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a section gives the

whole section. The

to develop stiffness

realised as the first step in

the limit state analysis of

The work was done to develop stiffness properties
applicable to reinforced and prestressed concrete members loaded

under bending and/or axial force with due consideration to
material properties. This Was

developing a numerical model for

reinforced and prestressed concrete structures.

ABSTRACT

The limit state theory is becoming popular for design
purposes. The method necessitates the Use of appropriate material

properties. It is well established experimentally that the
stress-strain characteristics of concrete in compression is

parabolic and that of steel can be idealised to different elasto-
plastic form. These have been used throughout the work.

The usual section of concrete structures can be considered
to consist of four basic elements, such as top flange, web,

bottom flange and reinforcing and/or prestressing steel. It was

found convenient to develop the stiffness properties separately

for these sectional elements. Combination of stiffnesses for
different sectional elements present in

complete stiffness properties of the

properties of a section was then utilised
properties of a beam-column element.



particular strain level at the section. The stiffness terms were

derived by applying first principle. An alternative approach is

also presented. Most of the stiffness terms nre presented in the

form of equations, suitnble for developing n numerical model. The

The stiffness properties developed correspond

iii

to a

variation of some of the

graphically.
terms with strain are presented

Load deflection behaviour of concrete members is important

in understanding the possible modes of failure. Such behaviour

mainly depend upon moment-curvature characteristics of section.

rectangular
concrete section are, therefore, presented,

brittle mode of failure with increasing amount
and/or axial force, as expected.

of reinforcement

Moment-curvature characteristics of

which
reinforced

indicntes

•
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= Co-efficients of a quadratic equation.
= Gross area of a section.

Iv

= Area of un-cracked portion of a cracked web.
= Area of steel in a section.

= Width of web, bottom and top flange, respectively.
= Curvature of a section.

= Distance of steel from extreme compression fibre in a
section.

= Ratio of un-cracked depth to total depth of a web,

bottom flange and top flange, respectively.

= Initial tangent modulus of elasticity of concrete in
compression(=26m/cm)'

= Modulus of elasticity of steel.
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= Moment of inertia of uncracked portion of cracked web.
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Ib,ll,I. = Moment of inertia of bottom flange, top flange and

web element, respectively in a section.
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'[S]W, [S]b, [S]' = Contribution to the stiffness matrix of a

section due to the un-cracked web, bottom flange and

top flange, ["espectivety.

[S]WC,[S]bc, [S]tc = Contribution to the stiffness matrix of a

v

= Bending moment carried by concrete and steel in a
section.
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n
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P

Pc t Ps
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= Modular ratio(=E./Eo).

= Tension steel ["alio(=A./Ao).

= Total axial load carried by the section.

= Axial load carried by concrete and sleel, respectively
in a section.

= Ratio of strains at the bottom most fiber to the top

most fiber of a section(= EJit2-)'

= Ratio of strains at the bottom fiber to the top fiber

of an un-cracked bottom and top flange, respectively.
[S] = Stiffness matrix of a section.

T

Tb ,Tt
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dP,dM

<:fer,dE

dF,do

section due to the cracked web, bottom flange and top
flange, respectively.

= Depth of a section.
= Depth of bottom and top flange, respectively.
= Distance of a fiber from the zero strain in a strain

diagram.

= Total differential of axial force(P) and bending

moment(M) in a section.

= Derivntives of stress and strain, respectively.

= Derivatives of force and displacement, respectively.
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= Derivatives of curvature and strain at the centroidal

plane of a section, respectively.

~Pl/2,SVl/2,8Ml/2 = Incremental nodal loads in a beam-column

element.

~Ul/2, ~Vl/2, ~e'/2 = Incremental nodal displacements in a beam-

column element.

~P = Increment in axial force of a section.

~M = Increment in bending moment of a section.

~a- = Increment in stress at a fiber of a section.

bE = Incremental strain applied in a section.

se = Incremental rotation applied in a section.

e, e. , / Slope of the diferrent portion of stress-straine2,e = curve

for prestressing/reinforcing steel.

= Strain in general and equal to ~./Em in particular.

= Strain at any fiber of concrete and also yield strain

of steel.

= Strain at a fiber of a concrete section after applying

an incremental strain or rotation.
t c /
5 , <"5 = Tensile strain in steel before and after applying an

incremental strain or rotation, respectively.

Ese = Net tensile strain in steel required to produce

effective prestress.

Ec<.= = Compressive strain in concrete at the level of steel

just after prestressing.

= Strain in concrete at the level of steel.

= Strain at the extreme compressive fiber of a section.
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= Strain at the bottom most fiber of a section.
= Strain at the bottom most fiber of top flange.
= Strain at the top most fiber of bottom flange.
= Strain at the centroidal axis of a section.
= Concrete strain corresponding to maximum stress (6m).
= Maximum stress in the stress-strain curve of concrete

in compression.

= Stress in a fiber at a distnnce of y from zero strain

before and after applying an incremental strain or
rotation, respectively.

= Average axial stress in a section(=P/Ao).
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INTRODUCTION

CHAPTER 1

1.1 General

Non-linear analysis of st.ructures has become popular with

the availability of different types of computers. The non-linear

analysis involves much mathematical computations which may easily
be solved by computer programmes.

Various analytical procedures are available for designing

structures. Among them the limit state theory is increasingly

used now-a-days, because it provides the history of structural

behaviour which is essential for a safe and serviceable structure

and presents the idea of the margin of safety actually employed.
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The limit slate theory necessitates the use of material

properties which closely represent its behaviour. The stress-

strain relationship of concrete and sleel being non-linear, it is

essential to develop stiffness properties of a section

considering non-linear material properties.

1.2 The Problem

Various methods of analysis and design are available for

reinforced and prestressed concrete structures. These are

1. Working-stress method,

2. Ultimate strength method,

3. Momeal-curvature analysis,

4. Strain compatibility method,

5. Limit state method, elc.

The working or permissible stress method of design

pioneered by the German Professor Morsch, is also sometimes

referred to as the elastic theory of design. In this method the

permissible stresses in concrete and steel are assumed to be a

fraction of specified strength of the individual material and a

constant modul,.r ratio is assumed for all londing conditions with

the elastic behaviour of concrete and sleel.



In prestressed concrete structures,
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stresses in concrete

due to prestress are computed by elastic theory. This method

assumes that the concrete section is not cracked. It is believed

that the elastic theory is sufficiently accurate upto the point

of cracking and cannot be used to predict the ultimate strength.

The exact analysis for the ultimate strength of a prestressed

concrete section under flexure is a complicated theoretical

problem, because both steel and concrete are generally stressed

beyond their elastic range.

The moment curvature analysis(l) is capable of predicting

the behaviour of bonded prestressed concrete flexural members

throughout the total load range from initial loading to failure.

The method utilises the nonlinear material properties and tests

have shown the results of the analysis to be quite reliable.

Another method of estimating the flexural strength of prestressed

concrete members is based on the compatibility of strains and

equilibrium of forces on the section(2). The basic theory is

applicable to all structural concrete sections, whether

reinforced or prestressed.

The inadequacy pf the working load design, in predicting

ultimate load of structure, was recognized after the First World

War. The factor of safety applied to the constituent materials

does not present a realistic picture of the safety against the

collapse of the composite material like reinforced concrete used
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in the structural component.

introduced. The main feature of

Then the ultimate load method

the ultimate load method

was

of

design is the applications of vnrying load factors for different

types of loads to arrive at the required ultimate load for which

the member is to be designed. The ultimate load method of design

ensures only the safety of the structure against the collapse

limit state and does not present any information about the

behaviour of the structure at service load and the range between

service and collapse load.

A comprehensive knowledge of the behaviour of structural

concrete elements under different types of loading is essential

for producing safe, serviceable and economic design of concrete

structures. The limit state design philosophy recognizes the need

to provide safe and serviceable structures at an economic price

and at the same time presents a clearer idea of the margin of

safety actually employed to cover uncertninity and ignorance of

the function and the performance of structure in actual practice.

The approach is being adopted increasingly by different codes.

The influence of limit state design philosophy is evident in the

revised American Code(3) and the unified British Code(4). The

Indian Standard Codes for structural concrete(5,G) are also being

revised to incorporale the limit slale concepts.

There are several limit states at which a structure ceases

its intended function. The most imporlant among them are the
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limit state of collapse, excessive deflection and cracking. Each

of these limit states may be attained due to different types of

loading configuration. Thus it is apparent that to design a

structure following limit state concept, its behaviour throughout

the load range is very important. The limit state theory thus

necessitates the study of the behaviour of structures, which

again requires to provide due consideration to the material

properties before any such study is undertaken. Concrete being

non-linear material under compression, it was therefore decided

to develop the stiffness properties for flexural elements

considering parabolic stress-strain relationship.

1.3 Objective and Scope

The main objective of this research work was to develop

the stiffness properties of various prestressed and reinforced

concrete sections and a beam-column element with due

consideration to the stress-strain characteristics of the
constituent materials.

The stiffness properties developed in this work may be

utilised to develop a n~merical model for limit state analysis of

prestressed and reinforced concrete structures. The numerical

model can then be used to study the behaviour of reinforced and

prestressed concrete structures, i.e. to evaluate their load-
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displacement relationship, extent of cracking etc. throughout the
loading stages upto the collapse.

Therefore, the stiffness properties developed provide a

basic tool for doveloping a numerical model to monitor the true

behaviour of reinforced and prestressed concrete structures.

1.4 Thesis Outline

The knowledge of the fundamental properties of materials

used in a structure is very much essential before any study is

made on the behaviour of the structure. stress-strain
relationships of concrete and steel are,

Chapter 2.
therefore, presented in

Early on during the work it was realised that stiffness

properties of reinforced and prestressed concrete sections have

not been well defined which are essential for developing

numerical model for their analysis. The numerical formulations of

these properties is presented in Chapter 3. The stiffness

properties of a beam-column element was then developed and

presented at the end of this chapter.

The basic approach utilised to develop the stiffness

properties of sectional elements was then used to study the



7

moment-curvature relationship of a singly reinforced rectangular

concrete section. This is presented in Chapter 4. Discussions and

conclusions on this work are also presented in this chapter.

It is hoped that the work carried out will provide a

useful tool in developing a numerical model which will be able to

study the behaviour of reinforced and prestressed concrete

structures.
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Concrete has been considered as universal building

material. It can be deposited and made to fill forms or moulds of

PROPERTIES

AND

2.1 General

CHAPTER 2

OF MATERIALS FOR REINFORCED
PRESTRESSED CONCRETE

almost any practical shape. Its high fire and weather resistance
are evident advantages. Its compressive strength is high which

makes it suitable for members primarily subjected to compression.

It has been found possible to use steel to reinforce concrete,

mainly in those places where its small tensile strength would

limit the carrying capacity of the member. This combination of
two materials is known as Reinforced Concrete.

I••more recellt times a special way has been found to Use

steel and concrete of very high strength in combination known as
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Prestressed Concrete. The steel, mostly in the shape of wires or

strands but sometimes as bars, are embedded in the concrete under

high tension and are held in equilibrium by compressive stresses
in the surrounding concrete after
precompression, the concrete in a

hardening. Because of this

flexural member will crack on
the tension side at a much larger load than when not so

precompressed. This reduces radically both the deflection and the

tensile crack at service load. Moreover, high strength concrete

has a higher modulus of elasticity and smaller ultimate creep

strain which results smaller loss of prestress in steel. The use

of high strength materials reduces the cross-sectional dimensions
of structural elements and also the dead weight.

Concrete in a wide range of strength properties can be

obtained by appropriate adjustment of the proportions of the

constituent materials. Special cement, special aggregates and

special curing methods permit an even wider variety of properties

to be obtained. These properties depend to a very substantial

degree on the proportions of the mix, on the thoroughness with

which the various constituents are intermixed, and on the

condition of humidity and temperature(curing). However, all these

fundamental properties of concrete are out of the scope of this
study.

To develop a numerical model for analysing prestressed and

reinforced concrete flexural members, stiffness properties are
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And to determine stiffness properties the material

characteristics such as stress-strain properties of concrete and

steel are important. The parabolic stress-strain relationship for

concrete in compression is adapted in this work. The stress-

strain relationship of steel is assumed to be elasto-plastic.

2.2 Stress-strain Characteristics of Concrete in Compression

To understand the behaviour of any material under stress,

it is necessary to establish its stress-strain characteristic.

Since concrete is mainly used for compression, its compressive
stress-strain properties is of primary interest.

It is well known that the stress-strain properties of

concrete in compression is not linear even at normal level of

stress as indicated in Fig.2.1, but for 30 to 50% of its crushing

strength, it is assumed to be linear. The figure shows a typical

set of curves, obtained for concrete of various cylinder

strengths at 28 days. All the curves have somewhat similar

character. They consist of an initial relatively straight elastic

portion in which stress and strain are closely proportional, then

begin to curve to the horizontal, reaching the maximum stress(the

compressive strength) at a strain of approximately 0.002 and

finally show a descending branch. It is also seen that concretes

of lower strength are less brittle, i.e fracture at a larger
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maximum strain, than high strength concretes.

41. 37 MPa (6 ksi)

50

'Vi
-'" 40

"a.
L

30

'"'"'"~- 20V1

10

o
o 0.001

13.79(2)

6 . 9 1 1 J

0.002 0.003 0.004

-----~)~ Strain

Figure 2.1 Typical concrete stress-strain curves(7).

Since 1899, many investigators have tried to represent the

relationship by standard mathematical curves, e.g. a parabola,

hyperbola, ellipse, cubic parabola, or combinations like a

parabola with a straight line or a sine wave with a cubic

parabola and so on(8). Some of which are mentioned below:

(a) Exponential form of equation as proposed by Desaye and

Krishnan(9) .
2. 1

(b) Exponential form of equation as proposed by Smith and
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Younge 10).

(5"=EEm
2.2

2.3when

when

(c) Combination of parabola for the ascending part and a
straight line of negative or zero slope for the falling branch

due to Hognestad(ll) and as adopted by British and Indian
Codes(4,5,6).

<5 = [2 E. ICrn -( c IcrnF 10m

<5 = [1-100 (t - Em )1om ,

(d) Parabola for the whole curve as adopted in moment-
curvature analysis of prestressed concrete beams(l).

6 = [2 E. IEm - ( E. I Em F 1Om
2.4

A comparison of Eqs.2.1, 2.2 and 2.4 with the experimental

results is reproduced in Fig.2.2. As the Rq.2.3 is a combination

of two curves, so it will be not simple for integration, which is

necessary for evaluating the stiffness properties analytically.

Moreover, on the falling branches the Eq.2.4 can be considered

even more accurate than all other equations. From the figure, it

appears that the parabolic equation represents the material

properties fairly well and hence it was decided to use the

parabolic stress-strain relationship(Eq.2.4) for this work as
presented in Fig.2.3.
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Figure' 2.2 stress-strain curves of concrete given by different equation and

los I results.
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Figure 2.3 Idealised stress-strain curve of concrete.

The curve indicates that the young's modulus of elasticity
varies with strain and is given by

E = dIS' IdE = Cd/dE) [2 E IE", -( E. Icm)2] 6'",

so 2.5

Thus the initial tangent modulus at zero strain is given
as 2.6
and hence tangent modulus can be expressed as

E = Eo(l-E IE.,,)

2.3 Strength of Concrete in Tension

2.7

Concrete is very weak in tension and hence the tensile



15

strength of concrete can be ignored in designing the reinforced

and prestressed concrete structures. Shear and torsional

resistance of concrete structure primarily depend on the tensile

strength of concrete. Since this study is more concerned with the

flexural behaviour of concrete structures, it is felt that the

contribution from tensile strength to overall flexural strength

would be small and has therefore been neglected.

2.4 Stress-strain Characteristic of Steel

Steel is used in two different ways in concrete
structures, such as reinforcing steel in reinforced concrete

structure and as prestressing steel in prestressed concrete

structure. Steel for these two uses are different.

The most common type of reinforcing steel is in the form

of round bar available in a large range of diameters.

Prestressing steel is used in three forms; strands, wire and bar.

To determine the character of steel two main numerical character-

istics are important. These are yield point and modulus of

elasticity. The modulus of elasticity is practically same for all

reinforcing steel as E=29xl06 psi(20xlO'MPa). Typical stress-

strain curves of reinforcing and prestressing steel are shown in
Fig.2.4.
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at 0.2% permanent strain for high-strength bars(7).

increase again through strain hardening process at a slower rate.

In the

prestressing steel has no

Since discontinuous yielding is not

Yielding develops gradually.

that is, they do not yield at a constant

with further strain the stress begins to

so the yield strength is somewhat arbitrarily defined

a yield plateau,

In contrast to reinforcing steel,

The reinforcing steel shows an elastic portion followed by

definite yield plateau,

or nearly constant stress.

inelastic range the curve continues to rise smoothly until the
maximum strength is reached.
observed,

as the stress at a total elongation of 1% for strand and wire and

The stress-strain curves for reinforcing steel in tension
and compression are generally assumed to be identical. Tests have

shown that this is a reasonable assumption(ll). On the other

hand, stress-strain characteristics of prestressing steel usually
refer to the action of tensile load.

900
BOD

"0-
:I: 600
VI
VI

'"L.

400-V1
r

200

0
0 0.04 0.08 0.12 0.16 0.20

, Strain

Figure 2.4 Typical stress-strain curves of steel(Ref.ll).
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To develop a numerical model it is necessary to idealisc
the shape of the stress-strain curVe. Generally the curve for
reinforcing steel is simplified by ideal ising it as two straight

lines(ll), shown in Fig.2.5a. Two other form of idealizations are
also shown in the figure. For prestressing steel, the British(4)
and Indian Codes(5,6) recommend the idealised form as shown in
Fig.2.6.

STRESS
STRESS

= tan e'
Es = tane

e

ST RAI N
oJ Elastic plastic approximation.

STRESS

e

cJ Complete curve.

Es= tane
e

STRAIN
b) Triliniar approximation.

STRAIN

Figure 2.5 Idealisation of stress-strain curve for

reinforcing steel(Ref.ll,pp.41).



IB

Es = 0

-<>
VI
VI••'-~
VI

Es = tan 82

= tan 81

strain f.

Figure. 2.6 Idealisation of stress-strain curve for

prestressing steel(Ref.4).

For developing fundamental stiffness properties of
reinforced and prestressed concrete structures, any form of
idealisation which is a combination of straight lines can be

used. Thus the stiffness matrices developed and presented in next

chapter are suitable for any form of idealisation shown in

Fig.2.5 and 2.6 except that in Fig.2.5(c).
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CHAPTER 3

STIFFNESS PROPERTIES OF SECTIONAL
ELEMENTS

3.1 Introduction

The increasing emphasis on the use of reinforced and

prestressed concrete structures has stimulated the development of

stiffness properties which are essential for developing numerical

model suitable for analysis and design of concrete structures.

The analysis of structures following linear And elastic

relationship is straight forward. For a non-linear material, such

as concrete, analysis is far from straight-forward and requires a

fundamental look at its properties. This chapter develops, from

first principle, expressions for axial and bending stiffness. The

demand for such a fundamental look is to develop computer

programme which describe more accurately the response of

•
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prestressed and reinforced concrete structures to londs IIpto the

ultimate limit state. For concrete sections under flexure, linear

strain distribution which has been used satisfactorily for many

years is also assumed here. Parabolic stress-strain relationship

(Eq.2.4) is used to determine the stress distribution correspond-

ing to the linear strain distribution. Tensile strength of

concrete, being small compared with compressive strength, adds

little to the overall strength of concrete and hence has been

neglected in the derivation. The stress-strain relationship for

prestressing tendon and mild steel are assumed to be any

combination of straight lines as discussed in Art.2.4.

The stiffness terms were developed separately for

different cracked and uncracked sectional elements, prestressing

and reinforcing steel. The stiffness matrix of a section can be

obtained by algebraic summation of matrices corresponding to the

different elements comprising the section and prestressing/

reinforcing steel.

The stiffness terms developed correspond to a particular

level of strain present at a section. The expressions can be

derived directly from first principles and also by alternative

approach using differential calculus. Most of the derivations

presented here are done by direct approach.
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3.2 Shapes of Concrete Sections

Concrete is advantageous to fabricate in any desired

shape. The suitability of these shapes depend upon the particular

requirements. The typical shapes frequently used for concrete

structures arc shown in Fig.3.1.

D
[J

Figure 3.1 Shapes of concrete sections.

For the purpose of developing stiffness properties, a

section can be considered to be consisting of one or more

rectangular sectional elements. Thus the primary sectional

elements are web, top flange, bottom flange and steel. The

each of these sectional

are developed separately forstiffness p,"operties, the,"efore,

elements. Stiffness properties for a
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complete section mny then be obtained by superposition of the

corresponding properties of its sectional elements.

Bt St- B - B Bt
~ rt -j I

T A'I I
I I
I I

T
I
I

I
I
I

Tb 'a'

~
a} Whole ,eeti 0 n - b) Web + c} Top + d} Bottom + eJ Steel

flange flange

Figure 3.2 Sectional elements in a section.

Reinforced and prestressed concrete structures undergo

different stages of loading which cause different types of strain

distribution in a section. For the purpose of developing the

stiffness properties of a section it is necessary to consider nIl

the different strain distributions as shown in Fig.3.3.
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Top fl ange.

Bottom flange.

[ )

0) Crock 'started at
bottom.

Il) Ill) IV)

b) Crock started
a t toP.

Figure 3.3 Different stages of strain distribution.

a) Crack started at bottom

i) Uncracked web, top flange and bottom

flange.

ii) Uncracked top flnnge, partially cracked

web and bottom flange.

iii) Uncracked top flange, partially cracked

web and fully cracked bottom flange.

iv) Top flange and web are partially cracked

and bottom flange is fully cracked.

b) Crack started from top[(reverse cases of (a»).

Three different stages of strain distributions may be

observed in the elements. These are uncracked stage, partially

cracked stnge and fully cracked stage. When the element is

completely cracked, for example the bottom flange in case of

a(iii) and a(iv) in Fig.3.3, it will contribute nothing to the
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stiffness and hence can be ignored. The strain distributions for

cases (b) are just reverse of those in case (a), where the crack

starts at top and gradually propagates to the bottom. Stiffness

for these cases can be obtained from the corresponding case of

(a) by turning the section upside down, as explained in the

article 3.14. The contribution to the stiffness for prestressing

or reinforcing steel can easily be determined once the strain is

known at the level of steel.

Further it is to be noted that the stiffness properties of

different sectional elements are developed in this chapter

assuming the elements have unvarying depth and width. Hence

stiffness properties derived can not be applied for the section

having tapered flange and/or web. Stiffness properties for these

sections need separate consideration. It is however, possible to

idealise these sections as explained qualitatively in Fig.3.4, so

Idealised

r

Actu al

Figure 3.4 Idealisation of Tapering sections.

that the area of an element does not change. It is then possible
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to establish their stiffness properties utilising the properties

developed in this chapter.

3.3 Definition of Stiffness

In linear elasticity, stiffness of an element is defined

as its response to load.

example, is defined as:
Instantaneous axial stiffness, for

Load increment

Axial Stiffness = ----------------------------
Axinl deformation increment

For a member with uniform cross-sectional area:

Stiffness EA = ~P/oc

where oE = increment of axial deformation per unit length, and

bP = increment of axial load .

Stiffness is constant along the length of a member and is

defined by the product of A(cross-sectional area of the section)

and E(modulus of elasticity of the material).

If non-linear behaviour is assumed, the stiffness becomes
a function of not only E and A but also of the state of strain

and hence stress. Since this can vary along the length it is no

longer possible to develop explicit expression for overall
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stiffness, but it is possible to derive expressions for stiffness

corresponding to a particular section and strain level.

linear stress-strain relationship the axial and

For non-

bending

stiffnesses interact, i.e. the axial and bending stiffnesses are

obtained in the form of 2x2 matrix as follows:

[] =
[

S, 1

S21 :J[]
The theoretical derivations of the axial stiffness and the

corresponding coupling terms were eventually achieved by applying

a uniform strain increment(~t) and calculating the consequential

increase in load(~P) and moment(~M). The appropriate values were

then obtained by making the strain increment equal to unity as in

the following matrix equation,

~P

oM

S 1 1 S'2

S22

1

o

from which aP = S" and aM = S21

Similarly, the bending stiffness terms were obtained by

applying an incremental rotation to the section and calculating

the consequential increase in bending moment and axial load.
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It must be stressed that these stiffness factors apply at

the section being considered and corresponding to a particular

level of strain in the section. The above procedure may be

followed for different sectional element and prestressing/

reinforcing steel of a section. The algebraic sum of stiffness

matrices for corresponding elements and steel gives the complete

stiffness matrix of a section.

3.4 Stiffness Matrix-Uncracked Web

The state of strain and stress in un cracked web of a

concrete section under axial force(P) and bending moment(M) is

shown in Fig.3.5. It will be observed that the state of strain in

concrete can be defined by two independent non-dimensional

terms; c,/tm (the maximum strain ratio in the section) and Il=c;!/E(

(the ratio of minimum to maximum strain in the section).

T

As
a I Wed e lernent b) Strain () Stress d) Applying CIt:.: e) Appl yi ng ~e.

Figure 3.5 The state of strain nnd stress in

uncracked web.
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The basic approach of the derivation of stiffness terms

are presented in Hef.(12) nnd (13) developed for cracked and

uncracked rectangular section of structural masonry. The

stiffness matrix of rectangular uncracked section is given by

81 1*

[8 J =

where,
Cl/C

= BEof (l-cY/Em)
t~/.

dy

= EoAw[I-(1+R)c,/2E",1 3.1

t,le

812* = 821* = ~P/~8 = aM/~t = BEol (l-cy/tm)(y-E~/c -T/2) dy
E,.Ie

= -Eo Iw [( I-H)cj /ern l/T

.:, Ie

and 822* = bM/~e = SilO! (1-cY/Crn)(y-E,jc -T/2)2 dy
C2/C

= Eo Iw [1-( l+R)c, /2Eml

3.2

3.3

The stiffness terms are related to the cenlroidal axis of

the rectangular section. The stiffness terms to be developed in

this work are to be related to the centroidal axis of the whole

section of which the rectangular web forms a part, and hence will
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be different from those presented in Ref(IZ) and(13). The

expressions, just presented will be used to save the efforts of

integration in obtaining the expressions developed and presented

in this work.

From the strain distribution(Fig.3.5b)

geometry, strain at a fiber uv is, E~= cy

where curvature, c = (E,-E2J/T = C, (l-R)/T

and by simple

3.4
3.5

E,=bottom fibre strain ofc,=top fibre strain of the web section,

the web section, T=depth of the web section, R=the ratio of

minimum to maximum strain in the section,

fibre from the zero strain(Fig.3.5b).

and y=distance of a

By tI,e parabolic stress-strain relationship, stress at the

fiber uv is, 6~= [ZE.:J/c", -( E~/E",)2] 0",

which by Eq.3.4 becomes, 6:;l=[ZCY/cm-C2y2/c';; l"m 3.6

where em and 0"", are the strain and stress at the peak of the

parabolic stress-strain curve (Fig.2.3), respectively.

Applying'.8 uniform strain increment(~E) in the section

(Fig.3.5d), the strain at the fiber uv increases to;

c~= cy + :;1'. 3.7

and hence the corresponding stress at that fiber, by parabolic

stress-strain relationship, increases to,

G;= [2Cj/c", -(c~Ic",)21Gm

Replacing c~ by Eq.3.7, the increased stress at the fiber uv is,
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and neglecting higher order terms

3.8
Hence, an increase in stress at the fiber uv, from Eqs.3.6 and
3.8 is given by,

Replacillg(2um/cm) by Eo(initial tangent modulus) the increase in

stress becomes, au = Eo (l-cy/cm) aC. 3.9
Therefore, an increase in axial force in the section is given by

c. / c-

aP = J B ~o dy

c2./e

3.10

and by taking moment about the centroidal plane of the whole
section,

given by,
the increase in the bending moment in the section is

c,le
aM = jB36(y-T1L-cz!c) dy

E.2/e

3.11

where B is the width of the section,~~ is the increase in stress
at the fiber uv, dy is the depth of the fiber uv and L is depth

of the centroidal axis of the whole sectioll(not only the

rectangular web) from top fiber.

Substituting ~6 from Eq.3.9 into Eq.3.10 increase in axial

force in the section is obtained as,



C.l/C

~p = BEo'ocj(l-CY!cm) dy

C2/C.

Using the relationship expressed in Eq.3.1, we get,

31

3.12

3.13
Substituting ;)G' from Eq.3.9 into Eq.3.11, the increase in the
bending moment in the web is given as,

tile

+(L-T/2)BEo'oEj(1-cy/cm)dY
c>;./e

bM

or 'oM

£0,1"

= BEo ilE j (l-cY/l::m)(y-T+L- f:.,/c)dy
c'Z./e

(I Ie

= BEo'oEj( l-cY/l::m)(Y-T/2 - ~/c) dy
c2/(o

3.14

Using the expressions of Eq.3.1 and Eq.3.2,

'oM = -(Eolw/T)[(l-R)c,/CmJ'~c + (L-T/2)EoAw[1-(l+R)E\/2I::
m
J 3.15

where Aw and Iw are the cross-sectional area and the moment of

inertia of the web section, respectively.

Making ac to unity, as mentioned before, the expressions
of 0P and aM gives two terms of the stiffens matrix,

and S21w =-(EoIw/T)[(l-R)I::,/cmJ

+(L-T/2)EoAw[1-(1+R)I::\/2cm

3.16

3.17

After applying an incremental rotalion( ~e) about the

centroidsl plane(Fig.3.5e), the strain at the fiber uv increases
to, c~ = cy + (y-c2./c +L-T) ve

And the corresponding stress at that fiber increases to,
3.18
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6; = [2c~/C", -(~;/cm)2l ()m

Replacing E.~ by Eq.3.18 and neglecting the higher order terms,

G~ = [2cy/em +2aB(y- 1:c2,./c +L-T)/cm

Hence the increase in stress at the fiber uv,

Eq.3.l9, is

3.19

from Eq.3.6 and

which after putting Ea= 26m/cm becomes,

3.20

As before, the increase in Bxial force Bnd bending moment
in the section is given by,

c,/c

C'JP = J B il Cf dy

C2/C

Elle

Bnd aM = j B ~()(y- 0.Jc +L-T) dy
E..~/c..

Substituting ;,()from Eq.3.20, we get

C.I/<:"

2>P = BEabe) (l-cY/Em)(Y-cz/c +L-T) dy 3.21
t.~I <.
E./c

and ~M = BEo be J (l-cy It",) (y-E'I./c +L--r)2 dy 3.22
Ez/c

Comparing Eq.3.2l with Eq.3.14, it is observed that both are
basically the same equation except for the terms ~8 and ~o and
hence from Eq.3.l5,

C'Jp = -(Ea Iw/T) [(l-R)c, /cml'be +(L-T/2)EaAw [1- E,(I+R)/2c",lae 3.23
Expanding Eq.3.22 we get,
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Cite

~M = BEo;'0J (l-cyicm) (Y-E,jc -T/2)2 dy +
t2/C

tIle

+2BEo~e(L-T/2) J (l-cY/cm)(y-f:.-Jc -T/2) dy
t:..2/c

cite

+ BEo;:,e(I,-T/2)2j (l-cy/tm) dy
I'::)./c

Using the expressions in Rqs.3.1, 3.2 and 3.3, we get,

~M = Eolw[l-(l+R)c,/2cmJbe - 2(L-T/2)Eolwbe[(l-R)t.,/cml/T

+(L-T/2)2Eo Aw [1-( l+R) c,/2 c",J58 3.24

As explained before, making ~G equal to unity, the

expressions of aP and aM in Eqs.3.23 and 3.24 respectively gives

two other terms of the stiffness matrix of the web;

S12w =-(Eolw/T)[(l-R)c,lEmJ +(L-T/2)EoAw[1-(l+R)E,/2E.mJ 3.25

and Si2w = EoIw[l-(l+R)c,/2cml -2(L-T/2)(Eolw/T)[(l-R)cl/t",J

+(L-T/2)2EoAw [1-( l+R) "J /2cm] 3.26

Thus the complete stiffness matrix due to the concrete in

the web element can be expressed as,

3.25 and 3.26 respectively.

while S'lw, S12w, S21w and S22w are given by Eqs.3.16, 3.17,

[S]W =

S 1 1 w

821101

S 12 w
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3.5 Stiffness Matrix-Cracked Web

The state of strain and stress in cracked web of a

concrete section under axial force(p) and bending moment(M) is

shown in Fig.3.6.

B

u

T d

r- -
•..•._-

a) Web
element.

v
L

E,

bJ Strain.

-- ---,--
----~

c) Stress

~e "jM
l~~I~~ol~/, p

section) ,--r-------, /
L./

d) Applying<l~ . e)Applying-09

Figure 3.6 State of strain and stress in cracked web.

Strain distribution(Fig.3.6b) in a cracked web can be

considered to be a particular case of that in an uncracked web,

where the strain at the bottom fibre of the uncracked zone is

zero. Thus the expressions developed for the uncracked web apply

but in reference to the geometric properties of the uncracked

zone.

Hence, putting R=O and changing the terms representing

geometrical properties, in Eqs.3.l5, 3.16, 3.25 and 3.26, we get,

SII"C = EoAc [1-cl/2E",]
S21"C = S12"c = -Eolc(E.,/c",)/DT + (I.-DT/2)EoAc(1-ct/2E.",)
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and S22"e = Eo1c(l-c,/2E.",) - 2(L-DT/2)Eolc(c,/cm)/DT

+ (L- DT/2) 2 EoAc [ 1- 10, /2 em]

where from Fig.3.6, D=Depth ratio i.e ratio of the depth of the

uncracked zone(DT) to the original depth(T), DT=Depth of the

uncracked zone of the web section, Ac=BDT=A"D=cross-sectional

area of uncracked zone and Ie = B(DT)3/l2 = BT3D3/l2 = I"D3 =

second moment of area of the uncracked zone about the centroidal

plane of the uncracked zone.

utilizing the cross-sectional equivalences just mentioned,

the above expressions become,

S11"e = EoA"D (2-c, / em )/2 3 .28

S'2"e = S21"e = -(EoI"D3/DT)(E,/trn) +(L-DT/2)EoA,,0(2-E,/E,)/2

= -(Eo1"D2/T)(c, /Em) +(L-DT/2)EoA"D(2-c,/c",)/2 3.29

S22"e = (Eo 1,,03/2)(2-E, /Em) -2(L-DT/2) (Eo I"D2/T) (c,/cm)

+(L-DT/2)2(EoA,,0/2)(2-E, /ern) 3.30

Thus the stiffness matrix of a cracked web, with respect

to the centroidal axis of a whole section, can be represented as

[S]"e =

Sll'"'C

S21WC

S12WC

S22WC

where the stiffness terms are given by Eqs.3.28, 3.29 and 3.30.
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3.6 Stiffness Matrix-Uncracked Top Flange

The general state of strain and stress in uncracked top

flange of a concrete section under axial force(P) and bending

moment(M) is shown in Fig.3.7.

alTop flange blStrBin c) stress d)Applying-c.E. ,elApplying 'ae

Figure 3.7 state of strain and stress in

uncracked top flange.

The stiffness matrix for rectangular web is developed in

previous sections. The stiffness matrices for the top flange will

be developed in this section.

From the strain distribution(Fig.3.7b), the strain at a

--

fiber uv is c::J=cy. Where curvature, c=(c,-E3)/Tt=(l-R3)c,/Tt and

113=~/E" The corresponding stress at the fiber uv is
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Applying a uniform strain increment(~a ) in the section

(Fig.3.7d) the strain at the fiber uv becomes, £~ =cy+~~ And

thereby as before, the stress Increases to,

= [2(cy+'dE.)ICn) - (CY+dc Flem 10m

Neglecting the higher order terms,G~ becomes

o~= [2cy1t1" +2(ja It-m -c2y2lEm -2cY'<lcJl:mI <Jm
Hence, nn increase in stress st the fiber uv is,

Putting 26m/c~ = Eo,the expression becomes

Therefore considering only the top flange of the section,

an increase in axial force is

c,/c

t:lP = / Bt ~<J dy

c.~,/c

and taking moment about

3.32

the centroidal plane of the whole

section, the increase in bending moment is

c,/c

aM =J Bt{y-E3/c +L-Tt}b<:l" dy
c3/c

3.33

The expressions of ap nnd ~M Just obtained are the same as

those of uncracked web given by Eqs.3.12 and 3.14, if the
corresponding terms related to geometrical

interchanged.
properties are



Therefore, with the help of Eqs.3.13, 3.15,

we can write

Sll t = EoAt [l-(l+Rt)<5,/2cln]
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3.16 and 3.17

3.34

where Tt, At, It are thickness, area and moment of inertia of the

top flange, respectively. Rt=Ratio of strains at the bottom

fibre(c3) to the top fibre(c,) of the top flange.

For determining other two terms, applying an incremental

rotation( ~e ) about the centroidal plane of the whole section

(Fig.3.7e), the strain in the fiber uv increases to,

E~ = cy + (y- c,,/c+L-Tt) de

and thereby the stress increases to,

()~ = [2 E; / Em - ( E; / Em) 2] <.lm

which after substituting c~ and neglecting the higher order

terms, we get,

<r;= [2cY/cln + 2~e(Y-E.3/c +L-Tt )/cm - c2y2/e,;
- 2cy:;e(y- c:;/ c +L-Tt) /l:~] <rIn

Hence the increase in stress at the fiber uv is

which after putting 2~m/E~ = Eo, becomes;

de> = Eo (l-cy/cm) (y-ca/c +L-Tl) ~e

As before, considering only the top flange the increase in axial

force in the section is
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and taking moment about the centroidal plane of the whole

section, the increasing in bending moment is

E,/C

aM = J Bt(y-t3/c +L-Tt)~6 dy
c1>/e

putting '1>6from above equation, we get

t:,/C

ap = BtEo'iJsj (l-cY!E",)(Y-C3/C +L-Tt) dy
t.,/c
, E.,/c.

and liM = BtEo ae / (l-cy/cm) (Y-c,,/c +L-Tt)2 dy
1:.,/"

As before, the expressions just obtained for aP and SM are

similar to those for web(Eqs.3.2l and 3.22),

Eqs.3.25 and 3.26, we can write as,

8,2t = 821t (Same as Eq.3 .35) and

and hence from

822t = Eo It[l-(l+Rt)c, /2c",] -2(L-Tt/2)EoIt [(l-Rt)E, /em]/Tt

+(L-Tt /2)2Eo At [1-( l+Rt) E,/2 em] 3.36

Thus the contribution to the stiffness matrix due to the

top flange of a section ia given by

8, 1 t

[8] t =
821 t

3.37

While the terms are expressed by Eqs.3.34, 3.35 and 3.36.
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3.7 Stiffness Matrix-Cracked Top Flange

The general slate of strain and slress distribution for a
cracked top flange is shown in Fig.3.8.

alTop flange, b)Stra;n • rJ Stress .dJApplying oe eJApplying~a .

Figure 3.8 State of strain and stress in cracked

top flange.

In determining the stiffness malrix for cracked web it is

demonstrated that it can be obtained from the expressions for
uncracked web. Applying similar principles, that is making Rt=O

and replacing the terms representing geometric properties, we get
from Eqs.3.34, 3.35 and 3.36,

+(L-TtDt/2)EoAtDt [l-E,/2E",1

+(L-TtDt/2)2EoAtDt (1- c,/2tm)

3.38

3.39

3.40
where DtTt is the depth of uncracked zone of cracked top flange.
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Hence the stiffness matrix for the cracked top flange can
be given as,

[Sjtc =

Slltc S12tc

3.41

3.8 Stiffness Matrix-Uncracked Bottom Flange

General state of strain, while the bottom flange of a
section remains uncracked, is shown in Fig. 3.9.

d) Applying ae.. e) Applying~e,

Figure 3.9 State of strain and stress in uncracked
bottom flange.

From the strain distribution (Fig.3.9b) the strain at a

fiber uv is c:j=cy, where curvature c=(E.,-cz)ITb=c,,(l-Rb)/Tb. And
the corresponding stress, by the parabolic stress-strain
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relationship is

Applying a uniform strain increment( be.) in the section
(Fig.3.9d), the strain in the fiber uv increases to(cY+be) and
thereby the stress increases to

Neglecting the higher order terms, the expression becomes,

Hence the increase in stress after simplification, is

Considering the bottom flange of the section,

axial force is
the increase in

e"/e

llP=jBb8()dY.=

",/<.

<:,,/ c:

BbF.o ~E.J (l-cy/c..,,)
C2./<!

dy

and taking moment about the centroidal plane of the section the

increase in bending moment is

C."/e.

SM = -j Bb (T-L-y+c:dc)~tS dy
C2/l!-

(-ve sign, because the moment is opposite to the +ve sign

convention chosen, as shown in Fig.3.9). Expanding ~M we get,

c.,/e

"M = BbEo acI (1-cy/c",)(-T+L+y- E,/c) dy
C2/e.



E,,/e-
= BbEo'oC.jO-CY/Cm) (Y-c'L/c- Tb/2) dy

C2/~.

l;;~/"

-BbEo bE. (T-L-Tb/2) !O-Cy/E",) dy
c'J.I"
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3.42

The expression of aP is similar to that of uncracked web given by

Eq.3.l2 and hence
3.43

where Ab, Ib, Tb and Bb are cross-sect ional area, moment of

inertia, depth and width of the bottom flange respectively. And

Rb=C2/C,-< as mentioned before.

The expression of oM, in Eq.3.42 has two parts. The first

part is analogous to the first part of that of uncracked web

given in Eq.3.l4 while the second part is a multiplier of the

expression of ap in Eq.3.12. Thus

-(T-L-Tb /2) EoAb (1-(1+Rb )E,,/2 em) 3.44

Applying an incremental rotation(aD) about the centroidal

plane of the section(Fig.3.9c) the strain in the fiber uv reduces

to E~ = cy - aO(T-L-y+ <:.-z./c) = cy + aO (y- E1./C +L-T)

and the corresponding stress, neglecting higher order terms, is

()~= (2cy/cm +2aO(Y-E.:z/c +L-'T)/cm -C?y2/c"~

-2cy~e(y-c,jc +L-T)!E;JcJm
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The change in stress is
~()=()~-6~= Eo'3e(l-cY/Em) (Y-C7./C +L-T)

= Eo"<le(l-cy/Em){(y-E,jC -Tb/2)-(T-L-Tb/2)}

The change in axial force in the section is,. therefore,

'aP
c." Ie

dy = BbEoaej(l-cy/E.",){(Y-e..,./c
Ede

-Tb/2)-(T-L-Tb/2} dy

which is same as the expression of ~M given in Eq.3.42 except the

term as , and hence from Eq.3.44, we can write

821b = aP/da= -Eo!b[(l-Rb)E"/E.,,.,!/Tb

-(T-L-Tb/2)AbEo [1-( l+Rb) e"/2c.,,,] 3.45

Taking moment about the centroidal plane of the whole section,

the change in bending moment is

C~Ie.
aM =-J Bb (T-L-y+cz./c)~cr dy

c•.le
,E" Ie

= BbEo-aeJ (l-cy/E",){(y-E •./c -Tb/2)-(T-L-Tb/2)}2 dy
e•.Ie
c.le

= BbEo'a{ (l-cy/c",)(Y-c •./c -Tb/2)2 dy
,E•.1c

E"Ie.

-2BbEo~e (T-L-Tb/2)! (l-cY/E,.,,)(y-E•./c -Tb/2) dy
'"'•.Ie.

i E~/c

+BbEo':le(T-L-Tb/2)2 (l-cy/c..,)dy
E •. le.

The expression of ~M Just presented has three parts. The

first part is similar to the expression of 822 given by Eq.3.3
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while the second and third part are a constant multiplier of the

expr'essions of S'2 and Sll given by Eqs.(3.2) and (3.1)
respectively. Therefore, for an uncracked bottom flange

S22b = aM/::>o=Eo!b(1-c"(1+Rb)/2c,,,] +2(T-L-Tb/2)Eo!b[e,,(1-Rb/E..,)]/Tb
+(T-L-Tb/2)2EoAb[I-E"(I+Rb)/2e,,,J 3.46

Thus the stiffness matrix for the uncracked bottom flange is
given as

S lIb

[sJb =
3.47

S21 b

3.9 Stiffness Matrix-Cracked Bottom Flange

In determining stiffness matrix for cracked web and top

flange it is demonstrated before that the cracked element is a

special case of the uncracked sectional element. Hence similarly

as before, making Rb=O and replacing terms related to geometric
properties, we get,

Sllbc = EoDbAb[I-~/2E",J 3.48

S'2bc - S21bc =-EoDb2Ib(c\/c",)/Tb

-(T-L-Tb/2)EoAbDb (1- e,/2E",) 3.49

S22bc = EoDb3!b[I-e"/2E,,,] +2(T-L-Tb/2)EoDb2!b(e"/E,,,)/Tb

+(T-L-Tb/2)2Eo DbAb [1- 1:'"/2E,,,J 3.50

where DbTb is the depth of uncracked zone of the cracked bottom
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flange.

So the stiffness matrix for the cracked bottom flange can

be given as

Sllbe

[S]be = 3.51

S•• be

3.10 Stiffness Matrix-Prestressing steel

General state of stress and strain in an cracked and

uncracked prestressed concrete section is shown in Fig.3.l0 and

3.11. In the figures it is observed that, to define the state of

strain in prestressing steel three independent terms of strain

are essential. Thus at any instant, strain in prestressing steel

can be expressed as C:,. = CS~ + Cc.e + Cc.s

where Cs = Tensile strain in steel,

~sc. = Net tensile strain in steel required to produce

the effective prestress,

E.e = Compressive strain in concrete at the level of

steel just after prestressing, and

cos = Strain in concrete at the level of steel (+ve if

tensile) .
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1 H

- ---~~~~~~----=- --)-~=d
1

I) Section II) Strain III) ApplyingH, IVI Appl ying ~e

Figure 3.10 State of strain in prestressing steel of a

cracked section.

T d --1--- --"7-'---
II Section lIJ Strain 1111 Applying:;'6 . IV) Applying ae

Figure 3.11 State of strain in prestressing steel of an

uncracked section.

For the purpose of determining the contribution of

prestressing steel to the overall stiffness of a prestress

concrete section, a uniform strain increment(~e) and a rotational

increment(~e) will be applied, as has been done before. And from



the

the

consequential

section, the

48

increase of axial force and bending moment in

corresponding terms of stiffness will be

determined.

Applying a uniform strain increment(~~) the tensile strain

in steel, becomes E{, = Ee - 'aE

and hence the change in tensile stress in steel is

'06 = B. (E; - c", ) = -B.ae

Where E.=Young's modulus of elasticity of steel, assuming it is

not yielding(c&<cj). The change in axial force and bending moment

in the section are

ap = As~6 = -B.A.~E (tensile) = E.A.aE (compressive)

and aM = "a6 A. (d-L) = -E. A. (d-L)()c

where, d is the distance of the steel from the top fiber of the

section, L is the distance of e.g of the whole section from the

top fiber and A. is the area of prestressing steel. Making ()E

equal to unity as before, we get

SliP = +~p = B.A.
and S21P = aM = -E.A. (d-L)

3.52

3.53

Applying an incremental rotation('oe) as before, the change

in stress in steel is a6 = E. (d-L) oe

lienee the change in axial force and bending moment in the section

are ~p = A.~6 = E.A.(d-L)~e (tensile)

=-EsA.(d-L)ae (compression)

and ~M = A. (d-L)~o = B. A. (d-L)2 ~e



Making de equal to unity, we get,

S,oP =5P = -E.A.(d-L)

and So.p = 5M = E.A.(d-L)O
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3.54

3.55

Thus the contribution to the stiffness matrix for

prestressed concrete sections due to prestressing steel is given

by,

(S]P =
SO, P

=

-E. As (d-l.)

-EsAs (d-L) E.A. (d-L)O

3.56

It is to be noted that the stiffness terms for
due to the factprestressing steel appears to be of linear form,

that the basic stress-strain characteristics of steel is a

combination of two or three linear parts as presented in

Figs.2.5a, 2.5b and 2.6.

The expressions presented here are related to the first

part of the curve representing linear elastic stress-strain

relationship for steel(before yielding is started). The stiffness

terms corresponding to any other part of the stress-strain curve

(plastic or strain hardening range) can easily be obtained from

the expressions presented by just replacing the term E., with the

slope of the corresponding portion of the stress-strain curve.
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3.11 Stiffness Matrix-Reinforcing Steel.

Unlike the prestressing steel for reinforcing steel only

one term is required to express the strain in steel. Thus'at any

stage of loading, strain in steel is <: - c Whs- es. ere, as before,

c.s=the strain of concrete at the level of steel(+ve if tensile).

Following the sume approach as that for prestressing steel

it can be observed that the difference in expressing strain for

reinforcing steel dose not make any difference in the expression

of stiffness terms and hence the contribution to the stiffness of

a section is given as,

E.A. -E.A.(d-L)

[S]R = 3.57

-E.A.(d-L) E.A.(d-L)2

where, E. represents the slope of the appropriate part of the

stress-strain curve(Fig.2.5a,

strain present in steel.

3.12 Alternate Approach

2.5b and 2.6) depending upon the

Derivation of the stiffness terms can also be done

alternatively using differential calculus and a Jacobian matrix.
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Results obtained are idenlical to those derived in the previous
section.

The approach is equally applicable for different uncracked

and cracked sectional elements but it is presented only for the
uncracked web element.

The state of strain and stress in an uncracked web of a

concrete section under axial force(P) and bending moment(M) is
shown in Fig.3.5. From the strain distribulion(Fig.3.5b) by
simple geometry, the strain at a fiber uv is c:j = cy, where the

By the parabolic stress-strain relationship, the
corresponding stress at the fiber uv is

<J~ = [2cy/c",-(cy/c", )21om = (26"",/Cm) (cY-C2y2/2c.,J
(f~ = Eo (cy-c2y2/2cm) 3.58

Integrating over the whole depth the axial force in the section
carried by the concrete is given as

where as before,

c=curvature of the section, L=depth of centroidal plane of the
section from top fiber, T=depth of the web, B=width of the web
element and

CL =strain at the centroidal plane of the whole
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section = (!'-T)E.,/T + (!')cz./T = c\ -(l-R)c, !'/T.

Replacing o~by Eq.3.58 the axial force carried by concrete is,

L 'EL/c

P = BEo! (cy-c2y2/2 E." ) dy =

L-i+CL/C

L' ELIe.
BEo[cy2/2 -c2y3/6c", 1 3.59

L-i-lt CL./c

= BEo[(c/2){(cl/c +!,)2_(Cl/c -T+!,)2} - (clI6c",){(EL/c +L)3

-(el/c -T+!,)3)]

= BEo [{(L+t.l/c)2-(L+ cl/c)2+2T(L+t.cic)-T2}c/2

- {(1,+ell c)3 - (1,+!ell c) 3+ 3 (J.+I::LIc)2 T- 3 (!,H\ I c) T2 +T3 }c2 16j.;,]

= BEo [(2TL-T2+2Tl::l/c)c/2 -(3T c.~Ic2 +6TLc
l
/c +3TV +T3

-3T2cl/c -3T2!')c2/6cml

Taking moment of stress diagram ahout the centroidal
plane, the bending moment carried by the concrete is,

L + tl./e

M =j B(Y-<\/c)()~ dy

L••T"'E.L/~

Replacing o~by Eq.3.58

L+ Cl I.

M = BEoj (y-cL/c)(cy-c2y2/2Em) dy

looT. tl/e

L+Cl/e L+Cl!e

= BEo) Y(Cy-c2y2/2E",) dy -(BEoEL/C)j (Cy-c2y2/2c",) dy
L-T+E.l/e L-T-tEl/e
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3.60
The second part of the expression above is just(-CL/C) times the

expression of P(Eq. 3. 59). So

M~ =-(BEocL /c)[Tc,. +cTL -CT2/2 -Tc~/2E", -Tc2L2/2c", -cTLEL/tm

Now integrating the expression of MI, we get

= BEo [{T' -3T2(L+EL/c) +3T(L+cL/c)2)C/3 -{4T(I.+CL/C)3

-6T2(L+cL/c)2 +4T3(L+cjc) -T4)c2/8Em]

Since from basic algebra

(L+ EL/c)3 -(L-T+ cL/C)3

= (L+<\/c)3 -{(L+cL/c) -T}3

= (L+ cL/c)3 -(L+ EL/c)3 +3(L+ E,/C)2T -3(L+ cL/c)T2 +T3

= T3 -3T2 (L+CL/C) +3T( L+ EL/c)2

and

(L+ tL/C)4 -{(L+ c,/C)-T)4

= (L+!:L/C)4 -(L+tL/c)1 +4T(L+CL/c)3 -6T2(L+E.L/c)2

+4T3(L+EL/c) -T4

= 4T(CL
3
/C3 +3Le.t"/c2 +3L2CL/C +L3) -6T2(ct/C2 +2LcL/C +L2)
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Thus

M, = BEo [0'3 -3T2CL /c -3T2 L +3TEt/c2 +6TLcL /c +3TV)c/3

It can be observed that two encircled terms in both the
expression of M, and M2 have the same value with opposite sign
and hence they will cancel one another. Therefore, these terms
will be ignored in obtaining partial derivatives followed.

After obtaining the expression of ax inI force(P) and
bending moment(M) corresponding to the strain and stress

distribution of a section it is possible to find the total
differential(14) of I'and M using the principles of differential
calculus. The total differential is given by

dP = (aP/aCL ) dEL +( oP/oc) dc and dM = (;)M/3EL) dCL+(dM/oc) dc
which can be written in matrix form as

uP oP
dP Cl E.e .0"- d CL

=

dM
~ dc

0'1deL "'0.
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01' [dF] = [S] [d ]

in which [S], the Jacobian relating incremental internal forces

with increment deformations of the section, is the required

stiffness matrix of the sectional element. Thus from Eq.3.59,

"P/<>E.~= BEoT[l-e.L/cm -cL/cm +cT/2E",]

= BEoT[l-1:L/E.., +c1'/2cm -(L/T)cTIc.., ]

Using the relationship, stated before;

cL= c, -(L/T) c,(l-R) and c = E, (I-R)/T

we get

ClP/C>cL= AwEo[1-1:., /E", +(L/T) (l-R)E, /E", +(l-R)c., /2E",-(L/T) (I"R)E.lt",]

= AwEo[1-(2-1+R)E,/2E", ]

.'.ap/dCL= AwEo[l -(l-R)c,/21:.m] 3.61

Differentiating the expression of P with respect to curvature,c.

~P/ac = BTEo(L- T/2 -c12/(:m -LEL/I::", -CT2/31:.", +Tt
L
/21:.",

+cLT/c", ] 3.62

= AwEo[(L-T/2)-(12/T)(l-R)£, /E'm -Lc,!Em +(12/T)(l-R)E, It",

-T( l-R)c, /31:.", +Tc, /2c.., -L( I-R)c, /21:", +L( I-R)t, /E",

= AwEo[(L-T/2) -(L-T/2)~ /E", +(l-R)(L-T/2)c,/2Em

-T(l-R) E, /12 E", ]

= AwEo[(L-T/2){I -c,!t:..", +(l-R)c,/2E.",} -T(l-R)c,/12c", ]

=-(EoAwT/12)(l-R)c, /1:.., +(L-T/2)AwEo [1-{1-(l-R)/2}c, /e", J

=-(Eolw/T)[(l-R)c, /c",]+(L-T/2)AwEo [l-{(l+R)/2}c,/E",] 3.63

The expression of oP/OCL and oP/ac in Eqs.3.6l and 3.63

respectively can be found to be the same as obtained previously

in Eqs.3.16 and 3.17. Similarly, differentiating the expression
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of M in Eq.3.60, we get

aM/aCL = aM,/aEL + aM2/a~L

= BEo [-T2 +2TL-3LTEL/Cm -3TVc/2Em +6T2EL/4cm +3cLT2/2E",

-CT3/2cmJ +BEo [-TL -cTV /2 em +2TLEL /E", +CT3/6E:.m
-T2cL/Cm -cLT2/2cm +T2/2J

= BEoT[L- T/2 -CL2/Em -LCL/Cm -CT2/3c", +TEL/2cm
+cTL/cmJ 3.64

The expression is the same as that obtained for ap/ac in Eq.3.62

and hence the final expression would be the same as in Eq.3.63

which is the same as that for corresponding term of stiffness 52'

found earlier in Eq.3.17. Finally differentiating M
with respect to curvature,c.

aM/clc = aM,/ac + aM2/aC

= BEo[T3/3 -T2L +TL2 -3TL2CL/2cm -cTL3/cm +6T2cL2/4cm
+3LT2 EL/2cm -T3 EL /2Em -cLT3/Em +CT4/4E",J

+BEo[TL2cL/2E", +T3cL/6Em -LT2~/2Em ]

= BEo[T3/3 -LT2 +TV -TVCL/Cm -TPc/Em +3cT2V/2Em

+LT2/\/C", -T3cL/3E", -cLT31cm +CT4/4E",] 3.65

While the corresponding term of stiffness matrix obtained
directly is given by Bq.3.26 as

522 = EoIw[1 -(l+R)c,/2cm] -2(L-T/2)(BoIw/T)[(l-R)E,/EmJ

+(L-T/2)2EoAw [1-(l+R) E,/2EmJ

= [522)1 + [522]1 I +[522]111

Using the reverse relationship(Fig.3.5)

t', = CL + Lc

R = E~/El = {EL-c(T-L)}/(EL+cL) = (cL+Lc-Tc)/(EL+cL)
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We get,

[822]' = Eolw[1 -(1+R)c,/2c",]

= I'0 I w[ 1- ( EL+Lc) { 1+ ( EL+ Lc - Tc ) / (CL +Lc ) Jf2cm

= Eolw[I-(cL+Lc)(tL+Lc+EL+Lc-Tc)/2E~(eL+Lc)J

= (Eo BT3 /12) [1 -c.L/t", -Lc/t", +Tc/2c", ]

= BEo [1'3/12 -T3CL /121:m -cLT3/12c", +cT4/24c",

[822]' I = -2(L-T/2) (Eo IwIT) [(1-R)c, /c", J

= - 2 (L-T /2) (Eo B1'3/121') [ { ( 1- (cL +Lc- Tc) / (10.+Lc) } (EL + Lc) /Em ]

= EoB(-T2L/6 +T3/12)[(EL+Lc-cL-Lc+Tc)(cL+Lc)/(cL+LC)Em ]

= EoB(T3/12 -T2L/6)Tc/Em

= EoB[T"c/12c", -cLT3/6c",

[822JI'l = (L-T/2)2EoAw [1-(I+R)q2cmJ

= BEoT(L2-LT+T2/2) [1-EL/cm -Lc/E", +Tc/2c",]

= BEo (T12-T2L+T3/2) (1- EL/c", .-Lc/c.", +Tc/2EOl]

= BEo [T12-TL2EL /Em -TL3c/cm +T2cL2/2E", -1,1'2 +LT2EL/c",

+L2 cT2 /COl -cLT3/21:.", +1'3/4 -T3cL /41:.", -cLT3/4E", +cT4 /8Em J

Therefore, 822 = [822] J + [822]" + [822]" I

= BEo[T3/12 -T3cL/12c", -cLT3/12E", +cT4/24c", +cT4/12c",

-cLT3/6c", +TL2 -TVcL/c", -cT1,3/cm +cL2 1'2/2 c.", -LT2

+LT2t:c /con +cL2 1'2/E", -cLT3 /2 E", +1'3/4 -T3cL /4cm -cLT3/4c",

+cT"/8cmJ

= BEo[T3/3 -T3I:.L/3c", -cLT3/c", +1'1,2 -TL2cL/c", -cT1,3/c",
+3cL2T2/2cm -LT2 +LT2cL/cm +cT"/4c",J

Which can be seen to be the same as that of dM/ac in Eq.3.65.



It is therefore proved that the alternative approach of
using differential calculus can also be used in obtaining the
stiffness terms for a sectional element.

3.13 Variation of Stiffness Terms

The stiffness terms derived in previous articles can be
observed to be a function of the geometric properties, the state

of strain in the sectional element and the location of the
geometric centroid of the whole section.

The variation of these terms for web element are presented

in Figs.3.12 to 3.18 in their non-dimensional form as a function
of extreme fibre strain.

The stiffness terms obtained for the top flange element

can be seen to be the same as those for web element except the

terms presenting sectional properties. Thus the curves presented

are equally applicable for top flange element. The terms for

bottom flange element are quite different from those for other

two elements. The variation of these terms are, however, not
presented.

Two sets of curves are presented showing the variation of
stiffness for uncracked and cracked web element. The curves for
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variation of stiffness terms due to reinforcing steel are also

presented. Each figure contains three sets of curves for three

different ratios of the depth of the centriodal axis to the total

depth of the whole section(L/T). The curves show linear
variation of stiffness terms with strain. The curves at L/T=O.5
can be considered for the rectangular

mentioning that at zero strain the diagonal
section.

terms
It is worth

s" =EoAo and
S22=Eolo while the off-diagonal terms are zero. These values of
stiffnesses are well-known in linear elastic
structures.

analysis of
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Figure 3.12 Variation of 611 term with strain for
uncracked web element.
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Figure 3.13 Variation of 812 and 821 terms with strain for
uncracked web element.
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Figure 3.11 Variation of 822 term with strain for
un cracked web element.
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Figure 3.15 Variation of 811 term with strain for
cracked web element.
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Figure 3.16 Variation of 812 and 821 terms with strain for
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Figure 3.18 Vaxiation of stiffness terms for reinforcing
steel with d/T ratio.
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3.14 Stiffness of a Section

Stiffness matrix for different sectional elements are
developed and presented in the previous articles. Stiffness
matrix for a section of reinforced or prestressed concrete can be
obtained by matrix addition of the stiffness matrices of
corresponding sectional elements and reinforcement present in the

section. Thus for I, T and rectangular section, the stiffness can
be written as follows,

For I-section, [S] = [S1' + [S]w + [SJb + [SjP/R
For T-section, [S] = [S]t + [SJw + [S]P/R

For rectangular section, [S] = [S]w + [SjP/R

where, t, w, b, P and R represents the top flange, web, bottom

flange, prestressing and reinforcing steel, respectively. since

stiffness matrices for all the sectional elements are (2x2), the

complete stiffness of a section will be a (2x2) matrix and can be
written as,

[S] =

It is to be noted that for deriving the stiffness matrices
for different sectional elements it is tacitly assumed that the

curvature of the section is positive(Fig.3.19b), or in other

words the strain at the top most fibre is greater than at the



bottom most fibre. For sections,
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where opposite situation arises
as shown in Fig.3.19a, it is not possible to obtain the stiffness

matrix directly from the derivations as presented before. The

section is to be inverted upside down so that the curvature

appears to be positive for the inverted section. The stiffness of

this inverted section can be determined using the derivations
presented. The stiffness thus obtained is the desired matrix but

the off-diagonal terms would be multiplied by(-l) for converting

the stiffness terms with respect to the positive sign convention
as shown in Fig.3.19a.

L

T

T-L
d

c (- Ye J

aj Original section and its strain diagram.

0-
L

T

. c ( + Ye J

bJ Inverted section and its strain diagram.

Figure 3.19 Section having +ve/-ve curvature.
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Fig.3.19a, is
the stiffness matrix for

69

the T-section shown in

S 1 1 -S'2
[S] =

inverted T section in Fig.3.l9b, given as

where S", S2l and S22 are the stiffness terms for the

[S] =
S 1 1 S'2

3.15 Stiffness of a Beam-column Element

To utilize the powerful techniques of finite clement in
structural analysis the first step is descretization, that is,

the division of a structural continua into finite elements.

to determine the stiffness matrix of

Elements can be of different shape,

class. The next step is

different types of element.

size and even of different

Reinforced and prestressed concrete flexural member can be
conveniently represented by the conventional two noded beam-



node(Fig.3.20).

column element,
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having three degrees of freedom at each

1,;)\l

convention

Figure 3.20 Increment in nodal forces and displacements

for an incremental load in a beam-column element.

It is mentioned in the previous chapter that the strain

distribution varies over the length of a member and so the
stiffness properties. However, using a large number of small
elements the variation of stiffness properties over the length

can be minimized and stiffness properties corresponding to the

middle section of the element can be considered to be that of the
element. This simplification makes it possible to derive the
stiffness properties analytically.

The approach has been utilised in developing a numerical
model for limit state analysis of brickwork structures. The
complete derivation of the stiffness of the beam-column elemcnt
is presented in Ref.12. The 6x6 stiffness matrix for the element
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in Fig.3.20 can be written as

811/t o -821/t o 812/t

o o ~Vl

==
de,

o 812/L 811/L o

o

Where 811, 521 t and 822 are the stiffness terms
corresponding to the sectional properties and state of strain at
the middle of the element.

Thus stiffness matrices can be developed corresponding to

a particular strain level at the mid-section of the clement. As

the derivation is based on the properties at the mid-section of

the element, the whole element is to be considered cracked if the
mid-section is cracked,
ullcracked.

otherwise it is to be considered as
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CHAPTER 4

MOMENT CURVATURE RELATIONSHIP
AND DISCUSSION

4.1 Introduction

Load-deflection behaviour of concrete members, as

indicated in Fig.4.I, upto and beyond yielding is important in

understanding the possible modes of failure. In general, brittle

failure of member is not desirable, rother, it should undergo a

large deflection at the maximum load. In the other words, the
concrete members should be ductile, so

warning of failure and sudden collapse.
that, there is an ample

The ductile property of
the members at the critical sections is important for considering

the possible distributions of bending moment, shear force and

axial load in the design of statically indeterminate structures.
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Load

Ouctil~
failure

o eflecti on.

Figure 4.1 Load-deflection behaviour of a flexural
member.

Such load-deformation characteristics are mainly dependent

on the moment-curvature characteristics of sections since most of
the deformations of members of normal proportions arise from
strains associated with flexure. In this chapter the moment-
curvature characteristics of singly reinforced rectangular
section under varying axial load are presented and compared to
those present in Ref.ll.

Theoretical moment-curvature curves for reinforced
concrete sections with flexure and axial load cnn be derived on
the basis of following assumptions:

i) strain distribution in a section is linear

sections before bending remain plane after bending.
i. e. plane

ii) stress-strain curves for concrete is parabolic(Eq.2.4)
and for steel is elasLo-plasLic. The assumptions as stated
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are similar to those used for the determination of
flexural strength of sections.

The moment-curvature relationship for a section under a

given axial load is determined by taking different increment of

concrete strain at the extreme compression fibre of a section.

For each value of such strain, strain distribution in the section

is obtained satisfying the force equilibrium in the section. The

strain distribution so found is then used to determine the moment

and curvature corresponding to that value of extreme compression
fibre strain.

4.2 Equilibrium of Axial Forces and Selection of Strain
Distribution

The general state of strain in uncracked and cracked

rectangular section(web element) is presented earlier in Fig.3.5

and 3.6 respectively. For such a section the centroidal axis will

be at the middle of the section ignoring the shift due to steel,
i.e. L=T/2.

For rectangular sections with general state of strain

distribution the axial force(Pc) and bending moment(Mc) carried

by concrete only is given as follows(12, 13).
For uncracked section:
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Pc (compressive) = EoAo c",[3(1+R)c -(HI/+/F )c.2]/6
and Mc(:l) = Eo IoEc", (1-R)[I-E (1+R)/2]/T

4. I

4.2
and when the section is cracked,

Pc (compressive) = EoAoc",D(3c. -1:'.2)/6

and Mc() = Eolocm[2D(3E _eo) + D2(e-4E )]/2T
4.3

4.4
Where, E =c,/Em and c. is the extreme compressive fibre strain as
indicated in the figures.

4.5

4.6

(A. / Ao ) •

From the strain distribution in on uncrocked section
(Fig.3.5) the strain in steel, by geometry, is

Es = El - cd (compress ive)

and hence the axial force (P.) and bending moment (M.) carried by
the steel, if there is no yielding, is

p.(compressive) = A.E.Es = AsE.(EI-cd)
and M.() = -P.(d-T/2)

Dividing by EoAo and replacing c by Eq.3.5, we get

Ps = (EsA./EoAo)[c,-dcj(I-R)/T]EoAo

or P. (compressive)= npEoAoE, [1-d(1-R)/T]
and Ms = -Ps(d-T/2)

where, n=modular ratio(E./Bo) and p=the steel ratio,

Similarly in a cracked section(Fig.3.6) the strain in
steel is given by Cs(tensile) = (d-DT)c

and hence axial force and moment carried by steel are

Ps(tensile) = A.E.cs = AsE.c(d-DT)
and M.() = P.(d-T/2)
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As before, dividing and multiplying by EoAo and replacing c by
C.l lOT, we get

Ps(tensile) = npEoAo(d-DT)E1/DT = npEoAo(d/DT-l)c,
and M.() = Ps(d-T/2)

4.7

4.8
when steel starts yielding(es~E~) the axial force and moment due
to steel in uncracked section is given as

Ps(compressive) = EsAsE~ = npEoAoE~
and Ms(;) = -P.(d-T/2)

In cracked section

Ps(tensile) = EsAse::! = npEoAoE:j
and Ms(~) = Ps(d-T/2)

4.9

4.10

4.11

4.12

In an uncracked section the equilibrium of axial forces
can be written as P = Pc + Ps 4.13

where, P=axial force applied in the section by external load

(compressive). P. and Pc are the internal resisting axial force

(compressive) due to steel and concrete respectively. Replacing

Pc and Ps by Eqs.4.l and 4.5 assuming steel is not yielding, we

get, EoAoE",[3c. (HR)-E.'(l+R+R2)]/6 +npEoAoE, [l-d(l--R)/T] = P

where E =c,/c"" P=Ao<f and 6=average stress in the section due to
externally applied axial force(=P/Ao).

Dividing both sides by EoAocAl/6 and replacing Eo by 20m/Em
3 E (l-H) - t.

2(l+R+R2) +6npE. (l-d/T+dR/T)

=6o/Eoem = 6u 120m = 3u IUm

Rearranging the terms, we get

2-
+E - 6npc (I-d/T) = 0
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which is a quadratic equation in R and hence
R'/2 = [-b:V(\)2-4ae )J/2a 4.14

where a - £'- b = &2--3 to -6np E.d/T- ,

and e = 3cr /6", - 3E + &2-_ 6np f; (l-d/T)

When the steel is yielding, substituting Pc and PB from
Eqs.4.1 and 4.9 in Eq.4.13, we get

EoAocm[3E (l+R)-(l+R+R2)c2-]/6 + npc~EoAo = P = oAo

Dividing both sides by EoAoE",/6 and substituting Ro=26m/c", ,we
get,

3E.(l+R) - (l+R+R2)E2. + 6npc::l/c.m= 6u/Eoc", = 3<5"/<Jm
Rearranging the terms, we get,

lR2 + R(-3E. + c!) - 3E.. + 1::.2..- 6npc~/c", + 3 6 /um = 0

which is again a quadratic equation in R and hence

R3/0 = [-b~/(b2-4aeU/2a

where a = <:.2-, b =c2.-3t: and e =-3E + c2 -6npt~/t", +36/rS",

4.15

From the solution of the equilibrium equation of axial

forces it appears that if the section remains uncracked it is

possible to get four sets of strain distributions(H" R2,

Ho) corresponding to any particular value of extreme compressive
fibre strain(c,).

Before starting the selection of correct strain
distribution, possible distributions assuming the section is
cracked are essential.
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In"a cracked section steel is alwnys in tension nnd henc&
the equilibrium equation can be written as P = Pc _ P•.

Assuming the steel is not yielding from Eqs.4.3 and 4.7, the
equilibrium equation becomes

EoAocmD(3<:. -10'-)/6- npEoAo!::, [d/DT-I] = P = Ao<S"

Dividing both sides by EoAo tOml6 and substituting Eo=26
m

/e", as
before, We get

D(3C'.- 10'")- 6np c.(d/DT-l) = 3G /<S"m

or D2 C (3- to.) - 6np E d/T + 6npE. D - 3DG /6", = 0
or D? (3- E.) - 6npd/T + D (6np-3 6"/6m f.. ) = 0

or D2 (3- to )/6np + D(l-" /6", 2npE ) - d/T = 0

which is a quadratic equation in D and hence
D1/2 = (-b!~b2-4ae)/2a

Where a = (3-e )/6np, b = 1-( G/G~)/2npE and e = -d/T
4. 16

using Eqs.4.3 and 4.11 theWhen yielding takes place in steel,

equilibrium equation of axial forces becomes as

"-
EoAo.e~D(3c -E. )/6 - npE~EoAo = Ao6

Similarly as before, we get

4.17
three more strainassuming the section is cracked,

D(3e _e2.) - 6npE~/cm = 36/G
m

D3 = (6npc~/tm +3G /G", )/(3E. _ 1'.2.)

Therefore,

distributions(D1, D2 and D3) can be obtained. Thus seven possible

strain distributions are obtained corresponding to each value of
extreme fibre strain of the section.
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Preliminary selection of consislent slrain dislribulion(s)

is done from the basic characteristics of strain distributions
that is the value of Rand D must lie within 0 and I.

The strain distribution(s) thus selected are then used to

calculate the value of axial forces carried by concrete(Pe) and

steel(P.) and also the equilibrium of axial forces is checked.

The particular slrain distribution which salisfies the
corresponding equilibrium equation is the appropriate one.

The solution of appropriate strain distribution can also

be obtained graphically as p'"esented in Fig.4.2. In the figure,

the calculated value of total axial 10ad(Pe~ P.) is plotled

corresponding to different assumed strain distributions. The

figure can be used for any singly reinforced rectangular seclion

having tension steel ratio of 2.5%. All the points correspond to

a particular value of extreme fibre slrain(€,IE~) are Joined

together and thus several curves for different values of that
strain are plotted.

also be produced.
Similar curves for other steel ratios can

The horizontal dotted line, in Fig.4.2 represents the case

of the section having an axial stress ratio of 0.4 (P/Ao6~=~/6~=

0.4). For such a section, it appears that:

i) there is no consistent strain distribution for extreme

fibre strain ratio(c,/Em) upto around 0.2,
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ii) for the extreme fibre strain ratio of 0.3 the section

remains uncracked and the value of R is around 0.325,

iii) the section becomes cracked when the extreme fibre
strain ratio is 0.46, and

iv) with further increment of strain the section gets

further cracking indicated by the reducing value of D.

Thus the figure is also helpful in understanding the
cracking behaviour of a section while maintains a constant axial

load. The figure also indicates that for higher value of axial

load the section might not be cracked. It can also be observed

that when there is no axial load(F=u/um=O) the section is always

cracked and value of D slightly varies around 0.44 which is well

known in elastic design of singly reinforced rectangular concrete
sections.

4.3 Moment-Curvature Relationship

The appropriate strain distribution, as obtained in the

last article, can be used to calculate the curvature and bending

moment carried by concrete(Me) and by steel(M.) in the section

using the relevant equations presented in the last article. Total

bending moment(M) present in the section is calculated by
algebraic summation of Me and M•.
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The above procedure is repeated for each value of the
extreme compressive fibre strain. The solution of the correspon-

ding strain distribution and the calculated values of moment and
curvature give just one point of the moment-curvature cUI've.
Repetitions of the procedure for other values of the extreme

fibre strain give several other points of the curve. Plotting of

all these points gives a moment curvature curve for the section
under a given axial load.

The procedure presented above is lengthy for hand

calculation but can be conveniently used by using a computer. An

interactive computer programme in BASIC, therefore, was
developed. The flowchart

Fig.4.3. The programme was
of the programme is presented

run on IBM PC microcomputer.
in

Moment-curvature curves thus obtained for rectangular

singly reinforced concrete section are shown in Figs.4.4, 4.5 and

4.6. The figures presented are suitable for rectangular section

having material properties as depicted in the Fig.4.5 and with a

tension steel ratio of either 1.25% or 2.50% or 3.75%. Three

separate figures are presented for three different steel ratios.

Each figure contains several curves correspond to different
magnitude of axial load ratios(P/Pm=6Ao/o",Ao=F).

The figures clearly indicate that the section remains more

ductile when there is zero or little axial load and it becomes
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Initialise the Talues of
f C' E ••. E nEy' c.y' s' um' 0' • "I,
DT F

Print the initialised
values of fy' c.y' Es' 0"m'
E , E • n, DT, P. F

K = 1 to 10.

Calculate, yield streneth of
steel, P = 2" P E. / E andsu y m
strain ratio E = (2K-3)/10

No
yes

E =.000001

Yes

Section cracked
4

4 e2A1 =
B1 = - E(12-4E +24npc(1-lYI'),
e1 = 12F-12E +4 E 2_24np E (1-DT)
R1/2~B1 :!: ~B~-4A1e1)J /2A

Section uncra~ked

• Steel
unyielding

~.-- Steel
yieldillg



lllPUT "110 =" i NO(Total number
of valid values of R)

TesNO=O

No

Ii = E E E (1-R)~-E(1+R)/2J/12(DT)2
com 2

M = P • () (DT-.5)/(flT)ssm
c = c (1-R)E DTx1000

m
11= H- 11 and PP = P +P

esc s

Print P ,P ,M ,M ,PP, c and Mesc s

NEXT HN

4
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A3 = O-O/6np
B3 = 1-F /(U np)

e =-IYr and
3 _ 2
01/2 = [-B3 ~,I"(B3-4A3e3)J /2A3

Section cracked

• Steel
unyielding
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-'~--Steel yielding

HPUT "NO="; NO(Total numbers
of valid values of D's

Yes

No

5



7 6

M = P 6 (DT-.5)/(DT)2
B B m
P = DE(3-E)/3
c 2 2
Mc = EoEmE[2D(3-E)+D (E-4)] /24(IYr)

c = 10001; E (DT)/D
m

M = H + M and PP = P _ Pc B C B

Print 11, P , P , M , c, Ii and PP
B c B C

5
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Figure 4.3 Flowchart for moment-curvature analysis.
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It is further observed
that the section remains more ductile for smaller value of steel
ratio, as expected.

In Fig.4.7 moment-curvature curves under zero axial load
presented in comparison to similar curves presented in Ref.ll.
The curves can be observed to match each other favorably unless
that for higher steel ratio. For higher steel ratio the
difference is more pronounced, probably due to the difference in
assumed stress-strain curves of concrete. It is pal'abolic, as
assumed throughout the work presented in this thesis while in
Ref.ll it is parabolic upto the peak stress and the rest

curve is straight line, as shown in Fig.4.8.
of the

'003

4000 4000

'002
--~"-Strain .

a) Curve for this .••ork.

'002
---~ •••.Strain.

bJ Curve as in Ref. 11 .

'004

Figure 4.8 Assumed stress-strain curve of concrete for

moment-curveture curves.
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In the Fig.4.8, the curve in (b) is more flatter than the

curve in (a) beyond the peak stress and this causes the moment-

curvature curve for p=3.75% to be less flatter than that of

Ref.ll. The curves of Ref.ll can also be seen to be relatively

longer which may indicate that they are relatively more ductile.

This difference arises because the stress-strain curve of

concrete in Fig.4.8b terminates at a higher strain of 0.004 while

that in Fig.4.8a terminates at 0.003. [n general, it can be

concluded that the curves, represent the moment-curvature
relationship, are quite well, as expected for a reinforced
concrete section.

4.4 Conclusions and Limitations

•

The stiffness properties developed applying first
principles is a first step in developing a numerical model which

can be utilised for limit state analysis of reinforced and

I prestressed concrete members under flexure and axial load. The

numerical model can thus be useful to understand the behaviour of

reinforced and prestressed concrete members throughout
loading history upto collapse.

their

It is to be noted that the stiffness properties developed

for different sectional elements correspond to a particular level

of strain in the element. Combining the stiffness matrices for
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different type of sectional elements present in a section,

complete stiffness matrix of the section is obtained.

The equations and basic assumptions used to obtain the

stiffness matrices are also utilised to study the moment-

curvature relationship of a rectangular section. The moment-
curvature curves are found quite well to represent the
relationship as expected for a reinforced concrete section and in

comparison to similar curves presented by others.

The explicit stiffness matrix developed for a beam-column

element would save much computational efforts by avoiding

numerical integration usually carried out for evaluating

stiffness matrices of finite elements. The matrix developed

correspond to a particular level of strain present in the mid-
section of the element.

The stiffness matrices developed in this work followed a

similar work carried out for structural brickwork(15). A

numerical model was then developed for limit state analysis of

structural brickwork member and particularly applied to brickwork

arches. The numerical model was able to study the behaviour of

arches throughout the loading history. It was further

demonstrated that the model predicting both the crushing and

instability mode of failure automatically. Thus it is hoped that

the stiffness matrix developed in this work will enable us to
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develop a numerical model having similar capabilities.

4.5 Recommendations for Further Study

Utilising the stiffness properties presented in this work,
a numerical model should be developed to study the load-
deflection behaviour, extent of cracking with load, crushing and

instability failure patterns of reinforced and prestressed
concrete structures.

The stiffness matrices developed in this work are based on

the parabolic stress-stl'ain relationship of concrete in

compression and elasto-plastic stress-strain characteristics of

reinforcing and prestressing steel. Applying the same principle,

similar stiffness matrices can be developed correspond to other

type of stress-strain characteristics if found suitable for "a
particular concrete and steel.
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