ye/Y = (K/6(1- Y 13{L/Y) (L/(L+W)) (2.86)

where Y is the bay width or longitudinal spacing and Y  is the

poisson’s ratio of the slab material.

This theoreti;al basis for calculating the flexural stiffness and
effective width of the slab was uséd by several investigators ;
Coull& Wong (42), Qadeer & Stafford Smith (7),Huq (i1), has also

been used in this thesis.

2.4 Behaviour of Slab in Coupled Shear Wall Structures

The aforementioned theory in section 2.2 is concerned with
shear walls interconnected by beams only.The structural analysis
and design ¢f a slab-coupled shear wall system may be readily
performed using existing techniques of beam coupled shear wall
gstructures ,proVided that the width of +the salab which acts
effectively a% wide coupling beam or its corresponding structural
stiffness , éan be assessed.So previous, investigations were

restricted inffinding the effective width of the slab.

Barnard and Schwaighofer {2) used Rossman theory with
gimplification to solve for stresses 1in shear walls connected
solely througﬁ slabs.They assumed the entire width of the slab to
be effective gnd verified the theoretical analysis by model tests
of shear walls connected by slabs of wvarious widths.The
discussion of the same paper by Choudhury (3),Qadeer (4)  and
Michael (5) "revealed that +taking the entire slab width as
effective may#lead to a serious error in the calculation of
stresses .It has also been discussed that the simplified Rosaman

theory can not be put into general use.

Choudhury (6) tested an asbestos cement model and foundout
that only 25% of +the +total width was effective. He came to

similar conclusions through an analysis of floor glabs by finite
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L. g

element method.

Qadeer and Stafford Smith (7) analyzed the slab by finite
differénce method and through experiments which gave rssults very
close to those from theoretical studies.They produced a set of

curves with slab width,cantilevér'width,corridbr width and the
width of the shear walls as variables for effective width. From
those curves 1t is seen thst effective width is a function of all”
these parameters ,while a close inspection reveals that the slab
width and cprrldor width have the most significant effect on the
effective width. Michael (8} showed that a single curve ,can be
drawn with all the data presented by @adeer and Smith .He also

tried to fit into it another curve,having equation
(L/Y + 0.8 )( 1-Ye/Y}=0.9 ,where ‘
1. is +the corridor width ,Y is the slab width and Ye 1is the

effective width of the slab.

Coull (9) tested a perspex model with closer transverse

spacing of orthogonal svystem of walls and found that the
stiffening effect of the close-spaced walls upon the floor slab
is a major factor in calculating the effective width of the
coupling floor slab.He also used Rossman’s theory in calculating
the resulting stresses which compared favourably with those
obtained experimentally.He 1is of +the opinion that in the
particular type of cases thé value of effective width is greater

than the full width of the slab,

The influence of orthogonal walls acting as flanges has been
examined thgoretically using the finite element method by Tso and
Mahmoud (10). They used finite element-technique to obtain the
atiffness of slab -coupled shear wall system.The configﬁrations
of the wall systems included slab coupled planar walls ,T-section
walls and box core walls.Their final aim was to prepare design
curves interms of the effective width of the slab between éhear
walls. They pointed out the fact that the additional stiffening

effect from the coupling slab 1is significant only when the wall

- ™

3
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opening 1s small.

Hug (1l) tested a number of steel models . He attempted to
prepare a set of suitable design curves for effective width of
slab in flate plate structures.He evaluated the effective width
for different shapes of shear walls.He also evaluated effective
width as a function of corridor width and width of the slab
itself.According to his investigation effective width i1ncreases

with icreasing corridor width / slab width ratio.

Hug also tested a micro concrete model +to find the
variation of effective width of the slab with increase in load.
Although no definite conclusions could be drawn from a single
test ,he found that the strain and consequently stress across the
slab is not uniform ,when it is subjected to lateral loads . The
model failed along a transverse section passing through the
interior edges of a wall. Also the effective width decreases with

the increase in load

Coull & Wong (12) analysed coupled shear walls with
different Sheér wall configuration by finite element method and
prepared a seﬁ of design curves .They investigated theoretically
the variatioﬁ of effective width of slab or stiffness with
different geometrical layout parameters.The effective slab Widths
as a function of wall length, slab width,wall opening width'for a
pair of inline plane coupled shear wall configuration were
evaluated .They concluded from the curves of Ye/Y vs. W/L for the
two raatios o% L/Y - 0.5 and 1.5 that the effect of variation 1in
wall length may be disregarded in the evaluation of effective
width 1f the ratio of the shorter wall length to the wall opening
is greater than 0.5. It was also concluded that the influence of
slab width isistrong when Y/X is smaller than L/X,but when Y/X 1is
Yarger than L/X the influences of slab width diminishes rapidly.
The influence of L/X on Ye/X for a particular value of Y/X 1is
almost identical to the influence of Y/X on Ye/X for_the same
value of L/X. A generalized curve Ye/¥Y= L/Y(1-0.4L/Y) was also
formulated to relate effective width with L/Y. The effective slab
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widths were evaluated for flanged shear wall configuration and
found that the presence of external wall flanges increases the
effective width.of the slab by less than 4% for the extreme case
considered. It was concluded that the influence of'efternal wall
flanges may be safely disregarded. Typical non dimensional design

curves for effective width of slab are shown in Fig. 2.4.

2.5. Nonlinear Analysis of Reinforced Concrete Structures

Nonlinear analysis of reinforced concrete needs suitable
modelling of its behaviour ,that is,modelling of concrete in its
precracking and cracking stages and modelling of reinforcement.
Although the steel behaviour 1is better defined and generally
agreed upon ,co?crete behaviour shows considerable statistical
scatter . A reinforced concrete model should handle suitably the

cracking of concrete ,crack propagation and yielding of steel .

Kotsovos (13,14 ,15,16) provided mathematical expressions ftor
deformational as well as strength properties of concrete suitable
for use in nonlinear computer based methods to =analyze concrete
structures aftér doing comprehensive investigations. Detailed

description is given in chapter 4.

The paramet?rs which have an effect on the numerical solution
of nonlinear anqusis are - mesh siée,tension stiffening ,tensile
strength of conérete , angle of crack , shear retention factor of
cracked concretg and the norm of convergence tolerance. The
influnces of +the some of the above parameters were throughly
investigated bu” Elnouno (17) . Nonlinear analysis was also
carriéd out by _Bari (18} who found that the mseh gsize has
insignificant effect on the strains upto the yield point ,but it
has a considerable effect on the failure load. For the slab model
analyzed by him , it was found that the failure load decreases

about 20% when mesh is refined from six to twelve elements.

The high convergence tolerance with no tension stiffening
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model has a considerable advantage over the tension stiffening
model in that it requires a smaller number of iterations to keep
the residual forces within tolerance and hence less computer
time. From#previous study by Bari {(18) , it was found that +the
strains are not affected by the value of shear retention factor (
) upto yield point of steel but the ultimate failure load is
affected.

Numerical treatment of posteracking behaviour of concrete was
studied by Kabir (19} . He proposed that after the formation of
the numerical crack , the stress normal to the crack should be
reduced gradually to account for the tension stiffening effect.
Reducing thé crack normal stress to zero soon after the formation
of crack may significantly underestimate the actual behaviour.

Treating concrete as a no tension material i1s perhaps not

numerically desirable specially 1in the context of smeared
cracking model (discussed in chapter i ) . The convensional
tension stiffening schemes are based on wuniaxial stress

relaxation procedures which depend on strains normal to crack.
The adoptién of a biaxial stress criterion for cracking and
uniaxial stress decay for +tension stiffening may lead to a
mathematically inadmissable state of stress at a cracked point.
To overcome such difficulty , an alternative simple scheme had
been postulated by Kabir (19) which performed quite well. It
should be noted that while this alternative scheme continously
decreases the crack normal stress in every subsequent iteration ,
it fails ﬁo correlate the strain normal to crack with the
corresponding stress . Considering the complex nature of . the

crack propagation , such co-relation is not essential

The nonlinear scheme was employed by Bari {1l8) to study the
behaviour of shear wall slab juncticon . The wall was assumed to
have =zero :thickness . To study the effect of wall thickness on
the behaviour of slab ,a nonlinear analysis was carfied by him
,which showed +that the ultimate strength of the structure was
slightly lower and stiffness was slightly higher considering the

thickness of shear wall.
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Bari {(18) tested several models of shear wall floor slab
junction to establish suitable design method for shear wall slab
structure using shear reinforcement and verified the results by
nonlinear 3-D finite element analysis.He considered the éffect of
lateral load as a concentrated load applied at the point of
contraflexure of slab. He treated the =slab as a cantilever
exténded from shear wall.lLateral 1load effect was applied as
vertical load at the tip of the slab at point of
contraflexure:From load deflection curve he tried to find the
stiffness of the slab.He found that the stiffness of the slab
gradually decreases as the Jload increases,This stifness may not
be considered as flexural stiffness of the slab because the wall
does not rotate and slab deflect as a true cantilevr from shear:

wall.

'S -
2.9, Conclusions

Reviewing the previous works ,1t 1is clear that all the
investigator’é doing research on bending stiffness of floor slab
in shear wall structures perform their investigations
considering tbe linear behaviour of slab material.Most of the
Researcher’s try to present suitable design curves and equations
for calculating the effective width and stiffness . of slab with
respect to geometrical parameters such as Y/X, L/X or L/Y and
effect of reinforcement is not considered.But reinforced concrete
is a composife material which exhibit nonlinear response +to
progressive "loading.Hence the behaviour of slab will be

influenced by the factors responsible for nonlinear response with

those of geometrical parameters.




21

COHAPTER 3
DESIGN OF REINFORCED CONCRETE SLABS
3.1 Introduection

There are a number of possible approaches to the analysis and
design of reinforced concrete slab systems. The various
approaches ﬁvailable are elastic theory, limit analysis theory
and modifications fo them. Such methods can be used to analyze a
given slab; system to determine either the stresses in the
slabs and the supporting system or the load-carrving capacity.The
methods.caﬁ also be used to determine the distribution of
moments and. shears to allow the reinforcing steel and &oncrete

sections to be designed.
3.2 Theory of Elasticity in Slab Design

Classicel elastic theory of analysis applies to slabs-which
are sufficigntly thin for shear deformations to be insignificant
and Sufficiéntly thick for in-plane forces to be unimportant.The
distributio; of moments and shears found by elastic theory 1is
such that '

(1) The equilibrium conditions are satisfied at every point in
the slab.

{2) The boyndary-conditions are complied with, and(3} Stress is
proportipnai to strain; that is, bending moments are proportional
to curvature. '

The governing equation is a fourth-order partial differential
equation in terms of the deflection of the slab at general point
{x,¥} on the slab, the loading on the slab, and the flexural
rigiditiesJof the slab section. The soclution of the equation
gives the distributions of bending and torsional moments and

shear forces throught the slab.
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3.3 Theory of Plasticity in Slab Design

This theory recognizes that because of plasticity,
redistribution of moments and shears away from the elastic
distribution can occur before the ultimate load is reached. Any
solution to the ultimate load has to satisfy the following
conditions of classical plasticity which assumes unlimited
ductility

a)The Equilibrium Condition : The internal stresses must be

in equilibrium with the externally applied loads

b)The Yield Condition : The yield criteria defining the
strength of the slab sections must nowhere be exceeded.
c)JThe Mephanism Condition : Under the ultimate load,

sufficient pléstic regions must exist to transform the structure
into a mechanism.

If conditions {a) and (b)) are satisfied we get a lower-bound
solution. Whiie on the other hand, if condition (¢} 1s used 1in
conjunction 'with virtual work,then we get an upper-bound

solution.
3.4 The Yield Condition

The yield condition defines the combination of stresses
necessary to cause plastic flow at a point. Let us Consider the
slab element shown in Fig.3.! under the moment field Mx, My and
Mxy. The sign convention adopted here is such that all moments
acting on the element are positive as shown in the Figure. The
following 51mp11fv1ng assumptions are made in order to derive the
yield criterion in terms of three moment components

l. The concrete is assumed to have a zero tensile strength.

.2, Bar dlameters are small in comparison with slab depth, and
that thev can carry stresses only in their original
direction. Accordingly, kinking of bars across a yield
line 15 not considered.

3.The Slab element is lightly reinforced, so that compression

failure, K is not permissible and only ductile failures are

allowed, This 1is8 necessary for moment redistribution, so
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1 that the slab elements can reach their ultimate strength at
sufficient number of sections, to convert the slab 1into =a
mechanism.

4 .Membrane forces do not exist. It 1is acknowledged that the
coexistance of such forces with flexural fields on the slab
elements, will considerably effect the resisting moment of
the slab . element depending on whether they are compressive
or tensile and the restraint existing at the boundary of
the slab.

For simplicity; the reinforcement in the element 1is assumed to

lie parallel to the element sides as shown in Fig. 3.2.The

element may be reinforced on the top and bottom surfaces.The
basic idea is that, if at any point 1in the s8lab element

({Fig.3.2), a line with a normal n and direction t is examined,

then the normal moment Mn ,must not exceed the value M*n, where

M*n is the moment of resistance that the reinforcement in the

slab could develope in direction n.This 1is therefore a normal

moment criterien.
Taking th§ normal to the yield line at an angle © to the x-
axis and considering the equilibrium of the element shoﬁn in

Fig.3.3, we shall have

2 7
Mn = Mx cos® + My sin® - Mxysinie {3.1)
.2 2 . .
Mt = Mx sin® + My cos@ - Mxy sinZe {3.2)
Mnt = 1/2 (Mx - My) sin2@ + Mxy cosZo {2.3)

The normal moment Mn should be compared with the
resisting momeht Mn.This resisting moment at the yield lJine can
be expressed assuming that both x and y steel are at yield, as
follows '

2

2 .
M*n = M*x cos“e + M*y 51ing (3.4)

' . ) . .
where M'x = moment of resistance in x-direction.
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M*y - moment of resistance in y-direction.

The value of M*n must always be greater than Mn, hence

.5)

[#%]

(M*n - Mn) = 0 | (
Substituting (3.1) and {3.4) in {3.5) we have
(M*x~Mx)00526+(M* y~My)sin26+Mxysin29=0 {3.6)

dividing by CQSB

(M¥x-Mx )+ (M*y~My) tan?6+2Mxytan®=0 (3.7)

At the yield line, the left hand side of equation (3.7} will be

minimum.Differentiating with respect to tane, we have

ZfM*y - My) tane + 2 Mxy = 0 {3.8)
then
tan® = - Mxy/(M¥y- My) {3.9)

Substituting tani in equation (3.7} and rearranging
(M¥x - Mx) (M¥y - My) = MPxy (3.10)

This equatign 1s the yvield criterion for orthotropically
reinforced concrete slabs.This is often called Wood-Armer(20,21)

vield criteri@n.
3.5 Direct Design Method

With the widespread availability of finite element
programs, it is possible to design slabs at ultimate load using
elastic stress fields 1n conjunction with the Wood-Armer vield

criteria for slabs {equation 3.10). This method called ‘’'direct
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design method' was suggested by Wood{(20) and extended by
Armer{2l) and later applied and tested by Bari(i8). The steps
involved are as follows:

i} the elastic distribution of moments at ultimate load 1is
determined by the finite element method.

ii} Using the moment triad {(Mx,My,Mxy) thus obtained, the
design moments are calculated so as to satisfy the yield
criterion of equation (3.10 ).

ijii}Flexural steel area 1s then calculated to resist the
correspondlng ultimate design moments M*x and M¥ N
The methodv satisfies the fundamental requirements  of
equilibrium,yield and mechanism conditions at ultimate collapse

as dictated py classical plasticity theory as follows
3.5.1 The Equilibrium Condition

To satisfy this condition, the elastic stresses must be 1n
equlllbrlum with external loads. Since the distribution of
stresses in this method is found using finite element method
which is derived from equilibrium equations, this condition 1s
automatically satlsfled Owing ¢to its simplicity and
versatility,the method can be applied to any type of slab problem

with any edge condition.
3.5.2 The Yield Condition

Having obtained Mx,My,Mxy we have to derive M*x and My so
as not to violate the vield condition as given by
equation (3.10).This can be done as follows:

Mx - MZxy/My

(i) if M¥y = 0 then M*x

1t
1]

0 then M'y = My - MZxy/Mx

N

ii) if M¥*x

iiidif M x and M*y noct equal to zero;




We need to find minimum of (M*x + M*y) = f
- S 4 _ 2 ¥

From eguation {(3.10) ¢ My = M%xy/({M x - Mx) + My

P SR X ,

fz [M'x + (M°xy/(M"x- Mx}) + Myl {3.11-a)

o . b b I é é * —
For minimum or maximum of “f7; (fY/oM x = O
: 2 ¥ z
i.e., I - M® xy/ (M"x - Mx) = 0
or (M¥*x - Mx) = + !Mxy! (3.11-b)
-7 2*

For minimum of ’f' ; Sf/ SM'x = + ve
or szy/(M*x - Mx)3 > 0; or (M*x - Mx) > O

Taking positive sign from equation (3.1ll-b), we have

M¥%x - Mx = ! Mxy |

M¥% = Mx + ! Mx ! ‘ (3.11-c)

From equation {(3.10}Y,
* - 1 ]
My = My + | Mxy |

For positive moment fields;

M"x = 0 when Mx = - i Mxy |
M*y = 0 when My = - VoMxy
Both M*x and M*y = 0 when Mx.
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3.5.3 Rules for Placing Urthogonal Reinforcement
3.5.3.1 Bottop Steel

{a) Compute the normal design moments

M¥x Mx + ! Mxy | O (3.13)

H

M¥y My + | Mx. ! (3.14)

1l

if M¥*x < 0 then

M¥y = My - (M%xy/Mx) . with M®x = 0 (3.15)
- X
if My < O then
x 2 . X
M'x = Mx - (M%y/My) with My = O {3.16)

{b} If still in {3.15) and {3.16) one gets a negative sign, then

put such normal moment equal to zero, i.e., no reinforcement 1is

required.
(c) If both M¥x and M*y are negative, then no bottom steel is

required.

3.5.3.2 Top Steel

(a) Compute:the normal moments
M'x = Mx - | Mx |
My = My - | Mxy |

if M¥x > 0 then

M*y = My - (szy/Mx) Iwith M¥x = 0
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if M¥y > 0 then
X _ 2 : ¥
M¥*x = Mx - {(M%y/My)} with My = 0 {3.20)

(b) If still in {3.19) and {3.20) one gets a positive sign, then

put such normal moment.equal to zero, i.e., no reinforcement 1s.

reqgquired.
{c) If both M¥x and M*y are positive, then no top steel 1s
reguired.

Figs.3.4 to 3.6 give a detailed picture of these rules. Far
general use, the diagrams are sketched in a nondimensional form.
The designér, after establishing the point (Mx/| Mxy 1, My/. Mxy
on the diaéram. can easily know which equation to use to get the
required désign normal moments.Bottom steel equations are given
in Fig.3.4, while those for top steel in Fig.3.5. Fig. 3.6
shows the %wo branches of the yield hyperbola and indicates the
directionsrof the steel to be provided at any point. (Primed
moments refer to top steel}.

A two ‘dimensional finite element computer programme based
on this direct design approach was used to calculate the
flexuralreinforcement needed 1in the slab. The flow chart is shown

in Fig. 3.7.
3.5.4 The Mechanism Conditicn

Becayse the necessary resistance is made eqgual to the
calculated:stress at every point in the slab, it is anticipated
that all slab parts will attain their ultimate strength under the
design loaa. Accordingly with minimum amount of redistribution,
every point will wvield at the design load, thus converting the
slab inté mechanism. Because of the fact +that minimum
redistribution is needed to achieve collapse by this method, the
demand for ductility which depends on the difference between the
first and last vield in the structure as normally emphasized by

the theory of plasticity will obviously drop.
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3.6. Procedure Adopted for the design of =a typical model
3.6.,1. General

In +this article a general procedure of of designing slab
reinforcements.will be discussed which was followed . A linear
2-D finite element computer programme based on direct dessign
approach was uéed to calculate the flexural reinforcements for
gravity and laperal loads.The slabs were divided into an assembly
of plate bending elements having three degrees of freedom at
each node and advantages of symmetry were used in analyzing the
slabs.A floor plane of a typical shear wall structure 1s shown in
Fig. l.4(a).

3.6.2. Design for gravity loads

Gravity loads include selfweight of slab and live load. A
live load of 40 psf was used in design.Finite element mesh wused
in gravity load design is shown in Fig. 3.8. A complete panel was
used by divided it into 24 elements .The boundary conditions used

are as follows:

If w = translation in z-direction (normal to paper}
%w/éx = rotation about y-axis;
Sw/dy =

rotation about x-axis;
then alltthe nodes along line ab,cd,ef and gh will have

W = ow/dx= 9w/ oy =0:; and all nodes along line bc and fg will
have 9w/5x=0.

Gravity load per node was calculated from the area of slabs
sorrounding tﬁﬁt node.By applying loads per each node we had the
reinforcements required for the slab were determined.A slab of

200 mm thickness was used for all the models.
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3.6.3, Design for lateral load

An equivalent static wind load of 0.6 kip/feet was
uesd.Assuming the wind pressure to be constant with height, the
maximum wind shear Vw,indduced in most highly stressed slab was
calculated by continous medium method making use of the
recommendatioﬁs of  Coull and Wong for the effective width (see
Figs.2.4). A slab thickness of 200 mm and a floor to floor
height of 3m were adopted to analyze all the structures having 20
storeys with rectangular shear walls.Fig. 3.9 shows the finite
element mesh for wind load design where use of symmetry was
made.The boundary conditions used are as follows:all nodes along
line bc and gf will have w = ow/éx =&w/ Sy = 0; and all nodes
along line ap,and de will have &w/éx = 0 .The slab was then
designed by a?plying the maximum wind shear Vw distributing it
among the nodés along line ad . For two cases : applying Vw

downward and upward,reinforcements in the slabs were foundout.
3.6.4. Determination of combined effect

At the centre of each element,the computer programme gave
the moment triad {Mx,My,Mxy) due to wind and gravity
loadings.Using the moment triad , the wvalues of design moments
M*X,M*y weregevaluated according to the design method.Flexural
steel reduirgd to resist these design moments at ultimate
conditions wa% calculated using the recommendations of BS 8110
with materiais safety factors assumed to be unity.The finite
element programme results in a variable reinforcement pattern
and the amount of steel given were per element.For
example,amounp of steel 1in Model TMODIl for gravity and two cases

of wind load%ng are shown in Fig. 3.10. Only quarter panel is

shown because for nonlinear 3-D analysis only one quarter of a-

complete panei was used taking the advantage of symmetry and
antisymmetry.?o find the total steel in an element maximum of the
two cases dug to wind was added to that due to gravity.Now

chossing suitable bars reinforcements were placed in the slab.
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CHAPTER 4

MODELLING OF NONLINEAR BEEHAVIOUR OF REINFORCED
CONCRETE USING FINITE ELEMENT TECHNIQUE

d.1 Introduction
In recent vyears, the finite element method is firmly

established as the most powerful general method for structural

analysis and has provided engineers with a design tool of very

wide applicability. In the case of reinforced concrete
cracking,tension stiffening, nonlinear multiaxial material
properties, complex interface behaviour, creep, shrinkage and

other effects were previously ignored or treated in a very
approximate manner.All those parameters can now be considered
rationally by finite element method.The application of the finite
element methéd to nonlinear problems is associated with a
considerable increase in numerical work as compared with lirnear
.problems. How?ver,develqpment in the last two decades have
ensured that high speed digital computers which meet this need
are now avaiiable.ln this chapter, an approach for three
dimensional npnlinear'finite element analysis of reinforced

concrete is presented.
4.2, Finite Element Formulation

The finite element method is now well documented,no attempt
will be made to describe it in detail. But in order to define
terms for the sake of completeness a brief review of the method

will be presented instead.
4.2.1 Discretisation by Finite Element
The finéte element method started as an extension of the

stiffness method of analysis of skeletal structures and was

applied to two and three dimensional problems in structural




mechanics. However, unlike skeletal structures, there are no
well-defined Jjoints where equilibrium of forces can be
established. S0 the continuum is divided into a series of
elements of arbitrary shapes which are connected at a finite
number of éoints known as nodal points. This process is known as
discretisation.
For structural applications, one convenient method of

obtalining %he governing equilibrium equations 1is by Minimizing
the total'potential energy of the system. The total potential

energy, s ,can be expressed as

i

T= dvi o171 € 1av -Jv ['é]T[p}dv—j;ES]T[q]ds (4.1} -

where {[{o]1 and [ €] are the stress and gtrain vectors
respectively,[é] the displacements at any point, [(pl the body
force per unit volume and [q} the applied surface tractions.

Integrations are carried over the volume 'V’ of the structure and

loaded surface area 'S’.The first term on the right hand side of
equation (ﬁll) represents the internal strain energy and the
second and third terms are respectively the work contributions of
the body forces and disfributed surface loads. In the finite
element digplacemenﬁ method, the displacement is assumed to have
unknown values only at the nodal poinfs ao that  the variation
within anyrelement is described in terms of the nodal wvalues by

means of ipterpolation functions.
Thus (51 = [N (&%) (4.2)

where [N] 1s the set of interpolation‘functions termed as shape
functions'gnd [ 5%] the vector of nodal displacements of the
element. Tpe strains within the element can be expressed in terms

of the element nodal displacements as

[€] =[BT [ &%} : (4.3)
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where [B] is the strain matrix generally composed of derivatives
of shape functions.Finally, the stress may be related to the

strains by use of an elasticity matrix [D] as follows
[ o1= D} [€] (4.4)

Provided that no singularities exist in the integrands of the
functional, éhe total potential energy of the continuum will be
the sum of th energy contributions of the individual elements.
Thus

r= Lo : (4.5)

where rgpresents the total potential of element 'e' which,

using equatign (4.1)},can be written as
1 - .
Te T3 Jv (s30T st (o] (R) (8%} av -

¢

Jvaﬁc]T (MT [p] av - J_ fse )V T [y ds

5o

(4.8}

where Ve is the element volume and Se the loaded element surface

area.Performance of minimisation for element ‘e’ with respect to

the nodal diéplécement [ ] for the element results in

J - - .
' A JVO([B]T[D][U]) [67])dV - JV‘[N]i[p]dV - Jq (M T q)ds (4

L4 e

-1
S

~ (ke (8%) - [F7)

where

{4.8) -

[re] - JV[NIT [Pldv + J [N]T (q)ds
e S

are the equi#alent nodal forces, and
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[ke] - Lc[m"' (0] (] (4.9)

is termed the ’'element stiffness matrix’. The summation of the
terms in ‘equation (4.7} over all the elements, when equated to
zero, results in a system of equilibrium equations for the
complete continuum. These equations are then solved by any
standardrtechniqué to yield the nodal displacements. The strains
and therefore the stresses within each element can be calculated

from the displacements using equations (4.3) and (4.4}).
4.2.2 Element Type

The selection of the element type is always related to the
type of problems to be solved. As three dimensional nonlinear
analysis is the prime concern of the analytical portion of this
study, the 20-noded isoparametric brick element as 1llustrated
in Fig.4.1l, is used throughout this work to represent
concrete.Reinforcing steel is simulated by bars embeded inside
the concrete element at their actual locations in the structure
without imposing any restrictions on the mesh choice. The
mathematical derivations of these bars can be found in Reference
( L7 ).This element was chosen to consider the effect of the six
stress components‘ dx , dy ,Jz .T%y ,7}z. Tzx {Fig.
4,2).Each nodal point has three degrees of freedom,
viz.,translation in x-direction = u, translation in vy-direction =
v, and translation in z-direction = w.Each element has its own
local spatial coordinate system ( E.M,5) (Fig. 4.1}, with the
origin at the centre of element such that each local coordinate

ranges from -1 to %+l only.

4.2.3 Shape Functions

Shape functions are interpolation functions which describe

the variation within the element of the displacement in terms of




the nodal dispiacement

n .
[81 = > INil [9i ] | (4.10)
=1 .

where Ni is the shape function at the i-th node at which the
nodal displacement is @i, '

The efficiency of any particular element type will depend
on how well the shape functions are capable of representing the
true displacement field. The isoparametrip family are a group of
elements in which the shape functions are used to define the
geometry as well as the displacement field. This leads to reduced
computational effort and efficiency. The isoparametric elements
are better known for their accuracy and versatility over simpler
type of elements. Moreover a considerable saving of computer
effort i1s obtained, even thouéh a complex element requires more
time to ‘formulate., This is because it requires fewer elements
compared with more simple elements.

For three dimensional applications, the displacements field

at a particular local coordinate . ({.,0) are (g, 0, S )
VSRS and are defined using three displacements degrees of
freedom v, Vi, “iL at each of the twenty nodes and a quadratic
interpolation scheme.The coordinate values x( {.35.¢ 1}, ¥{ Lt )
and z( :,5.¢ } at any point { {.4,t ) within the element mavy be

defined by the expressions

20
x(E,om, 1) NOOND Loty L N
: i-1

y(bog, 1) EONp o )y

(d.11)
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and where (%;.vi.7;) are the coordinates of node 'i’ and MNj{!.y @)

are three dimensional quadratic shape functions. In the present
work, such shape functions of each of the twenty nodes were

obtained from reference{l6) as follows

Tor corner nodes ;= 2 1 e - ] Ce oot

L(lﬁ

Hylt o )y - q D R T R A D R S B2 PR R L (e 1)
for mld-side node & - ¢ 0 o= 1 -1
M1 1) = 7 (=82 Qi Ot
HE0, ) = 2 (=2 G O+ FEp) : (. 13)
for mid-side node & - + 1 ng =+ 0 SRR
i 1
Mtk ) = 2 Gty ity v
For mid-stde node t; - ¢ 1 o= o] g =20
. |
Nk 8y = 2 Q8 (L) (1-87) (A.15)

Each of the twenty shape function has a value of unity at the

node to which it is related and zero at other nodes.To calculate

the displacements u( &Y ) , v{ &40} and w{ &8 at any point

within the element, expressions similar to {(4.!0) may be wrirtten

as follows

. 2n
O TR0 D R FR G A P B Y
i-1
20
iR O N PR S PR O B (4.16]
f1 .
20
w(E,n, 0y ~ 0 My (B ) owy

. -
an
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4.2.4 Strain Matrix

In three dimensional linear analysis, the strain -

displacement relationship from theory of eiasticity may be
written as .

-

N du/dx
¢ — dv/dy

(., = dw/oz

7

.- W17
Yuy = dufdy 4 dv AN (0. 17)
Yvu T dv/dz 1 dw/ady

Yooy <o Ow/dx 4 du/dy

in which €xr Cys (g are the normal strain components and 7¥xy ,
Yyzr Yix are the shear strain components. Equations {(4.17) may

be written in matrix form as follows:

[ ] - .
€ ( d/dx 0 ¢ '
Cy b dfay ) | v
o 0 0 a/az w
el - Txy - LV RN 0 (. 1H)
Yvz . A Afdy
Y7.x] A’y -0 J/QKJ
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using the finite element idealisation we can write

Ny /N 0 0 u;
] 9]‘1,/3\' 0 \’i
20 0 0 AN, /av, wi
[ ¢ ] = X '
i~1 an; /oy AN /ax 0 (46.17)
0 ol /o IN /Ay
Jrli,’f);‘: 0 A /AN
or simply '
20
[ ¢ )] = ¥ [B;] [4;) .
=1 (4.20)

where [B1i] is the 6%x3 strain matrix in equation (4.19}1 which
contains the cartesian derivatives of the shape functions. Since

the shape functions Ni are defined in terms of the local

coordinates.pf the element ({,,) a transformation from local to
global coordinates is required to obtain the [B] matrix in
equation (4.19). This is done through the well known Jacobian

matrix which 1s written as

Qg Avgal aq/al
[t = | ey avan ansay (4.21)

RTERK RIAR Njot
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thus
an| . N
S Zf{i'-“" 5{‘1-""1
20 '
. M aN N
J ] - ¥ by I Loy, LY T ;
1 ] -1 ay ! 51_; i an Zi {22y
aN aN AN
S U oy .
.\I ()f‘ \] F‘Tfl,fl
The inverse of the jacobilian matrix will be
[f‘_f; ay atl
ax Ax ax
U ORI B g ag
. Jy ay Kfe (5.7
2, an; o1
o 3 ar
Therefore the cartesian derivatives are given by
Ny | Ay
ax ' af
8Ni -1 At
— - J i .
Jy ( ] h_’? (h.24)
9Ny AN,
37 5t
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4.2.5 Str%ss ~ Strain Relationship

Forllinear analyvsis of uncracked concrete, and 1in. the
abscenceiof initial stresses and strains, the stress-strain
relationsﬁip may be written in the form

I
(ol = [D] [€] (4.25)

where [D] is the elasticity matrix which takes the form

o E(-m) ] n 0 0
0~ s '
0 0 (/. 20)

Svmme try

0

r\.}if\

wherere 'E’ i? the Youhg’s modulus of elasticity and VY is
Poission's rat%o. The concrete nonlinearity as considered in this
work is only the material nonlinearity and all changes 1in
material properties enter through the changes 1in elasgsticity

matrix [D].
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4,2.8 Numerical Integration

Analyvtical integration of egquation {4.9) 1s
impossible.Therefore some form of numerical integration must be
resorted to.In this study Gauss-Legendre quadrature rules have
been used exclusively because of their higher efficiency over
other forms of quadratufe. For n sampling points they can
integrate exac@ly a polynomial f(€) of degree -(Zn-1), Also they
are suiltable fpr isoparametric elements because the range of
these integration rules are +| on element boundaries. A 2x2x2
Gauss rule was used for monitoring nonlinear behaviour especially

cracking, as shown in Fig.4.3.

4.3 Simulation of Steel Reinforcement

In modelling reinforced concrete by finite element
methods,at least the following three alternative represantations
of the reinforéement have been used: (a) distributed,{b) disgcrete
and {(c) embedded.For a distributed representation (Fig.
4.4(a)),the steel is assumed to be distributed over the concrete
element,with a particular orientation aﬁgle. A composite concrete

reinforcement constitutive relation need to be used in this

case.To derive such a relation, perfect bond must be assumed
between the concrete and steel.A discrete representation of the
reinforcement, .using one-dimensional elements (Fig. 4.4(b)), has
been widely used. Axial force members are assumed to be pin
connected with three degrees of freedom at the nodal points. The
cone-dimensional reinforcement element 1s superimposed on a three
dimensional finite element mesh representing concrete. The
approach 1s simple and it is possible to account for possible

displacement of the reinforcement with respect to the surrounding
concrete, A se;ious disadvantage, however, 1s that the location
of steel ofteﬁ dictates the concrete mesh. This may result 1in

slender elements, where the reinforcing bars are too close




i

¥

\ ]
S _Axitul Elements
bt — 1) )
Flexural Elements
. "
Fig. 4.61{L) ; Discrete representation of steel

s

Fig. - 4.4(c)

e e LAY )‘.’

Fia. 4, Uinbedded bars within the 20-noded

{9

leoparumetric brick element

517




53

f‘|
Having Obtalned guch experimental data, 1t must be transformed

into sets of mathematical formulae, adequately describing the
basic characteristics to be of real use to reinforced concrete
analysis. These mathematical formulae are normally called
"constitutive equations” or sometimes, "constitutive models" for
concrete, N@ one mathematical model can completely describe the
complex behﬁviour of real materials under all conditions. Each
material model is aimed at a certain class of phenomena and
‘captures their essential features and disregards what is
considered to be of minor importance in that ‘'class of
applications. One such set of laws, used in this work to model
concrete co@pressive triaxial behaviour, is due to Kotsovos et al
{ 13,14,15;16 ). As cracking of concrete is probably the major
cause of nonlinearity in most reinforced concrete structures, a
separate three dimensional cracking model is developed and
incorporated in the finite element programme. Particular
attention ig paid to proper modelling of shear transfer across a
cracked concrete surface. A biaxial stress-strain law is used for
reinforcing steel. Full bond is assumed between concrete and

séeél.
“4,4, Kotsovos' Constitutive Laws for Concrete

A comprehensive programme{13,14,15,16) ofinvestigation into
the'behaviéur of concrete under complex states of stress was
ca;ried out at the Imperial College, London. After analysing the
;yesults, Kotsovos provided mathematical expressions for

ﬁHefb?mationgl as well as strength properties of concrete suitable
gfor use in nonlinear computer based methods to analyze concrete

jiue computer program by Barlle)fand used in the present work.

ructures. These expressions were successfully 1mplemented in

"For the constructlon of the constltutlve equatlons for
concrete, the geometrical FEpFESEn?ﬂthD'Of the stress state at a
pqint is very useful. Since thé-stress tensor o_ij has six
independent components, it is of course possible to consider
thése'components as positioiﬁgl co-ordinates in a six-dimensional
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space. However it is too difficult to deal with. The simplest
alternative is to take the three principal stresses a, g2,
a3 such that g3 01 %z 03 as co-ordinates and represent
the stress state at a point in the three-dimensional stress
apace., This grthogonal co-ordinate system a , Jd2 , d3 can be
transformed into a cylindrical co-ordinate system ¢q, r,e and the

two systems are related by the following equations:

qa=( 91 +92 +93)//3

H
|

cose = 1/6 [{( 0L +02 - 203)/r]

The variables 'q' and

'r' define the hydrostatic and. deviatoric

components respectively, of a stress state, whereas the variabtle
'e’ defines the direction of the deviatoric component on the

octahedral'plﬁne as shown in Figure (4.6) and varies from

9

0° for JI1 =92 > 03

© = 60° for 9Ji > 02 = 03 ,
The hydrostatic and deviatoric components can also be expressed
in terms of the normal ( Coct! and shear (7oct) octahedral

stresses which are defined as follows

OCoct = ( 0t +02 + 03 /3 = q/f3

Toct = 173/t Ti- 0232 4 ( T2- 03)2 4 ( T3- T1)%: r/f3
Similarly, tHe normal {eoct) and shear (Yoct) octahedral strains

are defined as follows:

€

€oct=( E1+€2+ €313
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where E, s 61 s 63 are the principal strains.The mathematical
formulae reported here for the deformational and strength
properties ére applicable to a range of concretes with uniaxial ,
cylinder compressive strength (f’c) varying from about 15 to 65
N/mm2 .For £he deformational properties, use has been made of the
secant bulk (Ks) and secant shear {(Gs) moduli which are expressed

as follows

doct
KEs = = =—==--
3 €oct
Toct (4.30)
Gs == =—=e=—-
2 Yoct

The deformational behaviour of concrete under i1ncreasing
stress can be completely described by the relationships between:
{a) hydrostatic.stress, Coct and volumetric strain,€oh;

(b} deviatpric stress, Toct, and deviatoric strain,yoct;
and (c) deviatoric stress, Toct and volumetric strain, € od.
The Coct- €oh and Toct - Yoct relationships can be described by

the mechanical properties of the model as follows:

Ks 1 Toct

-—- I e e - for -—-——---- < 2.0
Ko 1 + A 'Tcu:t/f’c)b'_1 f'e

Ks 1 ' 7 (d.31)
-——— R i e T P for doct/f’'c> 2.0
Ko 1+ 2b~1) poas 2b(bo1)a (Toct/frcy !

Gs 1

Go : I + ¢ (Toct/f7c)d-!
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Ko and do {in KN/mm ) are the 1initial valueg of the moduli Ks and
Gsj;and A, b, Q, d are parameters which depend on the material

properties such that

Ko = 11.0 + 0.0032 f'c?
Go = 9.224 + 0.136 f'c + 3.296 x 10-1%5f'¢c (8.273)
A = 0.516 for f'c < 31.7 N/mm® , or
0.516
E e m for f'c>31.7 N/mm?
1.0 + (0.0027)(f'c~-31,7y¢-397
b = 2.0 + 1.81 x 1078¢'c (4.461)
¢ = 3.573 for f'c < 31.7 N/mm?2 ,or (4.33)
3.573
T e for f’c231.7 N/mm2
1.0 +0.0134 (f'c-31.7)L-414
d = z.12 + 0.0183 f'c  for f'c > 31.7 N/mm?

= 2.7 for f'ec < 31.7 N/mm2

In order to evaluate the effect of internal stresses on
deformation, use is made of the artificial concept that the
volume strain *(i.e. € od) under deviatoric stress is due to the

hydrostatic component of such stresses, 0 int. Since

0 int = 3 Ks. €od (4.34)
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The hydrostatic component int 1s equivalent to three
principal stresses v} = ¢ = a3 = ojnand 1ts effect on
deformation,fmyﬁill be the deformational response of +the model
under these principal stresses. Equations (4.31) and (4.32) when
used with eguation (4.30),the resulting value of oct {(in 4.30)
will be €oh, tﬁus the total octahedral normal strain will be
(4.35)

+

“fact T foh Conl

The strepgth of concrete under multiaxial stresses is a
function of the state of stress consisting of s1Xx
components.Based on an analysis of strength data, Kotsovos
derived mathematical expressions to describe the strength
properties of Cdncrete under biaxial or triaxial stress states

which can be presented as follows:

Toe is the value of Toct at the ultimate strength level for ®
¢ degree;
Toc is the value of Toct at the ultimate strength level for @

60 degrees;
the value of Toct at the ultimate strength level for any values
of 8 such ?hat‘O B < 80 degrees may be given by the following

expression!

2 . ? P Yeos 0.5
ZrﬂC(YUC"TOD)QOJH*THC(Z’00"00)[“('uc“rdv)“”“2”4)Tﬁo“hrocrou])'J

Tof ™ ” - e (4.30)

!’(;Tr,:'c - T(?ic) Cn:"zﬂ + (TO(‘. - 27()!_1)-

If isotropic material behaviour is assumed, equation (4.36)
may be used to define a =si1x-fold symmetric {about the space
diagonal) ultifate strength surface,provided the variations of oe
and Toc with @oct are established (Fig.4.7). Fig.4.8 shows the
normalized caﬁbinations'of octahedral stresses at the ultimate
strength level obtained from triaxial tests. The envelopes 1in
this figure are considered to describe adequately the strength of
most conéretgs likely to be encountered 1n practice. A

mathematical description of the above strength envelopes was
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obtained as follows

Tac/T'c = 0.944 ((o,../F'¢c) + 0.05)0.724
[al™ net ] (4.37)

Toe/T'¢ = 0,633 [(n, . /I'c) + 0,05)0.857

These expressions are used in this work to define an ultimate

strength surface.
&
4.4.3 Failure Criteria of Concrete

Criteria such as yielding, initiation of cracking,
load carrying capacity, and extent of deférmatipn are generally
used to define failure. In general, concrete failures can be
divided into two types:tensile type and compressive type. Tensile
type and compressive type of failures are generally characterised
by ductility and brittleness, respectively. With respect to the
present definition of failure, tensile type of failure is defined
by the formation of major cracks and the loss of the tensile
strength normal to the crack direction. In the case of
compreésive type of failure, many small étracks develop and the
concrete element loses 1ts strength completely.In this work, it
is assumed that concrete suffers a crushing type of failure if:
{a) the failuré surface presented in equation{(4.36) is violated,
or {b) the maximum principal compressive strain is greater than a
gpecified valug {which is taken as 0.0035 according to BS B8110)

Condition {a) holds for isotropic ({uncracked) concrete
material, and it is found that condition (b} will never be
satisfied prior to condition (a) as long as the material is
isotropic. But when a crack exists, condition (a) is not
applicable; thus only condition (b} holds. After crushing, the
current stresées drop abruptly to zero and the concréte 18
assumed to lee its resistance completely against further
deformation. Therefore the rigidity matrix [D] will be zero.

In this siudy it 1s essumed that concrete will suffer a
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cracking tvpe of failure if:

{a) the failure surface presented in equations(4.38 & 4.37) 1is
violated, or (b} the maximum tensile principal stress exceeds a
specified valuel A value equals ft/2, is approximately the value
on the failure surface for uniaxial tensile stress
state.Condition (a} holds for isotropic (uncracked) concrete
material. Under multiaxial stress state, condition (b} will never
be satisfied prior to condition (a) as long as the material is
uncracked. When at least one crack exists at any point due to
condition (a),)only condition (b)) 1s applicable to check against
alsecond or a third c¢rack.Once a crack has formed, the tensile
stress across the crack drops abruptly to zero and the resistance
of the material against further deformation normal to the crack
direction - is ﬁeduced to zero. However, material parallel to the
crack 1s assuﬁed to carry stress according toe the wuniaxial or

biaxial conditions prevailing parallel to the crack.

4.4.4 Modelling bf Concrete Cracking

4.4.4.1 Generél

The tensile weakness of concrete results in cracking which
is regarded as a major factor contributing to the nonlinear
behaviocur of reinforced concrete structures. Early studies on
modelling of rginforced concrete nonlinear behaviour resultéd in
two methods of'representing the cracking of concrete. The first
approach, termed discrete crack representation (18,19) uses a
redefined discrete crack system. The major drawbacks of this
procedure, howgver, are that the topology of the structure has +to
be continusly éltered as cracking progresses and that a previous
knowledge of the crack pattern might be necessary.The =zecond
approach, known as the smeared crack model (18,19)assumes the
cracked concrete remains a continuum. This implies that an
infinite number of parallel cracks occur at a specific point if a
certain crackipg criterion 1is satisfied. By using the smeared

cracking approach the problem of changing the topology of the

-
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structure with crack propagation 1is dvercome. Moreover {Lthe
initiation, orientation and propagation of cracks at the sampling
points are aqtomatically generated resulting in complete
generality. Fig.4.9 1illustrates both cracking models as applied
to two dimensional analvsis. The selection of which cracking
model to use depends largely upon the purpose of the finite
element gstudy undertaken and the nature of the output desired.
Generally, if éverall load-displacement behaviour, without regard
to local stresses and’realistic’ crack pattefns is desired, the
smeared crack representation is probably the best choice. If, on
the other handé detailed local behaviour is of prime importance,
adaptations of the discrete cracking model is useful. The element
type, gize and.grid pattern have significant effects on.both
models. The smeared crack approach is the most commonly used
because it is easy to implement.In this study the overall
behaviour of the model is of particular importance
is used to represent concrete with embedded bars to simulate the
reinforcing éteel at its exact location in the structure.
Therefore , the smeared crack simulation 1is adopted. The main
features of t&e smeared cracking model may be summarized as
follows: '

1) cracking in one, two or three directiong is allowed ,known
as fixed crack analvsis,

ii) cracks are allowed to open or close during the load increment
iii} no tension stiffening but shear retention 1is allowed ,known
as no-tension analysis. .

In the fixed crack direction analysis, (1l8) in the three

dimensional stress spaces , a , Jz , 4¢3 1 cracks might occur
normal to any principal stresses ( Fig.4.10 ). It 1s quite

possible for any point to be cracked in more than one direction.
Upto three cracks at a point are allowed 1in this analysis
provided that they are orthogonal to one another . once a crack
occurs 1its difection in the cartesian xyz space 1s fixed and
retained as suéh in all subsequent loading.In this method ,matrix
[D] 1is modifigd such that the modulus of elasticity 'E' of the

concrete is reduced to zero in the direction normal to the crack.
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Further a'reduced shear modulus ’'¢’' is assumed on the cracked
plane to account for the aggregate interlocking .Because of the
fact that shear stress is allowed to act at the cracked surfaces,

this procedure allows tensile stress to built up on surface other

than crack direction,

4,4,4.2 Determination of Rigidity Matrix for Fixed Crack

Analysis

The tﬁaxial rigidity matrix for uncracked isotropic

concrete 18

S e e e S ! .
1 _;_"\ 0 0 0
(1-r) (4.38)
_E(1-0) 1 0 0 0
© - iy
2o,
2(1-v)
Symmetry (1-74)
Ty
Q-7r)
201-1)

In principal stress space, and with reference to the adopted
cracking criterion, if the concrete 1is cracked 1in direction |

{Fig.4.10(a)} ﬁhe rigidity matrix will be

l[Dcl |

Symmetry




where Dij are the corresponding values 1in the [D] matrix and ¢# 1is
the shear retention factor, 0 £ g8 < 1.. 'G' is the shear modulus
of the material; its value will be the value obtained from the

constitutive 'laws prior to cracking. If the concrete is said to

be cracked in direction 2 ( Fig. 4.10 (b} ) the rigidity matrix
will be
M 0 1 ) 0 0
0 0 n 0 0
033 0 0 0
! 0c J 2 - Symmotry (4.40)
08 -0 0
aeo 0
”(1‘5 '

and if it is said to be cracked in direction 3 (Fig. 4.10{(c}) the
rigidity matrix will be

i I)] 1 I)l) l“ [§] 0 0

Doo O 0 ¢ 0
[ . 0 0 8] 0] ’
Dc] i
Symmetry A
¥ N D 0 0 {d.11)

(i (

(3¢

Depending on the stress situation, cracks may occur in more than
one direction at a single Gauss point. In this case combinations
between [Dec]p, [De]p. and [Defy may be necessary as follows:!If

cracked in d%rection | and direction 2, then D matrix 1is given by




r 0 0 n - 0 0 0
0 " 0 0 0 .
Ny o 0 0 : . (ﬂt47)
[0 2T Svmnetry | i 0 ;
(¢ 0
{17

if cracked in direction 2 and direction 3, then D matrix is given

by
”1 1 4] 3] (D] b 0
0 f) N { (}
! 0 0 0 0
L. |n = {d.43)
¢ 2.3 Sywmmetry )
i i 0. 0}
(iG 0
| G |

if cracked in direction 3 and direction 1, then D matrix is given

by
[ 0 0 0y §] () 0
D27 0 0 0 0
q 0 fy ) 0
N ”L‘ ]'}'1 -

S}-‘mtﬁa} try
0 0 0

o 0 (4.44)




and finally if cracked in all three principal directions it is
assumed that this cracked point is incapable of resisting any

stress. Therefore

[ Dcll,z,]

H

{0] (4.456)

Depending on the number of cracks which occur at-a Gauss point at
a particular level of loading, the appropriate rigidity matrix
will be evaluated at that Gauss point and for simplifying the
discussion iﬁ will be merely termed hereafter as [Dc}! and used in
the evaluation of the stiffness matrix.The rigidity matrix [Dc]
is defined with respect to the directions of principal stresses
at the Gauss point under consideration. To enable its use 1in the

global x,y, Z space, a process of transformation must be followed
[ Oc oy == ETeth Ui Te)

where [T ] is the transformation matrix for strain tensor which

takes the following form:

Gfwt gt € ) myny Cm

GF ot ay? Camy g N2ty

(’32 1113?- n3?- Canry Il}Jlllj no iy
el - 20189 2mpmy  Tngng - (Cpepifamy) (mynpimpny) (0 Cpinyty)
2018y Zwgmy Topng (Fowmyr Camg) o G gng) o (op 0y 0y)
2040, ?_m_]?nl 2oy (Lampiyma) (l||3n]-!.m]n3) (304 Cy)

where ¢, mj, 1 are the direction cosines of the first principal

stress; 05, mj;, "y are those for the second principal stress; and
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0z, m3y, nj are for the third principal stress.The three principal
directions are orthogonal to each other. The three principal
directions at a point can vary during loading before cracking is
initiated, but tbey are fixed if at least two cracks exist at
that point. One crack fixes only one principal direction but
constraints the other two to be perpendicular to the crack.Once a
crack occurs due-to any principal stress, say g, ,» this stress
will be set to zero and the crack plane must be perpendicular to
the direction of this principal stress. In subsequent load
cycles, the direction of crack will be fixed and & two
dimensional analysis on the crack plane will be followed to
evaluate the values and directions of the other two principal
stresses {(in fact they will not be principal stresses due to the
fact that shear stresses will exist also as in Fig. 4.10 .If the
material cracks in two directions, all the principal directions
will be fixed, énd the values of the ’offendiﬁg‘ principal

stresses will be set to zero.
4.4.5 Shear Retention Factor used in This Work

After cracking of concrete two main mechanisms develop
through which shéar is transferred from the weak cracked section
to the surroun@ing sound concrete: namely (!} aggregate
interlocking on the two adjacent surfaces and (2) dowel action of
any rteinforcing bars crossing these cracks. The two mechanisms
are interrelateq and several factors govern their rtelative

" contribution towards the total shear transferred. The main known
factors are: (lf'crack spacing, {2) presenée or otherwise of
reinforcement crossing the cracks, (3) bar size, (4) total number
of bars croSsing, {5) bar orientation relative to the crack
direction, (6) aggregate size and roughness, (7) concrete
gtrength, (8) cr@ck width and (9) mode of failure.In the smeared
cracking approacﬁ the shear transfer is modelled through the so-
called "shear retention factor", 8, which varies between 0 and |
and 1s defined as: _

P =gy . (4.46)
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where G' is the reduced shear modulus for cracked concrete and G
is the shear modulus for the uncracked concrete.

To achieve the aim of incorporating a realistic shear
retention factor to model shear transfer across cracked
concrete,the following nonlinear relationship based on the
average of the three principal strains at any cracked point 1is
used,Bari(18 ). '

B
g

for € m < Eto {for uncracked concrete)

H
—

0.25 €to/ Em for €m 2 fto (4.47)

1

where B i3 the shear retention factor; €m is the average of the
three principal strains at a cracked point; and eto 1s the
cracking tensile strain which was taken as 0.000l. The above
relationship éeems more realistic than a constant factor because
the physical cbntact bet@een the two faces of the cracked planes
weakens at larger crack widths, thus decreasing the aggregate
interlocking forces.In the present work, irrespective of the
number of craéks at a single Gauss point one shear retention

factor is used for =all the cracks at that point.

4.5 Nonlinear Method used in This Work
4.5.1 General '

A nonlinear sfructural problem must obey the basic laws of
continuum mecbanics, i.e., equilibrium, compatibility, and the
constitutive’ relations of the material. Displacement
compatibility is automatically satisfied in the displacement
finite element technique. Common nodes between elements ensure
continuity and compatibility of displacements along‘element
boundaries, énﬁ polynominal shape functions ensure continuity and
single valued'displacemeﬁts internally. Therefore it becomes
necessary only to enforce that the nonlinear constitutive
relations are correctly satisfied whilst at the same time

preserving the equilibrium of the structure.There can be several




causes of nonlinear behaviour in a structure, which can be
divided into three categories: 1Y Material nonlinearity, 2}
Geometric nonlinearity and 3) Mixed material and geometric
nonlinearity.,Stress-strain relations are a ma,jor source Qf
nonlinearity. Only nonlinearity caused by short-term nonlinear

behaviour of concrete and steel is considered 1in this study.
P

These includg the tensile cracking of concrete, the nonlinemnr. '

stress-strain relations of concrete, and the yielding and worlk-

hardening of steel.

A nonlinear solution is obtained by solving a series ﬁf
linear problems such that the appropriate nonlinear conditions
are satisfied at‘any stage to a specified degree of accuracy. One
way of achieving this goal is to ensure that at any loading
stage, the splution results in stresses consistent with the
displacement field and satisf{ying the given constitutive
equations. These stresses will be statically equivalent to a set
of internal nodal forces which should be in equilibrium with the
externally applied loads. In general, these equivalent nodal
forces are not equal and the differences between the external and

internal forges are termed 'résidual forces". These residuals
must be remo?ed by repeafedly applying them on the structure
until an acceptable tolerance 1is achieved.The solution of
nonlinear problems by the finite element method are usually

attempted by one of the following three basic technigues:

al Incrementai {step-wise procedure)

b} Iterative {Newton methods)

¢} Incremental-Iterative - (mixed procedure)

where the nonlinearity occurs 1in the stiffness matrix [K] which,
in the case éf short-term behaviour of re:nforced concrete{ 1s a

function of nonlinear material properties.lDetails of the methods

are given in reference (22 ).




A modified version of the mixed procedure is. wused 1n this
work.The modified "Newton- Raphson " approach is uesd to evaluate
the stiffnesses.The stiffnesses are evaluated wusing a second
rigidity matrix ; and it was found (18) that varying the the
stiffnesses at second 1iteration in each increment results in
cheapest solutién.For the calculation of unbalanced nodal forces,
a modification of initial stress method is used,termed the method
of ”Residual Forces" (231, The basic technique is that ,at any
stage ,a load system equivalent to the total stress level 1s
evaluated and .checked against the applied loading system. The
difference between the two will result in a set of residuals that
are a measure of lack of equilibrium.These residuals are then
applied in the structure to restore equilibrium.The process is
then repeatedly continued +to dissipitate the out-of-balance
forces to a Suf%iciently small wvalue. Thus for equilibrium 1t 1is

required that
{ Foa '] = J; (B 1T { ¢]dv - [ R1 =20

where [ 0] are the actual stresses depending on the constitutive
law being used, [ R ] is external load vector , [ Fe ] the

residual forces,

In this work a version of frontal solution , originally
introduced by Irons {(24) and later modified by Hinton & .Owen
(25} ,1s used.The main features of the frontal solutipn technique
1s that , it assembles the equations and eliminates the variables
at the same time .This means that the total stiffness matrix of
the structure ié never formed as such the reduced equations
corresponding to eliminated variables are stored in core in a
temporary array called a buffer area.As soon as this array 1is
full,the information 1is then transferred to disc.This saves the
core storage and computer time through proper house keeping
Another important feature 1s that in frontal solver node
numbering is irrlevent and 1t is the lelement numbering that

matters for storage allocation.
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4.5.2 Convergence "riteria Used in This Work

A reliable convergence criteria must be used to terminate
the iteration‘process when the desired accuracy has been reached
.The accuracy is specified by the user through what is called
"convergence tolerances’”.These convergence tolerances are the
quantitative values that determine the accuracy of equilibrium
acceptable to the user and it must be realistic.Three types of
convergence criteria have beeen in common use for structural
analvysis ,namély,(a) Force convergence criteria ,({b) Displacemént
convergence criteria and {(clEnergy convergence criteria.Each of
the three alternatives has its merits and the selection of a
suitable one éepends on many factors.The rate of converdence
depends on the method used in the solution { constant or variable
stiffness).It 1is also required to specify a maximum number of
iterations,irrespective of the state of convergence.The maximum
number of iterations may influence the predicted shape of the
load-deflectign curve ,but it is an impeortaant safe guard against
unlimited and often unnecessary cycles of full gsolution. However
; whatever'cfiterion is chosen ,care must be taken to avoid
spending much effort +trying to obtain the unattainable and
perhaps needlgss accuracy. Ypecial attention must be given to the
cracking stage when large forces are suddenly released 1nto the
system.

In this study force convergence criterion 1is used. Because
it is a direct measure of equilibrium between the extérnal and
internal forces. A global approach is adopted ,where convergence
is monitored psing norm as follows

H . 0.5

* ~ 100 2 Toler
H . 0.5
YR
i-] '

where N is the total number of nodal points in the system, r
denotes the iteration number ,Fuyi 1s the residdual forces at node

i and R; is the total external applied load at node i.This




criteria states that the convergence occurs if the norm of the
residual forces becomes less than a specified tolerance times the

norm of the total applied forces.

4,5.3, Analysis Termination Criteria

The program must have some means of detectiné the éollapse
of the structure.The failure of the structure takes place when no
further loading can be sustained. A maximum deflection can be
used as a criterion to stop the analysis.The maximum iterations
can also be used.In this studyv ,however ,the growth of iterative
displacements is used to detect failure.This is coupled with a
search through the diagonal terms of the stiffness matrix to
detect zero ;or negative values ,in which case analysis 13
terminated . It was found that the negative or zero pivots were
always associated with very large displacements at or immediately
bevond the failure loads and alwavs occured after 2-3 unconverged
{sometimes diverged) increments.This .was also associated with

severe cracking ,yielding and crushing situations.

4,5.4. Procedure Adopted in the Program for Analysis

Considér the analysis at a particular iteration i. The
displacements are cakculated according to equation
{ 61 =1[0K(d,€) )4 [R] which illustrates the basic
nonlinear relationship between nodal displacements | & ] and
external noéal forces [ R ],due to the influence of the material
laws on stiffness matrix {K1], using the appropriate rigidity

matrix [Dls,y,z.




{11 For every stress sampling point ,evaluate incremental values
of strains i AE{ ] and stresses [ 40 ) using the appropriate

rigidity matrix [Dlx, v, z.

(2)Check whether the sampling point under consideration has
suffered from a compressive crushing situation in any of the

previous load cycles,if so,step(8) will be executed.

(3) Check whether this stress sampling point has suffered from a
tensile cracking situation in any of the previous load cycles,1f
so, step(7) will be executed.

{1}Using thg stress—-strain relationships described 1in the
concrete mateFial law , evaluaate the total actual stresses in
concrete [ ¥i | which correspond to the linearly calculated total

strains.

[C‘[_l"[fii}]-lf_z‘\fi]

Ly I =L e bbb Ploade |
(5) Check for concrete compressive failure criteria violation.If
violated ,all the stress component at this gauss point will be

set to zero ip this iteration and in all subsequent load cycles
[ d¢ 1 = 0.0 also the components of the rigidity matrix will
be set to zero for stiffness calculations in all the subsequent

load cycles.
[D]x.y.z = 0.0

(6) Check for concrete tensile failure criteria .If violated a=an
crack will occur ,thus a new rigidity matrix .[ De 1x, v,z will be
formulated according to the number directions of the cracks.
(7) If previously cracked 1in one direction ,1t ié required to
check for further cracking as follows:

(a) for the previous load cycle,the principal gtresses a, ,dz,

s had the direction cosines {11 ,m ,ny J);{l2 mz ,m2 )y .and

{12 y Ma ,ns ).These directions are termed here as x',v!',z’ as
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Fig. .11 @ Principal stresses In global axes.

Fig. 4.12 ¢ The wsngle of ihe new principal siress diraction
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shown 1in Fig.4.%l.

(b)In the present load cycle ,these direction cosines which
were obtained from the previous load cvcle were used in stiffness
calculation: to evalﬁate the new stress vector [ ¢ ] with regard to
the appropriate rigidity matrix [Dc].

{c} Now fo? principal stress calculation in crackéd material
,the new strresg vector { ¢} will be transformed {rom x,y,% space

3

to [ g’ 1 in x’,¥',2z’ space by

[ ¢'1 & [Te) LT}

where [T ] 1s ghe transformation matrix for stress vector .

The new transfo;med stress tensor , [¢] will be {see Fig.4.1l1l}
{er]l = [ a'y ”‘)' "y "Ixj.' T"w. LA !
and for the instance of a cracked caused by ¢ ,the value of oy’
will be set to gero { &, = 0cx'),and to evaluate the new values of
a; 'and s 'we are dealing with a two dimensional problem of which
the active stress components are Wﬁ“ P Ty thus
ol o4l Y
, ' y T / Ty Mo
Toro o'y = ———— S — ()2
5 ) Vi
21',7
tan 20 - Y
7., - a1l
where ¢ 1is the angle by which the directions of LA NEEAS deviated
from y', z' axes in the event of cracked caused by ¢ (Fig.4.12).
(d) Having obtained the ( ,and knowing the direction cosines

of x,y,z axes with respect to the global x,y,z space ,we nced to
calculate the direction cosines of ¢'3:¢"5which are (lz’,mz'.nz}]
,(la’,ma’,ng’),such that their plane remains perpendicular to the
already fixed 'direction of ¢, which caused the crack 1n our

example.This can be done as follows:

if {d] = [A] [ €]




and [ g J1=(C ] [¢]
then [ & 1 =(CI{AI[ @ ]

where [A] and [C] are the appropriate transformation matrices.The
product [C][A]-will contain allthe required direction cosines of
the new principal stresses contained 1n | J” }.

{(e) These nine values of direction cosines will be the ones
tc be used in the next load cycle for stiffness and new stress
vector calculations;:;and the values of the principal streses 0:’,

gy ! will .be uged to check against the cracking criterion because
g was set to zero (in this example).If the cracking criterion 1s

violated further cracks will occur and the appropriate rigidity

matrix [Dc]} mugt be used.

{8) Evaluate the equivalent nodal forces contributed by concrete

element

[Pi]conrc - qu [B}T [0—1 ] dv
{9) Add the 'equivalent nodal. forces contributed by concrete

element to those contributed by Sfeel reinforcement to get the

total equivaleqt nodal forces of the element, [P1i]

(P ] = [Picunc] + [Pidsteel

(10)YCheck for convergence

4.5.5. Nonlinear 3-D Finite Element Program

The program analyses nonlinear three dimensional stress
problems using Z20-noded isoparametricLbrick elements for concrete
and embeded bars of reinforcing steel . The bars can br embeded

any where within the elements ,the only restriction being that
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Fig.4.12 : Flowchart for 3—D finite element program




they must be parallel to the locatl coordinates | E, mn . B ) of
the basic concrete element.

The incremental-iterative method 1s used to solve the
nonlinear equations. The resulting equations are solved by

Frontal Technigue including buffer storage area in order to
reduce the cost of the analysis . The program includes a triaxial
short term constitutive equations for concrete ' developed by
Kotsovos , a three dimensional smeared cracking model and a

bilinear stress-strain law for steel .

Automatic mesh generator 1is not included . Coordinates of
midside nodes‘are always automatically generated . Because of the
enormous amount of output , the econtrol of the output 18

generally left to the user.
4.5.5.1 List of Subroutines with their brief description

l. Program MAIN
This is the master program from which all other subroutines

are called . Flow chart is given in Fig. 4.13.¢ 1& 3

2. Subroutine ZERO
This initializes various arrays to zero for accumulation of

loads , reactions , displacements , stress etc.

3. Subroutine INPUT
This reads the required informations for geometry , boundary
conditions , material properties for concrete and steel nnd calls

the required subroutines for data checking .

4. Subroutin? MIDSID
This computes the coordinates of the midside nodes for the 20

noded isoparametric brick elements.

5. Subrouting'GAUSSQ

This sets up the sampling ( Gauss ) point positions and

weighting factors for numerical integration.
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6. Subroutine STIF3D
This computes the stiffness matrix for the brick element
accounting for the cracking c¢rushing and the material laws of

concrete .

7. Subroutine BARSTF
This computes the stiffness of all the bars embeded within
the Wbasic concrete element and adds them into the appropriate

places in the stiffness matrix .

8, Subroutine LOAD3D
This computes the equivalent nodal forces after reading the

relevent data for any combination of load types.

g, Subroutine SFR3

This computes shape functions and their derrivatives .

10. Subroutine JACUB3
This calculates the coordinates of all Gauss points and

Jacobian matrix , its inverse and determinant .

1l. Subroutine BMAT3D

This calcylates the strain matrix [ B ]
12. Subrouting MOD3D

This evaluates the material property matrix [ D ] accounting
for the stress state prevailing at the Gauss point in questién

ready for stiffness calculation

13. Subroutine DRE

This calcqlates the stress matrix [ DB 1}

14, Subroutine ALGOR

This indicates by resolution index "KRESL" whether or not the
system of equgtions is to be accompanied by a full refgrmulétion
of the element stiffnesses depending on the algorithm chosen ,

the current load increment and the current iteration
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Fig 4,14 : Flowchart for Subroutine RESUAL {A,B,C.D)




15, Subroutine INCREM

This increments the load applied in subroutine LOAD3D .

16. Subroutine CONVER
This checks the convergence of the iteration process using

residual force method .

17. Subroutine LINER

This evaluates incremental stresses and strains assuming
linear elastic behaviour .
18, Subroutine FRONT

This calculates the deformations due to the incremental loads
{ in case of first i1teration of every load increment ) and due to
the residual loads ( in case of subsequent iterations ] using

Frontal Solut:ion Technique.

19. Subroutine RESUAL

Thais cémputes the total stress tensor of the structure and
calls the required subroutines to find the +true stresses and
evaluates ghe equivalent nodal forces . Fig.4,14 shbwé the flow

chart of thg subroutine ¢ t6 1}

20. Subroutine PRNPAL
This calculates the principal stresses and strains and their

directions at all gauss points in the element in x,v,z space .

21. Subroutine OCTAH

This Ca}culates the octahedral stresses and strains .

22. Subroutine ZRTETA

This ca}culates the coordinates z,r,e in the principal stress

space to determine the failure surface as : ( Fig. 4.7 {18}
z : hydrostatic axis in the principal stress space
z = V3 Goch
r : deviatoric axis
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e : the angle of similarity which specifies the devintion of

‘r from 0i on the ~n plane , 0 ¢ 9 ¢ 60°

I -
Cone =F.6 ( Gi+l=203 )
23, Subroutine FAILURE
This detgfmines the failure surface envelope using Kotsovos

failure criteria with equations 4.36 & 4.37 .

24, Subroutine EPSLN

This calc@lates the secant bulk modulus ' Ks from 1its
initial wvalue Ko using equations 4.3! & 4.33 . This also
calculates the corresponding octahedral normal strain , . € cneck

on the normallstress strain curve (Fig.4.15) as follows:€14)

0oct

25. Subroutine GAMA
This calculates the shear modulus , Gs from initial value Go

using equations ¢.32 & 4.33 . This also calculates the octahedral

shear strain , Ycneck on the octahedral shear stress-strain curve
as follows :(Fig.4.15} |
Toct
Ychepk S mmmmemm
1 2 Gs

26, Subroutine ASCEND 7
For the gauss point at which the state of atress is within
the failure ;éurface , this subroutine calculates the correct

normal and shear stresses by direct internal iterantions . €check

obtained from' subroutine EPSLN must equal to €oc1 obtained from

subroutine OCTAH , other wise (gct ig increased or decreased
{ Fig. 4.15 Vo, Iterations are continued until €cneck 13 very
close to €,c1  with acceptable tolerance of 1.0 E-10. The same

procedure is adopted for Teci- Yoetr curve . Having found the

v




———

@mm
Octatiedral
stresses &
wins

Tolerance : Acceplable
in Strains (Octahedral)

1

Constants : A, B,
C. D, Kg Gg

26

EPSLN (A.B) :
‘ K. tcheck

|

o

— No
- -V —.-—_'-'——
lacl£iTolerance | —————
. o

Yes

A

Increase or decrease
Upet

GAMA (C,D) :
GS' Yeheck

No
layi£|Tolerance |

Normal & Shear
Stresses

Increase or decrease
Joct

Fig .4,16 : Flewzhart for Subroutine ASCEND (A,B,C,D)}




correct values of Gac: and Toc: , the corresponding normal and
shear stresses are than calculated from

Tis = 2 Qs €y 4+ 005 (3 Ks-2Ge) Eocn
Flow chart is given in Fig.4.16 .CiE51}

27, Subroutine BARSTS
) This Subrouﬁine evaluates reinforcing bar stresses and brings
down the stresses to the vield value in case of yielding of steel
28. Subroutine GRKING
This deals with cracking and crushing of concrete using
appropriate criteria . For cracking the offending principal

stress 1s set to zero and the appropriate crack directions are

fixed . For crugshaing ,all stresse are set to zeroc .

29. Subroutine TRNSF
This subroutine sets up the transformation matrices used to

transform the stresses and strains to the required directions .

30. Subroutine OUTPUT

This gives Fhe required output of the analysis.

3f{. Subroutine CHECKI
32, Subroutine ECHO
33. Subroutine CHECK2
Subroutines. 31,32 and 33 detect the error in data supplied

and gives the informations about type of error with termination

of execution .




CHAPTER 5

THEORETICAL NONLINEAR STUDY

5.1 General

Nonlinear analysis of reinforced concrete structures by
finite element analysis 1is centred around a suitable model for
the description of 1its nonlinear material responses., The
nonlinear stress-strain relationship of concrete is well known
and form only a part of the total nonlinear behaviour of
concrete. On Lhe other hand, initiation of cracks in concrete in
early stages of loading contributes significantly to the total
nonlinear effects of concrete structures. The initiation of
cracks at a sampling point in no way indicates a complete failure
of that poin@. Rather it should be treated ags a starting point of
nonlinear behaviour of concrete. In the cracliing environment of
concrete, the overall load deflection response depend
significantly on how well the post cracking behaviour is model led
in the numerical solution of such problem. The nonlinear 3—ﬁ
program, diécussed in Chapter 4 and used 1in this work, models
suitably the nonlinear material responses of reinforced concrete.
In this chapﬁer, the findings of theoretical investigations have

been discussed syvstematically.
5.2 Procedure Adopted for Nonlinear Study
5.2.1 Finite Element Discretization of Models

A typicpl floor plan of shear wall slab structure 1s

presented in Fig. l.4(a). For the models studied, the slah panel
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Fige 5.1 ; 'I?ypicai finite element mesh with four elements
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was divided' into an assumbly of 3-D, 20-noded brick elements

having 3-degrees of freedom at each node. As a result of
conditions of svmmetry and antisymmetry in the slahb, only one
quadrant of the complete panel needs to be analyzed with
appropriate boundary conditions. A typical finite element mesh

having four elements with node numbering 1is shown in Fig. b.1l.

5.2.2 Investigation on Boundary Conditions

The purpose of the study was to investigate the behaviour of
slabs 1n coépled shear wall structures. .For this the flexural
stiffness ané effective width of floor slabs were studied
following the procedure discussed in article 2.3. Therefore the
behaviéur of slab in resisting the rotation of the wall {6} due
to equivalen£ wall moment (M) resulting from structural actions
of coupled sh%ar wall structures as discussed in article 1.4 was
studied. The rotation (8} was applied incrementally and 1n each

increment the behaviour of slab such as propagation of cracks and

stresses and strains in steel and modes of failure were
investigated through nonlinear analysis. Appropriate boundary
conditions were imposed in finite element mesh to simulate the
conditions described in article 2.3. Three cases of boundary
conditions were imposed and the behaviour of the slab was studied
and compared with each other to select the appropriate one.
Detailed description of the investigations on different boundary
conditions ié— provided 1in Appendix . Effect of boundary
conditions on slab deformation , flexural stiffness of slab and
crack bropagation in slab was studied and compared with each
other . After investigations CASE I was found to represent the

structure adequately and was used throughout the study.

i1
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53.2.3. Determination of M and ¥ from Finite Element Solution

Equal displacement { &) were prescribed at wall nodes to
produce rotation & of wall as shown in Fig. 5.2(a). In each
increment, the finite element solution furnished the
displacements, stress resultant . values at allrnodes and also
reactions at the restrained nodes as shown in Fig. 5.2{(a}). The
reactions at the wall nodes provided the static equivalent wall
moment M and the total shearforce, Q , transferred from the wall

5.2(b) when wall undergoes the

to the slab as shown 1in Fig.

imposed relative translation due to rotation 8.

Rotatioq {8} of wall was increased at each increment by a
factor untii failure of the slab and in each increment wall
moment was evaluated corresponding to wall rotation. In this way
M-6 relatioqship throughout the entire stages of loading were
evaluated. ﬁence using the equations 2.5 and 2.6, flexural
stiffness K énd effective width of the slabs and their variations

throuehout the entire loading history were evaluanted.

5.3. Idealization of kM-8 Curve

For discussion purposes and to analyze the M-8 curve

critically, each curve is idealized in the manner as shown in
Fig. 5.3(a); The slope -of the initial linear part of the M-b
curve ‘ab’' is the precracking stiffness Ko. The point ‘b’ on the

curve is roughly an indication for the first appearance of the
cracks. After cracking of concrete, the first part of the

nonlinear curve is approximated by a straight line ‘be! and  the
] P

slope of thié part will be called ‘cracked section stiffness
'Kee'. The "point ‘e’ on the curve is roughly an indication for
the first yielding in flexural reinforcement. After yielding the

second part of the nonlinear curve is approximated by a straight
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line 'cd' and the slope of this part will be called post cracking
stiffness ‘Kp'. The portion ‘de’ indicales the probable model

failure.

A typical idealization of M-=# curve is shown in Fig.5.3(bl.
In this Fig. points Cr and y on idealized curve represent
" start of cracking and 'start of. steel vielding respectively.
Whereas 1in analysis, the points Cr'and y'represent the start of
cracking and yielding of steel respectively. This 1s because,
during,analyéis rotation was applied incrementally and 1t was not
possible to find cracking and yielding points exactly. The
moments at points Cr, ¥ and U will be termed as cracking moment

Mcr, yield moment My and ultimate moment My respectively.

For all the models inveétigated, idealized M-¢ curves will
be drawn showing the actual points on the graph. The stiffness
Ko, Kece and Ky will be evaluated from idealized M-& curve using
equation 2.5. In calculating the value of stiffnesses (Ko, ,Kcr Kp?)

using equation 2.5 ,precracking value of flexural rigidity (D)

will be used . But after cracking of concrete ,the value of D of
the slab will be reduced . 9o calculated values of stiffnesses
{Kce , Ko ) will be lower than the actual values.

5.4, Material Properties of Models

As reinforced concrete was the slab material, the concrete

and steel properties were assumed and are presented in Table 5.3.
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TARLE 5.1

Concrete Properties
Cube crushing strength, few = 27.6 N/mm?
2.76 N/mm?

Modulus of rupture, fr
Mbdulusqu elasticity, Ec = 0.210E + 05 N/mm?2

Poisson’$ ratic of slab material , ¥ = 0.15

Yield strength, fy = 345 N/mm?
Modulus of elasticity Es =.210 E + 06 N/mm?2
Yield strain ., €y = 0.001642

5.4. Geometric Dimensions of Models

Thefinvestigations have been carried out for a range of
typical yalues of bay width (Y), corridor width (L} and length of
slab paﬁel (X} as shown in Fig. 5.4. Shaded area shows the one
quadrant of the panel analyvzed for each model. Table 5.2 shows
the geopetric dimensions of all the models investigated in thas

work.

Placing of Reinforcement in Models

In all the models, reinforcements were provided according to
the design as discussed in Chapter 3. Large diameter bars were
used to minimize the number of bars in the slab. this was done to

save the computer time during execution.
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TABLE 5.2

Model Length of Corridor Bayv Width of glab

No. slab (X) widthi{l} width (Y) wall (W) thicknesa{t)
in m in m in m in m in m

TMODL  14.4 2.4 6.0 6.0 0.20
TMODZ 14,4 2.4 6.0 6.0 0.20
TMOD3  14.4 2.4 6.0 6.0 0.20
TMODd  14.4 2.4 6.0 6.0 0.20
MOD6 ¥  12.0 1.2 7.2 5,4 0.20
MOD62  12.0 2.4 7.2 1.8 0.20
MOD63  12.0 3.6 7.2 4.2 0.20
MODB4 12,0 4.8 7.2 3.6 6.20 .
MOD65  12.0 6.0 7.2 3.0 0.20
MOF66  12.0 7.2 7.2 2.4 0.20
MOD41l  12.0 1.2 4.8 5.4 0.20
MOD42 12,0 2.4 4.8 4.8 0.20
MOD43  12.0 3.6 4.8 4.2 0.20
MOD44  12.0 4.8 4.8 3.6 0.20
MOD45  12.0 6.0 4.8 3.0 0.20
MOD46  1Z.0 7.2 4.8 2.4 0.20
MODZL  12.0 1.2 2.4 5.4 0.20
MOD22  12.0 2.4 2.4 4.8 0.20
MOD23  12.0 3.6 Z.4 1.2 1 0.20
MOD24  12.0 1.8 2.4 3.6 0.20
MOD25  12.0 6.0 2.4 3.0 0.20
MOD26  12.0 7.2 2.4 2.4 0.20
MODLL  12.0 1.2 1.2 5.4 0.20
" MODLl2  12.0 2.4 1.2 1.8 0.20
MODI3 12.0 3.6 1.2 4.2 0.20
MODI4  12.0 4.8 1.2 3.6 0.20
MODLS  12.0 6.0 1.2 3.0 0.20
MOD16* 12.0 7.2 L2 2.4 0.20

*Models are numbered in such a way that the lst & 2nd numeric

values in decimal represent the values of V/X & L/X respectively
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3.6 Parameter Study

The parameters aftfecting the numerical solution of nonlinear
analysis are {a} Mesh size, {bh} Tension stif{fnening, (¢} Tensile
strength of concrete, (d} Angle of crack (e} Shear retention
factor of craéked concrete and (f) Norm of convergence tolerance.
Influences of the some of the above parameters were studied by
many authors ?hich was discussed 1n article 2.5. In this study,

influence of mesh size was studied only.

Effect of Mesh Refinement.

Modél NOQ#Z was considered for this study. This model was
studied by diYiding it into a d-element mesh and 8 eight element
mesh. Refined‘model MOD42 was named as RTMOD42 . The typical 8-
element mesh 18 shown in Firg.5.5. Figs.5.6 shows the plan with
reinforcements for the models.Fig.5.7 presents the idealised M-8
curves .for phe models. To facilitate a comparative study Table

5.3 is prepared and presented below.

TABLE 5.3

Model No. Moments in kn-m Stiffnesses Effective width
' ble ¢ M o My Ko Ker he Author Coull&Wong
Yeol/Y Yeo /1)
MOD 42 47 296 338 36 8.0 3.9 0.3234 0.36
RTMOD4 2 47 315 345 32 9.0 4.04 0.30 .36
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It is found that the both models crack approximately at the
game cracking moment although Myvand Myfor model RTMOD42 are 6%
aﬁd 2% higher respectively . This deviations may be considered to
be small. The value of ke for model MOD42 is 1% higher than that
of RTMOD4Z . But the values kecr and Ky for model RTMOD4Z are 11%
and 3.406% higher respectively than those from MOD42. The +vallue
of Ko from M0p42 ic closer to that from Coull & Wong.

Figs. 5.8 presents the propagation of cracks for the two
models. Crack pattern for the two models are similar.Agaln
sampling points near the interior edge of the shear wall cracked

first and corridor slab cracked severely.
In this study ' jJ-element mesh was used throughout the

investigations to save computer time as 8-element mesh, required

much more computer time.

{onsiderations to Other Parameters

Tension stiffening was ignored 1in this study. In order to
minimize the number of elements , the wall was assumed to have
zero thickness. Other parameters were included 1in numerical

modelling as .discussed in chapter 4

5.7 Model Investigations on Effect of Reinforcement

In this stage several models named as TMODLl, TMODZ, TMOD3 and
TMOD4 were étudied. All the models had same geometric dimensions
but different percentages of reinforcements. Plan with

reinforcement arrangements are shown in Figs. 5.9.
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Effect of Reinforcement on M-& Relationships

Figs. 5.10 presents M-8 relationships for the models TMODI,

TMOD2, TMOD3 and TMOD4. But the unsual shape of the M- dgraphs of
models TMODI and TMOD3 draws the attention. The part ab of the

graph represents precracking stage. As the imposed displacements

cracks start forming and there is =a sudden

the

are increased,

decrease in. moment as represented by the part bc of the

curve. The moment My at point b represents the uncracked moment.
The reason for this type of behaviour is supposed to occur

Lhe
the model

Steal
06 1%

for "“providing very low steel in the glab. provided 1n
model TMOD! was Py {aAs/bd) = 0.074%, Py = 0.
TMODS3 0.2%, P = 0.784%. Those

than that prescribed by ACI Code (Pmin =

and 1n
were much less

0.4%). To

steels

200/fy =

was Py =

analvze the M-8 graphs for the two models, Table 5.4 1is prepared.,

TABLE 5.4

Model Moment at section Stiffness Effective Analvtical

at the interior edge width

of shear wall

Mb bIc I{o -&PO/Y‘ D'quo (I{N—m}
TMODL 28 18.5 59 0.328 15
T™MOD2 28.5 25.0 59 0.328 20
Mveao ultimate moment of the slab section having effective width
Yeo

The moment Myeo 1s evaluated following the procedure

discussed 1n article

{3.8.41).




Precracking stiffness (Ko) for the two models are same. [Irom
the Table 5.4, it is found that the cracking moment Me from M-8
curve 1s greater than Ehe ultimate moment.Mypo. Therefore, after
cracking, thé capacity of the slab section reduces as the steel
provided in the slab is much less, resulting in a sudden decrease
of moment. '

Reinforcements were increased -in models TMODZ {Px = 0.52%,

P, = 0.784%) and TMOD4 (P = .B65%, Py =.784%) and weré
investigated. Fig. 53.10 shows that as the reinforcement 1s
increased, tﬁe point ¢ 1s gradually shifted upward and finally
the sudden drop in the graph disappears; Tﬁe smooth curve of

Model TMOD2 and TMOD4 is due to the fact that the steel provided
13 greater phan that minimum steel specified by lACI Code.
Therefore, pegcentages of steel has a remarkable influence on the
shape of M-9 graphs and minimum steel specified by ACI code
should be provided to have the normal behaviour of reinforced

concrete.

Effect of reipforcement on stiffness

Idealized M-9© curves for models TMODZ2 and TMOD4 are presented
in Fig. 5.11, to calculate the stifinesses for the models. Table

5.5 1is presented Lo compare the stiffnesses.

TABLE 5.5
Model Stiffness Effective width Effective width
I{o Hcr I‘\-.p . .Yeo/.Y Coull & Wong
TMOD 2 62 I'l.78 .04 0.345 0.32

&)
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Precracking stiffness  for  the two models are same nlthourh
the amount of reinforcement in TMODd 1s 23% higher than that 111
THMOD2. Therefore, it may be concluded from the models analvzed
that the amount of reinforcement has negligible i1nfluence on the

precracking stiffness of slab.

Precracking effective width {Yoo) for the models are only

6.5% higher than that from Coull & Wong linear analysis.

But cracking stiffness (Kkcr) and post cracking stiffness (Kp)
for model TMOD4 are approximately 6% higher than those for madel
TMOD2 .- | _

Cracking, vielding and wultimate moments increase  with
increase 1in percentages of reinforcement. Crack patterns are
similar to the models described earlier. Corridor slab cracks

severely as discussed in earlier models .

5.8. Model Investigations to Study the Effect of Geometric

Parameters

A systematic investigations was carried out with different

slab-wall configurations with planar shear walls. In these
investigationg. the effect of geometrical parameters such as
Corridor'width, L, spacing of shear wall, Y and slab width X on

the behaviour of slab was studied. Most of the researchers
conducted their research to relate the flexural stiffness and
effective widﬁh with geometric parameters. Therefore, similar
investigation% were conducted so that the results could be
compared with®those established results. The models were divided
‘into 4 groups having different ratio of Y/x and in each grouﬁ the

ratio L/x varied from 0.1 to 0.6.
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5.8.1 Description of Behaviour of Slabs 1n Theorrtical Studies

al Models with Y/X = 0.6

Models MODS8I, MODEZ2, MOD63, MODB4, MOD65 and MODSHA having L/X
0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 respectively were investigated in

this group. Pian with reinforcement of models MoD6!, MODG62, MOD63

and MOD64 were presented in Figs. ¢ (Appendix). Idealized M-8
diagrams were also presented in Figs. 5 ({Appendix). Plan with
reinforcements of models MOD83 and MOD68 are shown in Fig. 5.12.

Idealized M-& diagrams for these models are presented in [igs.

52.13.

Cracking diagrams for the models MODG61, MOD62, MODE3 and
MOD64 were also presented in Figs. 6 (Appendix).But those crack
pattern merely shows the sampling points which are crached .
Cracking started in MOD61 at 25.3%, in MODBZ at 23.8%, 1in MOD63
at 22.5% and in MOD64 at 23% of ultimate load. In all the models
cracks started from the 1interior edge of the shearwall and
gradually propagated towards the edgeé of the slab. In all the
models, corridor slab, that is Element 3 and Element 4 was
cracked severely and failure was supposed to occur at the section
pPassing thréugh the interior edge of the shear wall. Similar
cracking diagrams were also observed for models MODES and MODEG.
In MODBS 'céacks started at 21.3% and in MOD66 at 19.6% of

ultimate loaq.

A particular model MOD62 1s taken +to study the actual

direction of c¢racks . As it will be difficult to show the
propagation of cracks in three dimension , crack patterns are
shown in +two dimensional ({ X-Y) plane. The direction of the

cracks in the fig. represents the direction of principal stresses
causing the crack and the length of the crack at a sampling point

represents the magnitude of the corresponding principal strain.
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TABLE 5.6

L A ML e mm mm e e o T T R R B Gk T e e e e e A ar e P T TE N MR MR MR M M e R g = A e A A v e e e A A -

Model Paraweters Moment from Idealised Ratios
No. ' . M-8 Curve 1in Kn-M

CY/X LJX Mc My - My Mec ¢ /My My /Ma
MOD6 1 0.1 100 467 560 0.179 0.830
MOD6 2 0.2 78 309 328 0.238 0.940
MOD63 0.6 0.3 63 235 280 0.225 0.800
MODS6 4 0.4 57 203 Z47 0.231 0.820
MOD6E 5 0.5 57 240 268 0.213 0.896
MODE6 0.6 54 212 276 0.196 0.770
MOD4 1 0.1 98 319 412 0.238 0.774
MOD4 2 0.2 47 - 296 338 0.140 0.876
MOD4 3 0.3 38 243 308 0.125 0.795
MOD44 0.4 0.4 31 181 206 0.105 0.78
MOD45 0.5 30 261 287 0.105 0.910
MOD46 0.6 28 198 36 0.119 0.839
MOD2 1 0.1 68 312 364 0.187 0.850
MOD22 0.2 35 219 258 0.1386 0.930
MODZ3 0.3 30 L9 3 252 0.115 0.740
MOD24 0.2 0.4 29 202 259 0.110 0.780
MOD25 0.5 17 157 181 0.100 0.870
MOD26 0.6 25 121 132 0.189 0.910
MOD 1 1 0.1 54 237 293 0.184 0.810
MOD12 0.2 2 175 198 0.101 0.880
MOD 13 0.3 21 105 198 0.190 0.950
MODL4 0.1 0.4 17 93 115 0.150 0.810
MOD15 0.5 15 87 108 0.139 0.805
MOD 16 0.6 14 95 103 0.131 0.920
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As there is a gradual increase in the magnitude of the
principal strain due to increase in load the length of the crack

in the figure:is also gradually increased as shown 1in Fig.5.14.‘

Yielding of steel started in MOD&61 at 83%, in MODBZ at 94%,
in MODE3 at 84%, in MOD64 at BZ2% in MOD65 at 89.6% and in MOD6SE
at 77% of ultimate load.

Table 5.6 presents the values of Mcr, My and Mse from

idealized M-8 curves for these models.

b) Models with Y/X = 0.4

Models MOD41t, MOD42, MOD43, HMOD44, MOD45 and MOD46 having
L/x, 0.1 to 6.6 respectively were investigated, Figs. 5.15 show
the plans with reinforcement of these models. Idealized M-©
curves for these models are presented in Fig. 5.16, the values of

Mce s My and My from idealized M-8 curves are presented i1n Table

5.6.

Figs. 5.17 show the gradual propagation of cracks 1n these
models. Cracks Startedrin MOD41 at 23.8%, in MOD42 at 4%, in
MOD43 at 12.5%, in MOD4d at 12.5%, 1n MOD45 at 10.5% and 1n MODI6
at 11.9% of u}timate load. Similar crack pattern as previous
models were ogserved. But crack started at a smaller percentages

of ultimate load than the previous models.

Yielding of steel started in MOD41l at T7.d4%, in MODdZ at
87.6%, in MOD43 at 97.5%, in MOD44d at 78%, in MOD45 at 91% and in
MOD46 at 83.9% of ultimate load.
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c) Models with ¥/X = 0.2

Models MODZ!L,MOD22z, MOD23 , MOD24 , MOD25 and MODZSH having L/X

0.1 to 0.6 respectively were investigated in this group . Plan
with reinforcements of models are shown in Figs. 5.18 . Idealized
M~-& curves for these models sre presented 1in Figs. 5.19 . The
values of Mc: , My and My, are presented in Table 5.6.

Figs. 5.20 show the gradual propagation of cracks 1n those
models . Cracks started in MOD2! at 18.7% , in MOD22 at 13.6% ,
in MOD23 at 1l.5% , in MOD24 at !1.0% , 1in MOD25 at 10% and in
MODZ26 at 18;9% of ultimate load . The craclk patterns are similar

to those described earlier.

Yielding of steel started in MODZ1l at 85% , in MODz2 at 93% ,
in MOD23 at 74% , in MOD24 at 78% , in MOD25 at 87% and in MOD26
at 9!% of ultimate load .

d) Models with Y/X = O.!

MOdels MODLL, MODlZ, MODL{3, MOD!4, MOD15 and MODLI6 having L/X

0.1 to 0.6 respectively were investigated 1in this group. Plan
with reinfo;cements of models are shown in Figs. 5.21. Idealized
M-8 curves for these models are presented in Figs. 5.22. the

values of moments from idealized curves are presented 1in Table

5.6.

As the crack patterns are similar to those decribed earlier,
they are not plotted. Cracks started in MODII at 18.4%, 1in MODI2
at 10.!%, in MODL3 at 19%, in MOD!4 at 15%, in MODI5 at 13.9% and

MODI6 at 13.1 of ultimate load.
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Yielding of steel started in MODILl at 81%., 1in MODIiZ2 at 88%,
in MODI3 at 95%, in MODI4 at 81%, 1n MODIS at 80.5% and in MODIG
at 92% of ultimate load. '

Discussion on Crack Pattern

In this study, cracking means the cracking of sampling points
in an element. A sampling point can crack in three directions.
Cracking of sampling points located on the tension side (bottom
layer) of the glab are shown 1n the cracking diagrams, only four
elements were used 1n the study, so the number of stress sampling
peints in ther tensile region 1s not large. Therefore, the
resulting crack pattern is crude. A model was also studied with
8-element having more stress sampling points 1n the tension side,
giving approxi@ately the similar crack _battern. For all - the
models, it 1s found from the crack pattern that the cracks
originate from the interior edge of the wall and in element near
the 1interior edge of the wall {corridor slab) cracks are more

pronounced as almost all the sampling points are cracked.

So, it may be concluded that the corridor slab 1s more highly
stressed particularly the section passing through the interior

edge of the shearwall.

Although c¢racking of sampling points in the tension side of
the slab are piotted, the sampling points in the top layer of the
slab are also c¢racked. Some top layer sampling points in Element

2, Element 3 and Elementd are found to crack.
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5.8.2 Study on Behaviour of steel in Slab

Bottom reinforcements i1n x-direction are considered for study

as these reinforcements play important rule in resisting flexure.

Each bar has two sampling points 1in each element. ¥For the
convenience of description, the bars are named as shown in [ig.
5.28, although they were addressed in a different manner during

computer analysis.
In this article, 5-models wi1ill be discussed to study the

behaviour of ;teel throughout the slab.

5.8.2.1 Model Descriptions
a) Study of Model MODG!

Fig. 5.23 presents the bottom reinforcements in x-direction
with their numbering. Table 5.7 presents the stresses 1in
reinforcement, at the sampling points throughout the loading

history to compare the stresses in the reinforcements.

Figs. 5.2%4 shows the variation and development of stresses in
a bar at different elements throughout the entiire loading
stages., From the figures 1t is clear that the sampling points of
the element 3 are stressed much higher +than those of other
elements. Bar (1} close to the shear wall i1s under comfpressive
stresses at Sﬁmpling points in element 4. The sampling point (1!}
of all the bars except bar (4) in element 3 are yielded. Bar (d)
is under comﬁression at element 3 and 4. The sampling points of
all the bars at element 't and Element 2 are stressed negligibly
in comparison to those sampling points at element 3. This is very

clear, when Figs. 5.24 are examined.




TABLE 6.7

STRESSES IN STEEL IN N /MMZ for model MODE |
M/M. Bar Element-1 Element-2 Element-3 Element-4
No S.P. 5.k, 5.pP 5.F.
i 2 1 P 1 pA 1 2
18 1 0.0603 0.00b 0012 0.021 9.9 6.6 4.3 1.16
60 1 0.06 Los -0.079 0.012 205.0 91.0 -34.0 -42.00
0.98 | 0.143 205 -0.37 284 345.0 love.d 41,7 ~154
18 2 0.095 U.198 5.9 3.96 2.6 0.704
60 -0.241 0.744 190 129 20 14
.98 2 -2.40 0.479 345 239 1814 60.2
18 3 0.109  0.305 .82 1.29 0.84 0.23
60 3 0.716 2.60 109 101 0,2 J36.6
0.98 -1.360 12.3 340 20z 189 137
18 4 0,124 0.236 0.013 0.339 -0.04 -0.025 -1.65 -0.463
.60 4 L.UB 2.19 3.93 7,00 -116 =50 -12.2 11.8
0.98 4 3.56 5.63 5.20 28 -133  -133  -32 16.6
S.p -~ Sampling point of bar in an element
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Fig. 5.25 shows the stresses and strains in steel at element
3. As the Element 3 is highly stressed, this element 1w closely
studied. From the stre<s diagram, it is seen that the bars close
to the shear wall are stressed higher and as the 'load increases
the bars close to the shear wall yield first. Steel at sampling
point | are stressed higher than that at sampling point 2. This
18 also eyidenf from the strain diagram of steel. Therefore, a
stress concentration occurs at a section passihg through the

interior edge of the sehar wall.

b) Study of Model MODG2

Figs. 5.23 shows the bottom reinforcements in x-direction
with their numbering. Figs, 5.26 show the variation of stresses
in a bar at - different elements, which presents the similar
behaviour of steel like previous model. But bar 4 13 under

tensile stresses at element 3 and 4.

Figs.5.27 shows the stresses and strain in steel at element 3
representing tﬁe same behaviour of steel as in previous model.
c) Study of Model MOD44

Figs. 5.23 shows the bottom reinforcements in x-direction.
Figs. 5.28 showing variation of stresses in a bar at different

elements represents similar behaviour as before. Figs. 5.29 shows

the stresses and strains in steel at element-3.

¥

d)] Study of Model MOD22

Fig. 5.23 presents the bottom reinforcements 1in x-direction.
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Figs. 5.30 shows the variation of stresses in a bar at different
elements representing similar behaviour. Fig. 5.3F shows the

stresses and strain in steel at element-3.

e) Study of Model MODZ3

Fig. 5.23 shows the bottom reinforcement in x-direction,
Figs. ©6§.32 show the variation of stresses in a bar at different
elements représenting similar type of behaviour. Bar 4 furthest
from the shear wall is subjected to tensile stress at element-3
and compressive stresses at element-4. Fig. 5.33 shows the

stresses and sgrains in steel at element-3 for the model.

5.8.2.2 Yielding Pattern of Steel for the Models

Fig. 5.34lshows the vield pattern of steel for the models.
Yield pattern for all the models revealed that the steel close to
the interior :edge of the shear wall yielded first; Steels far
from the shear wall in transverse direction are -yielded later.
Only the steels in element-3 are yielded. Almost all the steels
in element-3 are yielded at sampling point 1, before failure of
~the slab. All the models are designed according to direct design
method which réquires yielding of sufficient number points with
minimum redistribution of stresses to convert the slab into a

mechanism for failure. This consideration 1is supposed +to be

fulfilled by the models .,

5.8.2.3 Discussion on Behaviour Steel

Steel strgss diagrams shows that the stresses 1in steel
nearest to the shearwall increases at a much higher rate than.
those furthest from the shearwall. That is stress concentration

coccurs near the shear wall as load increases. It represents that

the effective width of the slab gradually decreases with increase
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in load.

The general steel behaviour can be described as trilinear'
consisting of behaviour before cracking, after cracking and after
vielding of Steél. Before the development of first cracks, very

little strain exists in the reinforcing steel and the load-strain

relationship can be taken as linear. At this stage, applied load
is resisted mainly by concrete, hence the steel is inactive..
After cracking, : a gradual increase in strain occurs in the steel

and curves may be taken as linear until yield. After yielding, a

rapid increase . in strain with 1little increase in load cccurs

giving a nonlinear and almost flat curve.




5.8.3 Interpretation Results

M-& diagrams are idealized for simplicity in determining the
flexural stiffnesses of slab. Idealized curves for all the models
are used to étudy the effect of various geometric parameters on
bending Stiffgess and effective width of the =slab. Using

equations 2.5 énd 2.6, the bending stiffnesses Ko, HKces ke and

corresponding Yeo/Y, Yecr /Y and Yeo/Y are evaluated where Yeo 18
precracking, ?ecr is cracking and Yep 1s post cracking effective
widths. Table 5.8 is prepared to include all the necessary 1tems

for interpretation of results.

a) Comparison of Nonlinear Results to those of Coull & Wong {12}
and Qadeer & Stafford Smith (7] "

The resultg from nonlinear analvsis are compared with those

of Coull & Wong and Qadeer Smith as their results were
experimentally verified. As the researcher’s adopted linear
analysis, the. linear part of the nonlinear analvysis {precracking

part) should agree with each other. Fig. 5.35 shows the variation
of Yeol/¥ with-L/X for different values of Y/X from nonlinear
analysis and tbose from Coull and Wone. Comparative study shows a
close agreemen} with each other as the variation are only 1[.0% to

8%.

Fig. 5.36 and Table 5.9 compare the precracking stiffness

(Ko} of nonlinear analysis to those of Qadeer & Smith.
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TABLE 5.9
Parameters Ko Kk
Y/X L/X Author -_Qadeer & Smith
0.2 44,60 38.0
0.3 21.00 21.5
0.6 0.4 12.56 i0.6
0.5 T.02 7.2
0.6 6.00 5.4

Results from nonlinear analysis are 2 to 15% .higher than

these from Qadeer and Smith showing a good agreement.

b) Effective gidth as a function L/X

Figs._ 5.%7 shows the variation of YijY, Yecr /Y and Yep/Y
with L/X for %ifferent values of Y/X. Effective width gradually_
increases wiéh the 1increase of L/X, but the rate of increase
decreases as éhe value of L/X becomes larger. From the graphs, 1t
can be said that the effective width of the slab egradually
decreases wi?h increase 1in load. The ratio of «cracking to
precracking effective width ranges between 0.25 to 0.45 and the
ratio of postcracking to precrécking effective width ranges

between 0.08 £o 0.22 for the models studied.
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c) Effective width as a function L/Y

Figs. 5.38 show the variation of Yeo/Y, Yecr/Y and Yepo/Y with
L/Y for differgnt values Y/X . The graphs show that the effective

width increases with the increase of L/Y.

d} Bending Stiffness as-a Function L/X

Fig. 5.39 shows the variation of Ko, K¢r and Ky with L/X for
different wvalues of Y/X. The graphs show that the stiffness
decreases withjincrease of L/X and for a particular value of L/X
stiffness incréases with the 1ncrease of Y/X. S3tiffness decreases
as load increases. This is also evident from the Table 5.8, where
the ratio of; | NP to Ko and Ky to Ko are evaluated. 1t can be
inferred from the models analyzed that the ratio of cracking +to
precracking spiffneSs ranges between 0.25 to 0.45 and the ratio

postcracking to precracking stiffness ranges between 0.08 to
0.22.

o

A =




5.8.4 Analytical Interpretation of Nonlinear Results

g, .

e A

o Idealized M-2¢ curves presented previously approximate the
behaviour of the slab. Flexural stiffnesses and effective wjdths
gderriveﬁ from idea%ized curves were discussed with graphs in
previous article. Iﬁ‘ this article, effort will be made to
corelate the crack&d moment Mcr and ultimate m@ment My derived

-

from idealized cuffves with analytical results &onsiderinq the
|

: '
slab as a beam of some effective width. '

As discussed earlier, the transverse section passing through

the interior edgé%mf the shearwall is critical. It was evident

from both créck diagrams and vielding diagrams. Analytical

results will he Qefrived on the basis of the «capacity of this

section. <

a) Analytical determination of cracked moment.

Simple beam ?heory is used to determine the cracked moment of
the lslab seétioh subjected to flexure. Fig. 5.40 clearly shows
the procedure.

The foilOQing equation can be used to find cracked moment

analytically.

fe = Mcea C /1 ' ) " { 5.1)
where Mera. = Analytical cracked moment

‘ c =t /2 - .

4 I = Yeo.t3/12 + {n -~ 1) Ag .d,;? &

Therefore for a particular value of modulus of rupture ()

Mcea can be found using equation 5... : .

&
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b} Analvtical determination of ultimate moment

Fig. 5.4} shows the stress diagram for determining Lhe

ultimate moment. According to diagram:

Y Width of the section

t

d = Effective depth of tension reinforcement
feu= Cube crushing strength of concrete

fv = Yield strength of steel

As = total area of tension reinforcement
x = Depth of;concrete rectangular stress blocl
Mua = ultimate moment of slab section having width Y.

The following equation can be written:

As . fy = 0.87. feu.Y{(0.9%) { 5.2}
and Muya = Asfy (d-0.45x) - : F 5.3)
Using equatioﬁ 5.2, x can be found, then from equation 5.3. Mya
can be determined .
c) Relation betgeen Analsytical and Nonlinear Results
Table 5.10 presents the nonlinear and analytical results. In

this study, egfort will be made +to correlate and establish
relations between them. The basic idea in determining the
behaviour of élab 1s that the slab acts‘as a wide coupling heam
in resisting exfernal loads. Simple beam theory was adopted 1in
formulating thé expressions {(eqns. 2.5 & 2.6) to calculate the

effective width; of coupling beam. These equations are used to
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calculate the effective width in precrachking, cracking and
postcracking stages of idealized curves. Using the precracking
effective width as width of the slab and considering the slab  as

a beam, the crécked momernit Mcra 1is calculated using equation 5.1

In this érticle Mcra are calculated for all the models and
presented in the Table 5.10. It 1s found from the table that the
ratio Mcra/Mcr;fOF the models MOD6L, MOD62, MOD63, MODS4, MOD6S
and MOD66 rangés between 0.824 to 1.003, that is Mcr is slightly

bigher. For other models sometimes Mcr is larger and sometimes
Mera 18 larger; The maximum range lies between 0.80 to 1.30. But
in mest cases, the ratio are close to unity. Mce may be taken as

approximately équal to Mcra, as the deviation from unity is about
15%. Therefore, the concept of designing the slab as «coupling

beam of some effective width is supported from the investigation.

Considering the bay width Y of the slab as width of the beam,
the wultimate dmoment Mya 1s calculated for all the models. From

the Table 5.10 the ratio. Myas/Mu ranges between 0.90 to 1.40.

In most of the models My» is larger than M,. So it may bhe
concluded that the wultimate moment determined analytically nre

higher than the ultimate moment found from nonlinear analysis,
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CHAFPTER 6
CONCLUSIONS AND SUGCGESTIONS FoR FURTHER STUDY
6.1 Conclusigons
The behaviour of slebs in coupled shear wall structures has

been investjgated by finite element method considering nonlinear

behaviour of .reinforced concrete . A modified nonlinear J3-D

finite elemeht program 1s developed for analysis of coupled shear
wall structures based on available finite element program . From

the theoretiéal analysis, the following conclusions can be drawn:

i) For the mpdels studied 1t may be concluded that Flexural

stiffness of slab in precacking stage 1s not affected by the

amount of reinforcement but stiffness in cracking stages nre
H .

increased 'by 6% when reinforcements are 25% higher. Minimum

reinforcemen; suggested by ACI Code should be provided to have

normal behaviour of a reinforced concrete slab,

ii} The stéffness of slab gradually decreases with the increase
of loads which 1s evident from the idealized M-8 curves. Tt 1is
concluded f%om the study that the ratio of the cracking to
precracking %tiffness ranges between 0.25 and 0.45 and the ratio
of post cracking to precracking stiffness ranges between 0.08 and

0.22 for the models studied.:

111} Precragking effective width Yeo from nonlinear analysis 1is
found to be in good agreement with those from linear nnalysis as
the variatipn ranges between 1.0% and 8%; Also precracking
stiffness K;.from nonlinear analysis are only 2 to 15% higher
than those from linear analys showing good agreement. Therefore,
the values of Yes and Ks from nonlinear analvsis can be used 1in

working strength design.

iv} Effective width of the slab gradually decreases with i1ncrease

in load similar to the stiffness of slabs. Therefore the values
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of Yecr and qu'presented in this study can be used by designers
using ultimate strength design. Values of stiffness in the post-
cracking range may be used in the collapse load analyars of the

structures.

v} It 1is copcluded that the transverse section passing through
the interior edge of the shear wall is critical f{for model
failure which is evident from the cracking and vielding diagrams

discussed 1n this study.

vi} Cracking mpments determined analvtically are found to be LT
agreement with those found from nonlinear analysis as the ratios
of the two moants in most of the models are close to uni£y.
Ultimate momehts determined analytically.are higher than those

from nonlinear analysis.

6.2 Suggestiong for Further Study

More investigations should be done with various types of

shearwalls as in this study only planar'shear wall was used.

To wverify - the results experimental investigations should be

made.

Inveatigations can be done with multiple bands of opefiing in
the shearwall as in +this study only one band of opening was

studied.

This program can be modified to study the behaviour of slab
in coupled shearwall structures under reverse cyclic loading.

This program can also be modified to account for +the
provision of closing and opening of cracks in reinforced concrete

during loading history.
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APPENDIX

Investigatiop on Boundary Conditions
Investigation on Boundary Condition I {(Case I}
Fig. I{a} shows the 4 element mesh with node numbering.

Boundary conditions are. shown on the figure. Prescribed

displacement% were imposed at the nodes on the shear wall forcing

the shear wall to rotate as shown 1in the Fig. I{b}). Midlayer
nodes (9,10,26) were prescribed with only z-displacement{(w) so
that they remained in the vertical plane v-v. Top layer nodes

(13,14,15,28,297y and bottaom layer nodes {1,2,3,21,22} Were
prescribed with x and z displacements (u,w) so that the line ab
could be forced to rotate with the same angle (®) as the sheur
wall. X-displacement were equal to ©.t/2 where t was the

thickness of the slab.

Model TMOD1 was studied with this bourdary condition. For a
particular rétation v {(0.4/3000) radian, the =z-displacements
produced in’ the slab nodes are shown in Table l. The deflected
shape of the slab is shown in ¥Fig. i{c) with resultant z-forces
at the restrained nodes. But downward resultant z-forces at nodes
{2,14) and wupward resultant z-forces at nodes (21,28) were in
opposite direction to those of preécribed displacements at these
nodes. Thié%was considered to be a unusual behaviour, so to had
the answer.. Model TMOD!| was investigated with boundary condition

II.

Investigation on Boundary Condition II { Case II )
Fig. 2(a) shows the 4 element mesh with node,  numbering.
Boundary  conditions were applied only on nodes at middle layer

( Fig.2(b)) whereas nodes at top and bottom layers were allowed
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TABLE I

- e
3
Y
.
|
in
S [
F .
- .4_\_,'\
1 - R
. o ,
.
-
\
m

~3T

[
Sy

CASE 1 CASE 11
Node z-disp. Node z-disp. Node z-diap. Node n-disp.
1nao. in mm . no. in mm. no. inn mm. no. in mm.
| 0.400¢ 24 -0.110 t 0.3949 24 -0.254
2 0.200% 26 -0.400* 2 0.200 26 -0.4004
3 0.000¢* 27 -0.110 3 -0.007 27 -0.2541
5 -0.01i6 28 -0.200¢* 3] -0.04186 28 . -0.273
6 0.113 29 -0.400+ 6 0.130 29 -0.400
( 0.350 il -0.110 7 0.3410 31 -0.254
8 0.375 34 -0.290 8 {.386 34 -0.,302
9 0.400 36 -0.0524¢ 9 0.400% 36 -0.2156
10 0.000 38 -0.290 10 0.000 38 -0.302
It -0.0186 39 -0.056214 i1 -0.035 39 -0.216
12 0.350 41 -0.290 L2 0.340 11 -0.302
L3 0.4002 43 -0.05621 13 0.401 43 -0.215
14 0.200¢ 16 0.000* 14 0.202 46 0.002
15 0.000» 47 0.000¢+ t5 0.007 47 -0.291
17 -0.0186 48 (}.000¢% 17 0.032 48 0.0026
18 0.113 50 0.000» 8 0.160 50 0.000*
19 0.35Q 51 3.0002 19 0.340 51 0.000=*
20 0.375 53 0.000* 20 0.386 53 0.001
21 -0.200% 54 0.000¢ 21 -0.273 54 -1).294
22 ~0.400* 55 0.000% 22 -0.400 bh 0.00143

* Prescribed displacement
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{c) Deflected shape for~Case I
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TABLE 2
17 iv 17 32 i‘;u - !
.b - Ty - , N I e - - "
? f‘ /: "/I
gres /fn1 /e 3
, K / ' 1
/¥ O /. -
o ¥ £k b :
7 ; 1 ‘ X
/ ‘ F /r /" / !
i / e /,
/o S e )k
.at 4 / oA
L/ # 14 ! e - ?;; : / 3-2
13 oot i A3 A8 ORI ’/ 5753
7 / / /
’1 / wi 2 jef 7 50
! / ’ /
1K - 3 € o A e
2 3 2 22 33 34 45 Wb '
Notial z-diasplacements for CASE 11
Rotation{®: ) = 0.6/3000 radian Rotation {(©,; )=0.4/3000 radian
Node z-disp Node z-disp. Node z-disp. Node z-disp.
no in mn;!. no. in mm. no in mm. no. in mn.
1 0.598 24 ~0.379 I 0.399 24 -0.254
2 O.SOQz 26 -0.600* 2 0.200 26 -3.400*
3 - 0.009 27 -0.379 3 -0.007 27 -0.254
5 —0.038 2B ~-0,038 5 -0.046 28 -0.273
6 0.195 29 -0,600 0 0.130 29 -0.400
7 0.530 31 -0.379 T 0.340 31 ~-0.254
8 0.580 34 -0.452 8 0.38B6 34 ~-0.302
9 O.GOQ‘ 36 -0.215 G 0.4003 36 ~-0.215
10 0.000+ 8 -0.452 10 0.000¢% 38 -0.302
11 -0.04¢8 3% -0.215 11 -0.035 39 -0.215
12 0.530 4] -0.452 12 0,340 q1 -0.,302
13 0.603_ 43 - -0.320 13 0.401 43 -0.215
4 0.301' 16 0.003 14 0.202 416 0.002
i5 0.009 47 ~-0.440 5 0.007 417 -0.2914
17 —0;059 48 0.000 17 0.032 18 0.0026
18 0.240 50 0.000¢% I8 0.160 50 0.000s
19 0.53Q 51 0.000* 19 0.340 61 0.000»
20 0.58@ 53 0.003 20 0.386 53 0.04G1
21 -0.409 54 0.440 21 -0.273 54 -0.294
22 -0.600 55 0.000 22 -0.400 55 3.0013

%+ Precscribed displacements
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to move freely. Equal and opposite z-displacements were
prescribed at wall nodes 9 and 26 to produce rotation © of wall

as shown in Fig. 2(c}.

Model TMQPL was studied with this boundary cbndition.Table e
shows the z—displacements at nodes of the slab for rotations (©)
{(0.4/3000) and (0.6/3000) radian. The deflected shape of the slab
is shown 1n Fig. 2{d) with resultant z-forces at the restrained

nodes 9,10 and 26.

Comparative Study of Deflected Shapes of !odel TMOD!

Table | compares the z-displacements of two cases due to a
particular rotation (0.4/3000)radian of the wall . Deflected
shapes of Model TMOD! from two different boundary conditions are
superimposed én each other for a particular rotation (0.4/3000)
radian 1n Fig. 2(e) for comparison. In boundary condition 1,
shear wall wag forced to remain straight line as shown by
straight liné abcde. But when shear wall was allowed to behave
freely as in boundary condition 1I, the deflected shape of - the
shear wall aésumed the curved dashed line ab’ ¢ d’e. Curve ab'c
was convex upﬁard and curve cd’e was convex downward. Therefore,
in boundary .condition I, the points b’ and d’ were forced to
remain at poiqts b and d respectively. For this reason a downward
resultant z—f?rce at nodes (b) and upward resultant z-force at
nodes (d} weré found. .Convexity of curve cd'’e was increased more

rapidly than that of curve ab'c as rotation © was increased which

is evident frém Fig.2{d}.
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.

Investigation on Boundary Condition IIT {( tase III )
Fig. 3{a) shows the element. meah with node moembering.
Boundary conditions are shown'on the Fig. In this condition, the

shear wall was forced to rotate in such a way that the line ab
was always remained on same vertical line v-v as in Fig. 3(b}.
That is , rotation of line ab was not allowed. Only =z~
displacements were prescribed at nodes on shear wall. Resultant
z-forces at the restrained nodes had the same directions as in

boundary condiﬁion I.

"Discussion on three Cases of Boundary Conditions @

Boundary condition II gives more flexibility in the behaviour
of slab. It rqguces the rigidity of the shearwall and does not
maintain the éontinuity at the line of symmetry. Thefefore, 1t
does not maintain condition discussed in article 2.3 to determine

the flexural sﬁiffness.

Boundary condition III gives a more rigid structure as nodes
on the shear wéll remain in the same vertical line throughout the
entire loading. This may produce lengthening of the shear wall

which 1s evideﬁt from Fig. 3{b}).

Boundary Condition I, maintains the rigidity of the slab as
well as allows the rotation of the vertical nodal lines. It also
maintains the qontinuity of the slab at line of symmetry. Before

conducting thé main investigations with this boundary condition,
several models - were studied with boundary condition III and I for

a comparative study.
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Effect of Boupdary Condition on Bending Stiffness of Slabs

Boundary conditioné I and IIT] were imposed on models MODEI,
MOD62, MODE3 and MUDG64 to study the behaviour_of glab such as
bending stiffpess, crack propagation and yielding of steel. Plan
with reinforcements for the above models are shown 1n Fig. 4 .
Idealized Hﬁé diagrams for models MUD6!, MOD62 and MOD64 are
presented in Fig. 5. Procedure for idealization of M-& curve is
presented iQ article 5.3. From the M-8 curves it is clear that
the boundary condition III makes the structure stiffer than the
boundary condition I. The values of Ko, Ker and Ky are evaluated
from the ide%lized curves for the +two cases are presented in

Table 3.

Comparison of Stiffness

Comparing the values of Ko, Kce and Ky from Table 3, it is
clear that the values obtained from boundary condition III are
higher than' those from boundary condition I. For the models
investigated! the values Ko from Case I are 71% to 94% of those
from Case II?, the values Kce from Case I are 54% to 74% of those
from Case iII and the values Ky from Case I are 34% to 50% of
those from Cése III. Therefore, the Case III gives much higher

stiffness thén Case I.
Comparison of M-& Curves
It 1is gvident from- M-& curves : that the cracking moments

(Mcr )y yiel@ moments (My} and ultimate moments (Mas) for Case III

are higher than those for case I. For comparison Table 4 are

presented.
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TABLE 3 ta)

MODG6L 187.7 48.7 19

<
[gN]
(o]
<
—
[t
—
g
]
<
=
jop]
[ )
)
(]
=1
|
<
[N
(%]
o
—
w0

MoD62 44.7 Q.B 4.2 0.228 0,094 52.5 15.2 6.98 0.29 0,13

MOD63 20.6 5.9 1.8 0.29 0.090 2.5 11.0 5.50 0.39 0.19

MOD64 12.6 2.9 L.l4 0.24 0.091 17.6 5.58 2.69 0.32 0.15
TABLE 3 (b)

Model No. Ko {1} /Ko (11T} heell)/Kere (111) Ke {I)/Kp(II1)

MOD6 1 ' 93.5% 73.56% 50.4%

MOD6 2 © 85.0% , 64d,34% 60.0%

MOD63 | 72.3% ' 53.86 7
MOD64 CoTL.4% 52.45% 2. 3%
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TABLE

Case
Me r My

Values are in kn-m
MOD6 |
MODG 2

MODE3

For the models studied, Mc, of case I ranges between 70% to
83% of Case III and My ranges between 82% to 96% of Case III.
Therefore, frpm the investigation it may be said that Case IIT

vielded higher:cracking moments and ultiamte moments.

Comparison of Crack Pattern

Figs. 6 show the propagation of cracks in models for Case 1
and Case III. There are eight sampling points 1n an element and
are equally distributed to the top and bottom layer . Their x,v,z

distances frow the boundary ( surface nearest to the sampling

[
points considered ) of the element are 21.13% of x,y and =z

dimensions of the element - (Fig.4.3).1In the cracking diagram
,gradual cracking of sampling poihts {1,3,5,7) of an element
{F1g.4.3) on "the tension side (bottom layer) of the slab are

shown. From the crack pattern, it is clear that the crachs
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originate from the interior edge of the shearwall él element-

for both cases. Cracks propadgate from the interior edge of the
shear wall towards .the periphery of the slab. It may bhe ganid that
element-3 is cracked earlier and then element-4. For the Case I,
element 3 and element i, that is, corridor slab, cracks severely
than the elemeﬁts, t and 2. Dut for Case IIT, Element-3 cracks
severely and also the element | and element-2 are found to crack
while for case I, little cracks are observed 1in element-1 and
element 2. 50, for Case II1I, elements containing the shear wall
are crachked more than those for Case I. The reason may be due to
the fact thpt in case 11I, rotation of the vertical nodal lines
are not alloyed and nodal lines are always remain on the same
vertical lipe. This definitely causes the lengthening of the
shear wall as the shear wall undergoes rotation. But in Case I,
simul taneous z-translation and rotation of vertical nodal lines

are allowed which minimizes the lengthening effect.

From the crack pattern it may be concluded that the critical
section 1is the section which passes through the interior edge of

the shear wall.
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