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Abstract

Chaotic analysis and entropy measurement has been shown to be useful in a variety of

medical applications, particularly in cardiology. Chaotic parameters like Poincare plot

indexes have shown potential in the identification of diseases, especially in the analysis of

biomedical signals like electrocardiogram (ECG).

In this work, entropy measurement, Poincare plot indexes and time domain parameters in

ECG signals have been analyzed. First, the ECG signal is processed through a series of

steps to extract the QRS complex. From this extracted feature, bit-to-bit interval (BBI) and

instantaneous heart rate (IHR) have been calculated. We quantified several time domain

HRV parameters: mean IHR, variance, standard deviation of normal IHR data (SDNN)

and the square root of the mean squared difference of the successive IHR data (RMSSD).

and nonlinear techniques like approximate entropy, sample entropy, and Poincare plot

indexes have been determined from the IHR. Standard database of MIT-BIH is used as

the reference data where each ECG record contains 650000 samples. Approximate entropy

(ApEn) and sample entropy (SampEn) are calculated for IHR for each ECG record of the

database. A much higher value of ApEn and SampEn for IHR is observed for eight

patients with abnormal beats like T, AFIB, VT. On the contrary, the ApEn and SampEn

for IHR of eight patients with normal rhythm shows lower value. The IHR time series

and their corresponding Poincare plots taken from the HRV patterns of patients with

normal heart beat and abnormal heart beat are presented in Figure. Poincare plot indexes

for IHR of eight normal rhythm records show lower values with a SDI of 5.6087 and SD2

of 7.I364.0n the other hand Poincare plot indexes for IHR of eight abnormal rhythm

records show higher values with a SDI of 23.2093 and SD2 of 22.6107. Time domain

parameter are found lower for eight normal rhythm records with variance of 52.6808, SD

of 6.5875, SDSD of 7.9260 and SMSSD of 77.5388 .. Time domain parameter are found

lower for eight abnormal rhythm records with variance of 562.3727, SD of 23.2972,

SDSD of 32.8103 and SMSSD of 86.6614. These results indicate that ECG can be

classified based on this chaotic modelling which works on the nonlinear dynamics of the

system.
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1.1 Background and Motivation

The electrical signals described are measured by the ECG where each heart beat is

displayed as a series of electrical waves characterized by peaks and valleys.

Electrocardiogram (ECG) is a wave that represents an electrical event in the heart, such

as atrial depolarization, atrial repolarization, ventricular depolarization, ventricular

repolarization, or transmission, and so on. An ECG gives two major kinds of

information. First, by. measuring time intervals on the ECG, the duration of the

electrical wave crossing the heart can be determined and consequently we can

determine whether the electrical activity is normal or slow, fast or irregular. Second, by

measuring the amount of electrical activity passing through the heart muscle, a pediatric

cardiologist may be able to find out if parts of the heart are too large or are overworked.

The ECG signal is characterized by five peaks and valleys labeled by successive letters

of the alphabet P, Q, R, S and T. A good performance of an ECG analyzing system

depends heavily upon the accurate and reliable detection of the QRS complex, as well

as the T and P waves. The P wave represents the both atria activation (depolarization).

The first half of the P wave is the activation of the right atrium, whereas the second half

of the P wave is the activation of the atria septum and the left atrium, the atria while the

QRS wave (or complex) and T wave represent the excitation of the ventricles or the

lower chambers of the heart. The detection of the QRS complex is the most important

task in automatic ECG signal analysis. Once. the QRS complex has been identified, a

more detailed examination of ECG signal, including the heart rate, the ST segment,

etc., can be performed.

Analyzing the ECG is a useful tool for diagnosing heart diseases. Based on the ECG

signal shape and distance between fiducial points and other parameters, physicians

diagnose .heart diseases. Recognition of the fiducial points and calculation of



parameters is a tedious routine for the physician; 100000 cardiac cycles per patient are

recorded in a day and a physician has to interpret this large amount of ECG data to

search for a few abnormal cardiac cycles in the ECG. Therefore there is an urgent need

for an automatic ECG interpreting system to help reduce the bllrden of interpreting the

ECG.

Conventional methods of monitoring and diagnosing arrhythmia rely on detecting the

presence of particular signal features by a human observer. Due to the large number of

patients in intensive care units and the need for continuous observation of such

conditions, several techniques for automated arrhythmia detection have been developed

in the past two decades to attempt to solve this problem. Such techniques work by

transforming the mostly qualitative diagnostic criteria into a more objective quantitative

signal feature classification problem.

So an efficient mean is required to analyze the ECG signal and diagnose the heart

diseases. For this the QRS complex in the ECG is used in many methods to distinguish

between the healthy person and the ailing one. Classical techniques have been used to

address this problem such as the analysis of electrocardiogram (ECG) signals for

arrhythmia detection using the frequency domain features [I], using time domain

analysis [2], wavelet transform and non linear analysis such as chaotic analysis, sample

entropy , approximate entropy measurement[3]. Other techniques used adaptive

filtering [4], sequential hypothesis testing [5].

Even though comparatively good results have been achieved using classical techniques,

they seem to provide only a limited amount of information about the signal because

they ignore the underlying nonlinear signal dynamics. Recently, there has been an

increasing interest in applying techniques from the domains of nonlinear analysis and

chaos theory in studying biological systems.

The analysis of heart rate variability is based mainly on analysis of RR intervals [I].

RR intervals are the series of time intervals between heartbeats [2]. We can observe RR
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intervals in electrocardiogram, which is simply graphic representation of the electrical

forces produced by the heart [3].

Central tendency measure (CTM) has also become very useful in describing the chaotic

behavior of the system. When used with clinical parameters [II], CTM can become a

powerful indicator of the absence of congestive heart failure. The CTM method for

determining variability in nonlinear time series has been shown to be effective in both

time series with inherent patterns, such as ECGs and in timer series without a pattern

such as hemodynamic studies. CTM can be used along with other techniques like CD,

and ApEn to study the underlying chaos in the ECG [12].

The phase space of a dynamical system is a mathematical space with orthogonal

coordinate directions representing each of the vectors needed to specify the

instantaneous state of the system. Usually taken method of delays is used to construct

an attractor of dynamical system in a multidimensional state space from only the

knowledge of a one-dimensional time sequence that describes the system behavior.

Studies have been performed to obtain the phase space density plot by mapping the

distribution of points in the phase space of ECG signals and the phase space density

values within a predefined window were used for arrhythmia detection [13].

Classification was performed using a multilayer back propagation neural network and

very good result was obtained for classifying cardiac arrhythmias like premature

ventricular contraction, atrial fibrillation, ventricular tachycardia and ventricular

fibrillation. Phase space portrait of a single cycle ECG wave has also been derived to

study the chaos of the system.

The measurement of heart rate variability (HVR) is a valuable tool in both clinical

practice and physiological research. The Poincare plot of RR intervals is one of the

recent methods of HRV analysis [6]. It has also been used to measure the autonomic

modulation and randomness of heart. The Poincare plot is a graphical representation of

sequential correlations within the RR interval. Poincare HRV plot is a graph in which

each RR interval is plotted against next RR interval (a type of delay map). Various

descriptors are associated with this plot, some of which have a convincing

3



physiological interpretation. Minor axis (SDI), major axis (SD2) and the SDI/SD2

ratio were compared against standard HRV indexes in time domain, in a group of

normal subjects and in a group of abnormal subjects [7,14).

Recent approaches to the study of nonlinearity in biological systems have found a

powerful tool in the Approximate Entropy (ApEn) estimation [3], and [8). Approximate

entropy (ApEn) describes the complexity and irregularity of the signal [9,10). ApEn is

low in regular time series and high in complex irregular ones. It can be applied to both

deterministic and stochastic signals and their combinations. In those papers its ability to

distinguish, in the short period, different physiological conditions in which the

cardiovascular control system can influence the heart rate variability signal (HRV) were

analyzed. The results confirm the ability of the regularity estimation to separate

different patterns in the HRV time series giving at the same time a strong indication for

a possible clinical application of the calculated parameters. In particular by using ApEn

it has been possible to classify Myocardial Infarction patients who had different

performances of the cardiac pump with a higher connected risk for sudden cardiac

death.

The differences between ApEn and SampEn result from I) defining the distance

between two vectors as the maximum absolute difference between their components; 2)

excluding self-matches, i.e., vectors are not compared to themselves; and 3) given a

time series with L data points, only the first L-m vectors of length m are considered.

SampEn is precisely equal to the negative of the natural logarithm of the conditional

probability that sequences (epochs) close to each other for m consecutive data points

will also be close to each other when one more point is added to each sequence. Having

all these features makes SampEn to be a useful tool for investigating the dynamics of

heart rate and other time series.

1.2 Objective of the Study
The aim of this work is to detection of abnormality in ECG using Entropy of Chaotic

Attractor. Chaos may be defined as the pattern that lies between the determinism and

randomness of a system. Poincare plot indexes as well as traditional time domain

4



analysis, approximate entropy (ApEn) and the sample entropy (SampEn) measure were

used for analyzing variability and complexity of HRV .These non-linear techniques are

applied instantaneous heart rate (IHR) that are derived from the sample ECG records

from MIT-BIH database [28]. The results found from this work are analyzed to see if

there is any abnormality present in the examined ECG record.

1.3 Organization of the Dissertation
Chapter I is an introductory chapter. It contains the background and motivation of

analysis of ECG, objective and outline of the proposed algorithm and organization of

this project. A discussion about the human heart, electrical conduction system of the

heart, and electrocardiogram is presented in the chapter 2. Chapter 3 reviews some of

the classical techniques that have been used to analyze the ECG signals for arrhythmia

detection. These techniques include frequency domain features, time domain analysis,

and wavelet transform. Other techniques used adaptive filtering, sequential hypothesis

testing. This chapter also includes some of the non-linear methods that are applied to

analyze ECG signals. The proposed techniques for analyzing ECG signal using non-

linear techniques is described in the chapter 4. Chapter 5 includes the results of the

proposed methods. Chapter 6 contains the summary, conclusions, and

recommendations for continuation.
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Chapter 2

HEART AND ECG

2.1 The Heart
2.1.1 Anatomy and Physiology of the Heart

The heart is a muscular cone-shaped organ about the size of a clenched fist of the same

person. It is located in the upper body (chest area) between the lungs, and with its pointed

end (called the apex) downwards, forwards, and pointing towards the left. The essential

function of the heart is to pump blood to various parts of the body [16]. The heart has four

chambers: right and left atria and right and left ventricles. The two atria act as collecting

reservoirs for blood returning to the heart while the two ventricles act as pumps to eject

the blood to the body. As in any pumping system, the heart comes complete with valves to

prevent the back flow of blood. Deoxygenated blood returns to the heart via the major

veins (superior and inferior vena cava), enters the right atrium, passes into the right

ventricle, and from there is ejected to the pulmonary artery on the way to the lungs.

Oxygenated blood returning from the lungs enters the left atrium via the pulmonary veins,

passes into the left ventricle, and is then ejected tb the aorta. The walls of the ventricles are

composed of three layers of tissue: the innermost thin layer is called the endocardium; the

middle thick, muscular layer, the myocardium; and the outermost thin layer, the

epicardium. The walls of the leftventricle are more muscular and about three times thicker

than those of the right ventricle. The atrial walls are also composed of three layers of

tissue like those of the ventricles, but the middle muscular layer is much thinner. The two

atria form the base of the heart; the ventricles form the apex of the heart. The inter-atrial

septum (a thin membranous wall) separates the two atria, and a thicker, more muscular

wall, the interventricular septum, separates the two ventricles. The two septa, in effect,

divide the heart into two pumping systems, the right heart and the left heart, each one

consisting of an atrium and a ventricle.

6
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RIGHT VENTRICLE (R.V.)
Interventricular septum

Fig 2.1: Anatomy of the heart
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The heart performs its pumping action over and over in a rhythmic sequence. First, the

atria relax (atrial diastole), allowing the blood to pour in from the body and lungs. As the

atria fill with blood, the atrial pressure rises above that in the ventricles, forcing the

tricuspid and mitral valves to open and allowing the blood to empty rapidly into the

relaxed ventricles. Then the atria contract (atrial systole), filling the ventricles to capacity.

Following the contraction of the atria, the pressures in the atria and ventricles equalize, and

the tricuspid and mitral valves begin to close. Then, the ventricles contract vigorously,

causing the ventricular pressure to rise sharply. The tricuspid and mitral valves close

completely, and the aortic and pulmonic valves snap open, allowing the blood to be ejected

forcefully into the pulmonary and systemic circulations. Meanwhile, the atria are again

relaxing and filling with blood. As soon as the ventricles empty of blood and begin to

relax, the ventricular pressure falls, the aortic and pulmonic valves shut tightly, the

tricuspid and mitral valves open, and the rhythmic cardiac sequence begins anew.
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The period from the opening of the aortic and pulmonic valves to their closing, during

which the ventricles contract and empty of blood, is called ventricular systole. The

following period from the closure of the aortic and pulmonic valves to their reopening,

during which the ventricles relax and fill with blood, is called ventricular diastole. The

sequence of one ventricular systole followed by a ventricular diastole is called the cardiac

cycle, commonly defined as the period from the beginning of one heart beat to the

beginning of the next.

2.1.2 Electrical Conduction System of the Heart

The electrical conduction system of the heart (Figure 2.2) is composed of the following

structures:

• Sinoatrial (SA) node

• Internodal atrial conduction tracts and the interatrial conduction tract (Bachmann's

bundle)

• Atrioventricular (AV) junction consisting of the atrioventricular (AV) node and

bundle of His

• Right bundle branch, left bundle branch, and left anterior and posterior fascicles

• Purkinje network

The prime function of the electrical conduction system of the heart is to transmit minute

electrical impulses from the SA node (where they are normally generated) to the atria and

ventricles, causing them to contract (Figure 2.2). The SA node lies in the wall of the right

atrium near the inlet of the superior vena cava. It consists of pacemaker cells that generate

electrical impulses automatically and regularly. The three internodal atrial conduction

tracts, running through the walls of the right atrium between the SA node and the AV

node, conduct the electrical impulses rapidly from the SA node to the AV node in about

0.03 second. The interatrial conduction tract (Bachmann's bundle), a branch of one of the

internodal atrial conduction tracts, extends across the atria, conducting the electrical

impulses from the SA node to the left atrium. The AV node lies partly in the right side of

the interatrial septum in front of the opening of the coronary sinus and partly in the upper

part of the interventricular septum above the base of the tricuspid valve. The primary

function otthe AV node is to relay the electrical impulses from the atria into the ventricles

in an orderly and timely way. A ring of fibrous tissue insulates the reminder of the atria
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from the ventricles, preventing electrical impulses from entering the ventricles except

through the AV node.

sinoatrial (SA) node

interatrial conduction tract
(Bavhmann's bundle)

internodal atrial conduction tracts

atrioventricular (AV) node

bundle of His

left bundle branch

left posterior fascicle

left anterior fascicle

right bundle branch

Purkinje fibers

Fig 2.2: Electrical conduction system of heart

The electrical impulses slow as they travel through the AV node, taking about 0.06 to 0.12

second to reach the bundle of His. The delay is such that the atria can contract and empty,

and the ventricles fill before they are stimulated to contract. The bundle of His lies in the

upper part of the interventricular septum and connects the AV node with the two bundle

branches. Once the electrical impulses enter the bundle of His, they travel more rapidly on

their way to the bundle branches, taking 0.03 to 0.05 second. The right bundle branch and

the left common bundle branch arise from the bundle of His, straddle the interventricular

septum, and continue down both sides of the septum. The left common bundle branch

further divides into two major divisions: the left anterior fascicle and the left posterior

fascicle. The bundle branches and their fascicles subdivide into smaller and smaller

branches, the smallest ones connecting with the Purkinje network, an intricate web of tiny

Purkinje fibers spread widely throughout the ventricles beneath the endocardium. The ends

of the Purkinje fibers finally terminate at the myocardial cells. The bundle of His, the right

and left bundle branches, and the Purkinje network are also known as the His-Purkinje

system of the ventricles. The electrical impulses travel very rapidly to the Purkinje

network through the bundle branches in less than 0.0 I second. All in all, it normally takes
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the electrical impulses less than 0.2 second to travel from the SA node to the Purkinje

network in the ventricles.

2.2 Electrocardiogram
The electrocardiogram (ECG) is a graphic record of the changes in magnitude and

direction of the electrical activity, or, more specifically, the electric current, that is

generated by the depolarization and repolarization of the atria and ventricles (Figure 2.3).

This electrical activity is readily detected by electrodes attached to the skin. But neither the

electrical activity that results from the generation and transmission of electrical impulses

which are too feeble to be detected by skin electrodes nor the mechanical contractions and

relaxations of the atria and ventricles (which do not generate electrical activity) appear in

the electrocardiogram.

2.2.1 Components of the ECG
After the electric current generated by depolarization and repolarization of the atria and

ventricles is detected by electrodes, it is amplified, displayed on an oscilloscope, recorded

on ECG paper, or stored in memory. The electric current generated by atrial depolarization

is recorded as the P wave, and that generated by ventricular depolarization is recorded as

the Q, R, and S waves: the QRS complex. Atrial repolarization is recorded as the atrial T

wave (Ta), and ventricular repolarization, as the ventricular T wave, or simply, the T wave.

Because atria! repolarization normally occurs during ventricular depolarization, the atrial T

wave is buried or hidden in the QRS complex. In a normal cardiac cycle, the P wave

occurs first, followed by the QRS complex and the T wave (Figure 2.4).

The sections of the ECG between the waves and complexes are called segments and

intervals: the PR segment, the ST segment, the TP segment, the PR interval, the QT

interval, and the R-R interval. Intervals include waves and complexes, whereas segments

do not. When electrical activity of the heart is not being detected, the ECG is a straight,

flat line - the isoelectric line or baseline [30].
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2.2.2 ECG Leads

An ECG lead is a record (spatial sampling) of the electrical activity generated by the heart

that is sensed by either one oftwo ways: (I) two discrete eiectrodes of opposite polarity or

(2) one discrete positive electrode and an "indifferent," zero reference point. A lead

composed of two discrete electrodes of opposite polarity is called a bipolar lead; a lead

composed of a single discrete positive electrode and a zero reference point is a unipolar

lead.

II
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Depending on the ECG lead being recorded, the positive electrode may be attached to the

right or left arm, the left leg, or one of several locations on the anterior chest wall. The

negative electrode is usually attached to an opposite arm or leg or to a reference point

made by connecting the limb electrodes together.

For a detailed analysis of the heart's electrical activity, usually in the hospital setting, an

ECG recorded from 12 separate leads (the 12-lead ECG) is used. The 12-lead ECG is also

used in the prehospital phase of emergency care in certain advanced life support services

to diagnose acute myocardial infraction and to help in the identification of certain

arrhythmias. A 12-lead ECG consists of three standard (bipolar) limb leads (leads I, II, and

III) (Figure 2.5), Three augmented (unipolar) leads (leads aVR, aVL, and aVF) (figure

2.6), and six precordial (unipolar) leads (VI, V1, V3, V4, Vs, and V6) (Figure 2.7).

When monitoring the heart solely for arrhythmias, a single ECG lead, such as the standard

limb lead II, is commonly used, especially in the prehospital phase of emergency care.

ec[~:~W~
\ (/
/ " / \ ..

,/\
"

I

Lead I

L. J_ I

Lead III

Fig 2.5: The standard (bipolar) limb leads I, II, and III.
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Chapter 3

ECG ANALYSIS TECHNIQUES

3.1 Introduction:
The analysis of the ECG is widely used for diagnosing many cardiac diseases, which are the

main cause of mortality in developed countries. A large variety of techniques for ECG

analysis have been proposed and published over the last two decades. These techniques have

become essential in a large variety of applications, from diagnosis through supervision and

monitoring applications Time domain measures, standard deviation of NN interval (SDNN),

root mean square of successive NN interval differences (RMSSD), successive NN intervals

differing more than 50 ms (NN50 Count), percentage value of NN50 count (pNN50), HRV

triangular index and triangular interpolation of NN intervals (TINN) also show significant

difference between the healthy patients and patients with different heart diseases[ 15,17].

Frequency domain analysis of extracted normal to normal interval (NN interval) data

indicates significant difference in very low frequency (VLF) power, low frequency (LF)

power and high frequency (HF) power, between the healthy patients and patients with

different heart diseases. Other techniques used adaptive filtering, sequential hypothesis

testing[ 17,18]. Recently, there has been an increasing interest in applying techniques from the

domains of nonlinear analysis and chaos theory in studying biological systems. The Poincare'

plot analysis is a geometrical and non-linear method to assess the dynamics of heart rate

variability (HRV). the Poincare' plot gives a useful visual contact to the R-R data by

representing both short- and long-term variations[14,19]. Analysis of Poincare' plots can be

performed by a simple visual inspection of the shape of the attractor which has been used to

classify the signal. Lack of regularity in physiological time series is often cardiology. Chaotic

parameters have shown potential in the identification of disease, especially in the analysis of

biomedical signals, This index can be efficiently evaluated even over relatively short time

series, making it particularly suitable for the analysis of physiological signals. The objective.

of this chapter is to present some of the techniques for ECG signal analysis. Quantified by
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computing the approximate entropy (ApEn) and sample entropy (SampEn) [8,10,21]. Chaotic

analysis has been shown to be useful in a variety of medical applications especially in ECG.

3.2 Analysis methods for HRV

86 865 87 8T.S 88
nme ;[seconds]

89

Fig 3.1: ECG signal. R peaks are marked with the crosses.
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The base of the HRV analysis is the electrocardiography (ECG) from which the QRS

complexes are determined, see Fig. 2.3. Usually the QRS complex is detected at the R wave

and the RR time series is used in the HRV analysis. Because the R wave has a better signal-

to-noise ratio than the P wave, it can be more easily and reliably detected. As the time interval

between P and R deections is constant, the R waves can be used reliably for recognition of

QRS complexes [24]. Sometimes the term normal-to-normal (NN) is used instead of RR to

emphasize that the intervals are between adjacent QRS complexes resulting from normal

sinus node depolarization.

3.3 Time-domain methods

3.3.1 Standard deviation of the NN intervals
The time-domain methods are the simplest to perform since they are applied straight to the

series of successive RR interval values. The simplest variable to calculate is the SDNN that is

the square root of variance. Since variance is mathematically equal to total power of spectral

analysis, SDNN reflects all the repeated components responsible for variability in the period

of recording.

Mean: The sum of a list of numbers, divided by the total number of numbers in the list,

Where (RR I' RR 2' RR 3 , •••••••. , RR N ) is the sample here total number of sample is N.

RR =_1 fRR;
N i=d

(3.1 )

Variance: The variance is a measure of the dispersion of a set of values. The variance is the

mean of the sum of the squares of the differences between the values and the mean of the

sample [15].

(3.2)

The most obvious such measure is the mean value of RR intervals RR. In addition, several

variables that measure the variability within the RR series exist. The standard deviation of RR

16



intervals (SDNN) is defined as

SDNN (3.3)

Where RR, denotes the value of i'th RR interval and N is the total number of successive

intervals. Where (RR l' RR 2' RR 3 , , RR N ) is the sample and RR is the mean of the

sample. The denominator N -1 IS the number of degrees of freedom in the

vector {(RR I - RR )......... .., (RR N - RR )}. The SDNN reflects the overall (both short-

term and long-term) variation within the RR interval series [15].

3.3.2 The standard deviation of successive RR interval differences (SDSD)
The standard deviation of successive RR interval differences (SDSD) given by

SDSD = -JVar (RR N - RR N+l)

SDSD can be used as a measure ofthe short-term variability.

(3.4)

3.3.3 The root mean square of successive differences (RMSSD)
The most commonly used measures derived from interval differences include the square root

of the mean squared differences of successive NN intervals [15]. Calculation of root mean

square is show in equation 5.

(3.5)
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3.3.4 Proportion- pNN50
Another measure calculated from successive RR interval differences is the NN50 which is

the number of successive intervals differing more than 50 ms or the corresponding relative

amount [15]

pNN 50 NN 50
N - I

x 100 %

3.4 Frequency-domain methods
In the frequency-domain methods, a power spectrum density (PSD) estimate is calculated for

the RR interval series. In HRV analysis, the PSD estimation is generally carried out using

either FFT based methods or parametric AR modeling based methods [1,22].

The advantage of FFT based methods is the simplicity of implementation, while the AR

spectrum yields improved resolution especially for short samples. Another property of AR

spectrum that has made it popular in HRV analysis is that it can be factorized into separate

spectral components. The disadvantages of the AR spectrum are the complexity of model

order selection and the contingency of negative components in the spectral factorization.

Nevertheless, it may be advantageous to calculate the spectrum with both methods to have

comparable results.

The generalized frequency bands in case of short-term HRV recordings are the very low

frequency (VLF, 0-0.04 Hz), low frequency (LF, 0.04-0.15 Hz), and high frequency (HF,

O.I5-0.4 Hz)[9]. The frequency-domain measures extracted from the PSD estimate for each

frequency band include absolute and relative powers of VLF, LF, and HF bands, LF and HF

band powers in normalized units, the LF/HF power ratio, and peak frequencies for each

Band[17] . In the case of FFT spectrum, absolute power values for each frequency band are

obtained by simply integrating the spectrum over the band limits. In the case of AR spectrum,

on the other hand, if factorization is enabled distinct spectral components emerge for each
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frequency band with a proper selection of the model order and the absolute power values are

obtained directly as the powers of these components. If factorization is disabled the AR

spectrum powers are calculated as for the FFT spectrum.

3.4.1 Wavelet transform
The wavelet transform has been used in the biomedical signal processing and has an important

role in the ECG characterization and QRS detection [21]. These class of algorithms for ECG

signal processing normally uses discrete wavelet transforms (DWT), dyadic wavelet transform

(DyWT) and continuous wavelet transforms (CWT), and all of them with real wavelet

functions to decompose, analyze, and compress the ECG signals[23].

The Fourier Transform (FT) decomposes signals in infinite extended sinusoidal functions,

requiring the stationary hypothesis; so 'all the information localized in time, such QRS

complex, are spread over the entire frequency axis. The Short Time Fourier Transform (STFT)

is useful if the signal is non-stationary over the whole interval, but maintains its frequency

characteristic during the short time interval. The STFT provides time-frequency information: a

local spectrum is performed by windowing the signal through fixed dimension windows

where it may be considered approximately stationary. The window dimension fixes both time

and frequency resolutions. The Wavelet Transform (WT) is a tool for non-stationary signal

processing that is alternative both to the classical spectral analysis in the frequency domain

and to the STFT. The WT overcomes the fixed resolution analysis of the STFT. It satisfies the

uncertainty principle or Heisenberg inequality, so time resolution increasing lowers frequency

resolution.

3.5 Geometrical methods
Considering the complex control systems of the heart it is reasonable to assume that nonlinear

mechanisms are involved in the genesis ofHRV. The nonlinear properties ofHRV have been

analyzed using measures such as Central tendency measure (CTM), Poincar'e plot [19, 25,

26], approximate and sample entropy [3, 27], detrended fluctuation analysis, correlation

dimension [16, 18], and recurrence plots. During the last years, the number of studies utilizing
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such methods has increased substantially.

3.5.1 Central tendency measure (CTM)

Central tendency measure (CTM) is used to quantify the degree of variability in the second

order difference plot. It is calculated by selecting a circular region of radius r, around the

origin, counting the number of points that fall within the radius, and dividing by the total

number of points. If N = total number of points, and r = radius of central area. Then

N - ,

n = [I 0 (d , ) ] /( N
i == 1

Where,

2 ) (3.6)

1 , if [(RR,+, - RR'+1)2 +(RR'+1 - RR,)']"' < r (3.7)

0, otherwise

3.5.2 Poincare HRV plot

Poincare HRV plot is a graph in which each RR interval is plotted against next RR interval (a

type of delay map). Poincare plot has many synonyms like Scatter plot; scattergram Return

map; phase delay map, Lorenz plot.

The Poincare plot (return map) is a scattergram, which is constructed by plotting each RR

interval against the previous one [25, 26]. The Poincare plot may be analyzed quantitatively

by fitting an ellipse to the plotted shape. The center of the ellipse is determined by average

RR interval. SO I means the standard deviation of the distances of points from y = x axis,

SD2 means the standard deviation of the distances of points from y = -x + RR axis, where

RR is the average R-R interval. SOl (instantaneous beat-to-beat variability of the data)

determines the width of the ellipse, S02 (continuous beat-to-beat variability) determines the

length ofthe ellipse. The ratio SOI/SD2 is the measure of heart activity [6].
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SDl: dispersion (standard deviation) of points perpendicular to the axis ofline-of-identity

(3.8)

SD2: dispersion (standard deviation) of points along the axis of line-of-identity.

SD2 = 2SDNN2 -.lSDSrJ
2 2 (3.9)
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The ratio SD1/SD2 is the measure of heart activity.

The advantages of Poincare plot

(1) Simple visualization tool

(2) Outlier (ectopic beat or artifact) identifier

(3)Possible insights into short-term and long-term variability

The limitations of Poincare plot

Derived statistics not independent of other time domain measures

3.5.3 Approximate Entropy
Approximate entropy (ApEn) describes the complexity and irregularity of the signal. ApEn is

low in regular time series and high in complex irregular ones. It can be applied to both

deterministic and stochastic signals and their combinations. Lack of regularity in

physiological time series is often quantified by computing the approximate entropy,

ApEn[27]. ApEn is related to the probability that segments of "m" data samples which are

similar (i.e., closer each other than a given distance "r") remain similar when the segment

length increases to "m+ 1" [3]. Lower is this probability (and thus the predictability of the time

series), greater is ApEn.

For a given r value, ApEn(r) is calculated as follows. First we set m=2 and from the RR

series of N ~ Total number of beats, RR (i) i=l , ... , N, we created the series of N-m+ 1

vectors of m components RR m (i) = [RR (i), RR (i + 1),...., RR (i + m)Y . The vector
RRm (i) represents the sequence of m consecutive RR values starting at the beat i. Two

vectors RR",(i) and RRm (j) are similar if the absolute difference between each couple of

corresponding scalar components is less than the distance r x SD. Calling n;" (r) the number

of N-m+ 1 vectors RRm (j) [9] which are similar to RR m (i), then
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em(r)= n;(r)
I N-m+l (3.10)

is the probability to find a sequence of m beats similar to the sequence represented by RRm (i),

and ej
m (r), defined as the mean of all e:" (r), quantifies the prevalence of similar strings of

m beats. ApEn(r) is calculated as:

(3.11 )

A high degree of regularity means that sequences which are similar for m points are likely to

be similar also for the next m+ I point, while this is unlikely to occur for irregular time series.

Thus low values of ApEn reflect high regularity.

3.5.4 Sample Entropy

Sample entropy (SampEn) values of IHR signals from all subjects were calculated. SampEn

was developed to reduce the bias caused by the self matching in approximate entropy which is

a mathematical approach to quantifying the complexity and regularity of a system [9].

SampEn is defined as the logarithmic likelihood that the patterns of the data that are close to

each other will remain close for the next comparison within a longer pattern. SampEn does

not use a template-wise approach when estimating conditional probabilities. It only requires

that one template find a match of length m+ I, then it computes the logarithm of a probability

associated with the time series as a whole. Parameter m which specifies the pattern length

was set at 2 and r defining the criterion of similarity was set at 10%-90% of the standard

deviation of IHR data. Length of data (N) was varied from 1400-2000 beat numbers [9, 10].

Sample entropy (SampEn) values of IHR signals from all subjects were calculated. SampEn

was developed to reduce the bias caused by the self matching in approximate entropy which
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IS a mathematical approach to quantifying the complexity and regularity of a system.

SampEn is defined as the logarithmic likelihood that the patterns of the data that are

close to each other will remain close for the next comparison within a longer pattern.

SampEn does not use a template-wise approach when estimating conditional probabilities. It

only requires that one template find a match of length m+ 1, then it computes the logarithm

of a probability associated with the time series as a whole. A brief description is as follows.

Given a sequence of total N numbers of RR such as RR (I), RR (2 ), ..... , RR (N). To

compute SampEn of each RR data set, m-dimensional vector sequences Pm(i) were

constructed from the RR series [Pm (I), Pm (2 ), , Pm (N - m + 1)], where the index i

can take values ranging from 1 to N-m+ 1. If the distance between two vectors Pm (i) and

p",(j) is definedasIPm(i)- Pm(j~,

c;" (r) = I [Number of vectors such that Pm(j) - Pm(i)< rand i i" j ] (3.12)
N -m+r

Where m specifies the pattern length which is 2 in this study, r defines the criterion of

similarity which was varied from 10-90% of the standard deviation of IHR data

(N=1400-2000 beats). q" (r) is considered as the mean of the fraction of patterns of length

m that resemble the pattern of the same length that begins at index i[3]. Then the

SampEn is computed by using the following equation:

SampEn (N, m,r)= In

N-m+1I c;m(r)
;=1

N-mI C,m+l(r)
;=1

(3.13)

We divided the data set into smaller sets of length, i.e., m=2. The next step is to
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determine the number of subsets that are within the criterion of similarity r, excluding the self

match. Then we repeat the same process for the second subset until each subset is
N-m+l

compared with the rest of the data set[3]. This process computes Le,m (r) part of equation
i=1

(13) and N-m+ 1.

3.6 Conclusion:
In this chapter we discussed about various methods of analysis ECG signals. In time domain

analysis methods we discussed about mean, variance, Standard deviation, standard deviation

of successive difference (SOSO), root mean square of successive difference (RMSSO). In

poincare plot indexes we discussed about SOl, S02, ratio of SOl and S02, and the area of

the ellipse. Poincare plot gives us a visual observation of the ECG signals. By using Entropy

measure methods like approximate entropy method and sample entropy we can easily separate

normal rhythms from abnormal rhythms. Other methods also discussed like frequency domain

analysis ofECG signals, Wavelet transform, Central tendency measure (CTM).
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Chapter 4

PROPOSED METHOD

4.1 Introduction

By using some robust statistical tools decision making algorithm are designed in order to

clarify normal and abnormal rhythm. This project work is based on time domain analysis and

some non-linear methods. Heart rate variability (HRV) dataset are collected from MIT-BIH

Arrhythmia data bank. The ECG signal to be analyzed is first processed [18] to extract the

QRS complex. From that bit-to-bit interval (BBI) is calculated. From the BBI we get the

instantaneous heart rate (lHR). On this dataset of IHR, various time domain parameters like

mean, variance, standard deviation (SD), the standard deviation of successive RR interval

differences (SDSD), the root mean square of successive differences (RMSSD) and some non-

linear parameters like Poincare HRV plot, approximate entropy (ApEn), and Sample entropy

(SampEn) are determined. The result obtained from the application of these techniques is

analyzed to distinguish the ECG signals between the healthy person and that of the ailing

person. The HRV analysis described in the following sections was performed on IHR of 1400

to 2000 beats.

4.2 Conventional HRV indices

Variation in heart rate may be evaluated by a number of methods. Possibly the simplest to

perform are the time domain measures. With these methods either the heart rate at any point

in time or the intervals between successive normal complexes are determined. The statistical

analysis of the calculated features indicate that they differ significantly between normal heart

rhythm and the different arrhythmia types and hence, can be rather useful in ECG arrhythmia

detection. The five statistical parameters considered for cardiac arrhythmia classification of

the ECG signals are the mean of RR intervals, the variance of RR intervals, the standard

deviation of the RR intervals (SDNN), the standard deviation of differences between adjacent

RR intervals (SDSD) and the root mean square successive difference of intervals which are
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extracted from heart rate signals (RMSSD).Time domain methods are easy to program in

Matlab because of its simple mathematical expression. There is a wide range of variation

found between normal and abnormal rhythms. We can easily separate normal and abnormal

heart beat by using time domain method. For this reason [ choose time domain analysis for

separating normal and abnormal rhythms.

4.2.1 Mean IHR
In this project the mean is obtaining as

RR1 + RR, + ....RR NMean = ------~
N

(4.1)

The data saved in these files can be loaded into the MATLAB workspace by 'dlmreadO'
command. We can find mean by using m= mean 0 command [29].

4.2.2 Variance IHR
Variance is the square of the standard deviation. A measure of the degree of spread among a

set of values; a measure of the tendency of individual values to vary from the mean value. In

this project we found variance by using the var command of MATLAB . We can find variance

by using v=var 0 command. Variance is symbolized by u'.

Variance = (Standard deviation/

4.2.3 Standard deviation of the NN intervals (SDNN)
Standard deviation is a statistical measure of spread or variability. The standard deviation is

the root mean square (RMS) deviation of the values from their arithmetic mean. The standard

deviation of RR intervals (SDNN) is defined as

SDNN (4.2)

[n this project we find SDNN by using MATLAB programming which is given below
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SDNN=sqrt (l/n*sum «y-m). "2))

y is the RR data and m is the mean of total RR

4.2.4 The standard deviation of successive RR interval differences (SDSD)

In this project we find SDSD from Poincare plot. We can find SDSD by using the given

equation

SDSD=~2xSD12

SDSD is calculated by using matlab program.

SDSD=sqrt(2*sdl "2)

(4.3)

(4.4)

SDI is the standard deviation of projection of the Poincare plot on the line perpendicular to

the line of identity.

4.2.5 The root mean square of successive differences (RMSSD)

RMSSD = ~ i:RR,'
N i=l

(4.5)

Where RR(i) = RR(I),RR(2), ,RR(N). N= Total number of IHR data. In this project

MATLAB program helps to find RMSSD. We use matlab command which is given below.

RMSSD=sqrt( (sum(RRi. "2) )/n)
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4.3 Poincare plot analysis
The Poincare plot is a popular two-dimensional visualization tool for dynamic systems

due to its intuitive display of the dynamic properties of a system from a time series. The

length (S02) and the width (SO 1) of the Poincare plot images represent short and long-term

variability of any nonlinear dynamic system. The Poincare plot was generated as a scatter

plot of current instantaneous heart rate (IHR) against the lHR immediately preceding it.ln

this project we define the Poincare plot for a data vector RR, = (RR], RRz, ... RRN) of length

N. First, we define two auxiliary vectors:

RRt = (R~,RRz, ,RRN_l)

RRi- = (RRz, RR) , RRN )

The Poincare plot consists of all the ordered pairs:

(4.6)

(4.7)

i = 1 .... N - 1 . (4.8)

We use matlab program to find out the (RR,+,RRi- ). Matlab command is given below

Xp ~RRi; Xp (end) = [];

Xm =RRi; Xm (I) = [];

SDI and SD2 are two standard Poincare plot descriptors. SD2 is defined as the standard

deviation of the projection of the Poincare plot on the line of identity (y = x), and SDI is the

standard deviation of projection of the PP on the line perpendicular to the line of identity (y =

-x) [I]. In this project we define SDI and SD2 as:

Where,

SDI = ~Var(Xl)

sm = ~Var(X2)
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(4.10)

(4.11 )
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X2 = (_R_R_,+J2-+2_R_R,_-) (4.12)

We find SDl and S02 by using matlab command as:

SDl =std (Xp-Xm)/sqrt(2);

S02=std (Xp+Xm)/sqrt(2);

We define a parameter which reflects the total variability as measured by the Poincare plot:

S=7rxSDlxSD2 (4.13)

Which is the area of the ellipse.S can be expressed in matlab as:

S=pi*SOl'S02;

4.4 Approximate Entropy
ApEn is a "regularity statistic" that quantifies the unpredictability of fluctuations in a time

series. Intuitively, one may reason that the presence of repetitive patterns of fluctuation in a

time series makes it more predictable than a time series in which such patterns are absent.

ApEn reflects the likelihood that "similar" patterns of observations will not be followed by

additional "similar" observations. A time series containing many repetitive patterns has a

relatively small ApEn; a less predictable (i.e., more complex) process has a higher ApEn.

A brief summary of the calculations, as applied to a time series of heart rate measurements,

RR(i). Given a sequence N, consisting of N instantaneous heart rate

measurements RR(I), RR(2), ..... , RR(N) , we must choose values for two input parameters, m

and r, to compute the approximate entropy, ApEn(N,m,r), of the sequence. The second of

these parameters, m, specifies the pattern length, and the third, r, defines the criterion of

similarity. We denote a subsequence (or pattern) of heart rate measurements, beginning at

measurement i within N, by the vector p,,(i). Two patterns, pJi) andpm(J), are similar if

the difference between any pair of corresponding measurements in the patterns is less than r,

i.e., if

IPm (i) - Pm (j ~ < r for 0 :::k < m
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Now consider the set pJi) of all patterns of length m [i.e., pm (1), pm (2), pm (3), ,

Pm(N-m+1)], within N. For each subject and for each of the two experimental conditions, we

considered a time series of N=2000 consecutive RR values; we calculated the standard

deviation, SO, of RR and evaluated ApEn setting m=2 and with r increasing from 0.1 to 0.9.

For a given r value, ApEn(r) was calculated.

We may now define:

cm(r) - n~(r)
I N-m+l (4.14)

Where n;" (r) is the number of patterns in Pmthat are similar to Pm (i)cgiven the similarity

criterion r). The quantity e,m (r) is the fraction of patterns of length rn that resemble the

pattern of the same lengththat begins at interval i. We can calculate e;" (r) for each pattern in
Pm,and we define e,m (r) as the mean of these e,m (r )values. The quantity e,m (r ) expresses the

prevalence of repetitive patterns of length min N. Finally, we define the approximate entropy

ofN, for patterns of length m and similarity criterion r, as

(4.15)

i.e., as the natural logarithm of the relative prevalence of repetitive patterns oflength m
compared with those oflength m+ 1.

Thus, if we find similar patterns in a heart rate time series, ApEn estimates the logarithmic

likelihood that the next intervals after each of the patterns will differ. Smaller values of ApEn

imply a greater likelihood that similar patterns of measurements will be followed by

additional similar measurements. If the time series is highly irregular, the occurrence of

similar patterns will not be predictive for the following measurements, and Apen will be

relatively large.
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In this project, we have estimated ApEn usmg the command of java program. For this

program, we have taken instantaneous heart rate (IHR) values which are taken from MIT-BIH

Arrhythmia Record. We use java vector class for intermediate data storage. However, after

storing pertinent data, we constructed matrix of length 2 by taking two values from the data

storage which are represented asRR"RR"RR"RR4,RR"RR6, •.•.••. ,RRN• According to the

algorithm of the ApEn we derived different values of approximate entropy. The flow chart for

this algorithm is shown in fig (4.1).The comparison between two matrixes follows a threshold

value which varies from 10% to 90% of the standard deviation for the data taken as input

from IHR values. The comparison follows the following formula,

Ivec/or(i + k) - vec/or(j + k~ < Per'standard deviation for 0 :s k < m

Where per varies from 0.1 to 0.9 and vector is the object of Vector class in which we stored

IHR values for our program. The value of m represents the pattern length and the right side of

the above inequality means the criterion of similarity.

In our program, to calculate ApEn we evaluate the mean of the fraction of patterns of length

m that resemble the pattern of the same length whose value depends on the distance

between two vector. We attribute eight data set of healthy people as input and eight data set of

abnormal patient and after analyzing by our program, we come across the discernible

differences in ouiput between healthy people and the people with abnormal rhythm for the

value of the criterion of similarity which is greater than 0.2.

In our java program we use the following conspicuous classes

I. JFileChooser

2. File

3. BufferedReader

4. Vector

5. Math

6. StringToke
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Fig 4.1 : Flowchart for ApEn
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4.5 Sample Entropy:

Entropy is related to dynamical systems which is the rate of information production. The

algorithm for calculating ApEn and SampEn is almost similar. Pincus ascribe approximate

entropy (ApEn) as a set of measures of system complexity which is closely associated to

entropy and it is frequently applied to clinical cardiovascular and other time series analysis of

sundry types of patients. It should be notified that ApEn statistics produce incompatible

results. For this, We have developed a new and related complexity measure, sample entropy

(SampEn), and have compared ApEn and SampEn by using them to analyze sets of random

data with known probabilistic character. The most important thing is that ApEn counts each

sequence as matching itself. We can attribute this self bias as the source of inconsistent result

of Apen. In contrast, SampEn abates this self matching. The SampEn statistics is free of the

bias grounded by self-matching. The name refers to the applicability to time series data which

is sampled from a continuous process. In addition, the algorithm advocates ways to make use

of sample statistics to appraise the results. However, we notice better result using sampan

statistics. Quantification of the irregularity and difficulty of the heart rate using sample

entropy [12] are increasingly used because they can be computed from shorter HRV

records that are used in community screening. The conspicuous difference of sampan is

shown in figure .... The SampEn is calculated by the following equation,

[
Nf+~;" (r) 1

SampEn (N, m, r) = In -N!:-' -
Ie ;"+' (r)
;=1

(4.16)

Where m is the pattern length and C;" (r) is the mean fraction of pattern length.
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Conclusion:

In this chapter some robust statistical tools decision making algorithm are designed in order to
clarify normal and abnormal rhythm. All equations and Matlab command for time domain
analysis, Poincare plot analysis and entropy analysis are discussed in this chapter.
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Chapter 5

EXPERIMENTAL RESULTS

5.1 Introduction
To evaluate the act of the proposed method, we used the MIT-B1H Arrhythmia Database

directory. The ECG signals in this directory were sampled at 360 Hz and with a quantization

resolution of 1 J bits/sample. From these binary records, the QRS complex is determined using

the algorithm described on APPENDIX-A. From these QRS complex locations, we

determined IHR. From these IHR, the time domain parameter (like mean, variance, SO,

SDSD, RMSSD), the Poincare plot indexes (like SO I,SD2, SOl /SD2, area of ellipse), sample

entropy(SampEn), approximate entropy(ApEn) are determined for healthy persons as well as

ailing persons with abnormal rhythm like Atrial fibrillation(AFIB), Ventricular bigeminy(B),

Ventricular trigeminy(T) and the results are compared.

Table 5.1: Beat annotation appear in the records

Symbol Meaning

AB Atrial bigeminy

AFIB Atrial fibrillation

AFL Atrial flutter

B Ventricular bigeminy

BII 2° heart block

IVR Idioventricular rhythm

N Normal sinus rhythm

NOD Nodal (A-V junctional) rhythm

P Paced rhythm

SBR Sinus bradycardia

SVTA Supraventricular tachyarrhythmia

T Ventricular trigeminy
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5.2 Poincare plot analysis
Sixteen EeG recordings were analyzed. Table 8 and table 9 summarizes the results from

Poincare indexes of the two groups .. Here in this project, Poincare plot analysis has been

used on IHR time series and the results are analyzed to see if any significant difference is

found between normal and abnormal data series. Following are the portraits obtained using

Poincare plot analysis on IHR.

M [f.B IH Arrhythmia Record 1OO:(a)Poincare' plC'l:.The piltient has nannal he,lIt beat.

110

100

90

80

'0
SDt~4.7468
502=5.11385

60 S 011S 02=0 .9149
$=17 .3745

70
RRi

o

go 100 110 '20

"0

110

'DO

..•ArTttythmia P.ecord 100: Q:» IHRl't» .••••Sample O'1).The pmiem has nOl'TTnl heart bem.

'" '" 1000 1200 HIDO 1800 '000

Fig 5.1: MIT-BlH Arrhythmia Record_I 00: (a) Poincare plot (RR; vs. RRi+1); (b) IHR (n) vs.

Sample (n). The patient has normal heart beat.
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Fig 5.2: MIT-BIH Arrhythmia Record 105: (a) Poincare plot (RR, vs. RRi+l); (b) IHR (n) vs.. -

Sample (n). The patient has normal heart beat.
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Fig 5.3: MIT-BIH Arrhythmia Record_I I I: (a) Poincare plot (RR; vs. RR;+l); (b) IHR (n) vs.

Sample (n). The patient has normal heart beat.
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Fig 5.4: MIT-BlH Arrhythmia Record_l 12: (a) Poincare plot (RR; vs. RR;+l); (b) IHR (n) vs.

Sample (n). The patient has normal heart beat.
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Fig 5.5: MIT-BlH Arrhythmia Record_l 16: (a) Poincare plot (RRi vs. RRi+l); (b) lHR (n) vs.

Sample (n). The patient has normal heart beat.
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Fig 5.6: MIT-BIH Arrhythmia Record 118: (a) Poincare plot (RR, vs. RR,+I); (b) IHR (n) vs.

Sample (n). The patient has normal heart beat.
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Fig 5.7: MIT-BIH Arrhythmia Record_121: (a) Poincare plot (RR; vs. RRi+l); (b) IHR (n) vs.
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Fig 5.11: MIT-BIH Arrhythmia Record_201: (a) Poincare plot (RR; vs. RR;+I); (b) IHR (n) vs.
Sample (n). The patient has following symptoms: T, SVTA, AFIB, and NOD.
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Fig 5.13: MIT-BIH Arrhythmia Record_21 0: (a) Poincare plot (RR; vs. RR;+I); (b) IHR (n) vs.
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Fig 5.14: MIT-BIH Arrhythmia Record_219: (a) Poincare plot (RRj vs. RRj+I); (b) IHR (n) vs.
Sample (n). The patient has following symptoms: T, B, and AFIB.
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Fig 5.15: MIT-BIH Arrhythmia Record_22I : (a) Poincare plot (RR; vs. RR;+l); (b) IHR (n) vs.
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Fig 5.16: MIT-BIH Arrhythmia Record_222: (a) Poincare plot (RR; vs. RR;+I); (b) IHR (n) vs.

Sample (n). The patient has following symptoms: AB, AFIB, SVTA, and NOD.

53



Apm between the patient 1m ronnal re art beat "... tre llItient ha; fol~ 5 ymptoms: T, B,
svrA, AFlB, NOD

0.9

0.8

"~o...,
0.5

0.4

OJ

,_.•._.-. -" .il." .~'.••
'.....,...

.~.Et...
,..•..

ne llItienth!; rom reartbeat

ApEnof tre patient ha; followirg sympllllm: T, B,
svrA, AF1B,NOD.

/
' ..•..

a...,
". -',' '8

"'w,

-" ' ....•,~
''1J .••,~,••.....••.•... ,

2 3 456
10% 1090%of tre s1:llllaJddeiation

I 8 9

Fig 5.17: ApEn between the patient has normal heart rhythm vs. the patient has following
symptoms: T, 8, SVTA, AFIB, and NOD,

54



SampEnbetween the ~trent has normalheart beat vs. the ~1ient has following symptoms: T, B, SVTPI, AFIB,NOD.
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Fig 5.18: SampEn between the patient has normal heart beat vs. the patient has following
symptoms: T, B, SVTA, AFIB, and NOD.
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Table 5.2 Sample Entropy (SampEn) , Approximate entropy (ApEn) obtained from IHR of
normal rhythm (continned)

Record Symptoms~ duration (in minutes) ApEn SampEn

N~ 30:06 10% 0.6702 100/0 1.9692
20% 1.1627 20% 1.3387
300/0 0.9997 30% 0.9769

100 40% 0.8191 40°.10 0.7466
50% 0.6785 50% 0.5892
600/0 0.5647 60% 0.4787
70% 0.4807 70% 0.3961
80% 0.4099 80% 0.3300
90% 0.3557 90% 0.2757

N~ 30:06 10% 1.0073 10% 1.2045
20% 0.6950 20% 0.6479
30% 0.4975 300/0 0.4079
40% 0.3883 40% 0.2873

105 50% 0.3144 50% 0.2077
60% 0.2667 600/0 0.1497
70% 0.2324 70% 0.1132
80% 0.2137 80% 0.0934
900/0 0.2037 90% 0.0824

N~ 30:06 100/0 0.5019 10% 2.2136
20% 1.1854 20% 1.5010
30% 1.0998 30% 1.1528

111 40% 0.9289 40% 0.9058
50°,/0 0.7738 500/0 0.7443
60°,/0 0.6528 600/0 0.6188
70% 0.5598 70% 0.5254
80% 0.4896 80% 0.4543
90% 0.4280 90% 0.3929

N~ 30:06 . 100/0 0.1326 10% 2.9492
200/0 1.0951 20% 1.7024
30% 1.1368 30%) 1.2053
40% 1.0249 40% 0.9923

112 50% 0.8950 50% 0.8671
I 60% 0.7316 60%) 0.6960

70% 0.5947 70% 0.5512
80°,/0 0.5064 80% 0.4701
90% 0.4228 90% 0.3954
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Table 5.2 Sample Entropy (SampEn) , Approximate entropy (ApEn) obtained from IUR of
normal rhythm (continued)

Symptoms~ duration (in
Record ApEn SampEn

minutes)

No? 30:06 100/0' 0.9281 10% 0.9662
200/0 0.5716 20% 0.4550
30% 0.3953 30% 0.2698
40% 0.3115 40% 0.1875

116 50% 0.2684 50% 0.1486
60°,10 0.2440 60% 0.1272
70°,/0 0.2299 700/0 0.1154
80°./0 0.2229 80% 0.1101
90% 0.2185 90% 0.1078

No? 30:06 10% 1.1041
100/0 0.8583 20% 0.5498
20% 0.6602 30% 0.3324
300/0 0.5117 40% 0.2359

118 40% 0.4277 500/0 0.1905
50°,/0 0.3811 60% 0.1643
60% 0.3487 700/0 0.1491
70% 0.3284 800/0 0.1392
80% 0.3138 90% 0.1323
90% 0.2989

No? 30:06 10% 1.1704
100/0 0.9628 20% 0.5484
20% 0.6328 30% 0.2965
300/0 0.3701 40% 0.1744

121 40% 0.2267 50% 0.1l1O
50% 0.1496 60% 0.0739
60% 0.1053 700/0 0.0505
70% 0.0771 80% 0.0360
800/0 0.0593 90% 0.0263
90% 0.0477

No? 30:06 100/0 0.7207 100/0 1.9766
200/0 1.1027 20% 1.2785
30% 0.9294 30% 0.9065
40% 0.7342 40% 0.6689

122 50% 0.5766 50% 0.4957
60% 0.4499 60% 0.3759
70% 0.3494 70% 0.2905
80% 0.2779 800/0 0.2308
90% 0.2250 90% 0.1865
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Table 5.3 Sample Entropy (SampEn) , Approximate entropy (ApEn) obtained from IHR of
abnormal rhythm (continned)

Record 5ymptoms-7 duration (in minutes) ApEn SampEn

N722:36 100/0 0.9352
10%) 0.8227 20% 0.4761

8707:15 20% 0.6777 30% 0.2909
30% 0.5335 40% 0.2097

106 T700:13
40% 0.4486 50% 0.1706
50% 0.4065 600/0 0.1508

VT70:02 600/0 0.3798 700/0 0.1395
70% 0.3576 80% 0.1326
80% 0.3442 90% 0.1297
90% 0.3355

N722:36 10% 0.8505 100/0 0.7511
20% 0.6068 20% 0.4527

8703:55 30% 0.5104 30% 0.3802
40% 0.4777 40% 0.3662

119 T703:34 50% 0.4679 50% 0.3673
600/0 0.4611 60% 0.3721
700/0 0.4557 70% 0.3757
80% 0.4505 80% 0.3765
90% 0.4475 90%) 0.3782

N712:57 100/0 0.5399 100/0 0.8524
20% 0.7662 20% 0.5191

SVTA70:02 30% 0.8637 30°.10 0.4729
40% 0.8492 1.40%) 0.4517

201 AF18710:06 500/0 0.7724 50% 0.4055
60% 0.6729 60% 0.3381

NOD70:24 70%) 0.5915 70% 0.2804
80°,10 0.5263 80% 0.2486

T76:37 90% 0.4708 90%) 0.2310

N724:43 10% 0.5967 100/0 1.5636
20% 0.9365 20°10 1.0001

T75:22 300/0 0.8397 30% 0.7185
40% 0.7030 40% 0.5570

208 50% 0.5889 50% 0.4435
60% 0.5091 60%. 0.3713
70% 0.4466 700/0 0.3240
80% 0.3979 800/0 0.2900
90% 0.3544 90% 0.2652
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Table 5.3 Sample Entropy (SampEn) , Approximate entropy (ApEn) obtained from IHR of
abnormal rhythm (continued)

Record Symptoms~ duration (in minutes) ApEn SampEn

AFIB-7 29:30 10% 0.5712 10°,/0 2.4891
20% 1.1315 20% 1.7002

B-70:23 30% 1.1856 30% 1.3140
40%) 1.1094 40°,fo 1.0396

210 T-70:07 50% 0.9958 50% 0.8422
60% 0.8771 60% 0.6927

VT-70:06 700/0 0.7692 700/0 0.5724
80% 0.6684 80% 0.4781
90% 0.5859 90% 0.4030

N-76:01 100/0 0.3705 10% 1.2829
20% 1.0293 20% 1.1870

AFIB-723:47 300/0 1.2310 30% 1.2266
40% 1.1858 40% 1.1460

219 B-70:08 50% 1.0881 50% 1.0274
600/0 0.9858 600/0 0.9049

T-70:10 700/0 0.8830 70% 0.7911
80% 0.7835 80% 0.6898
90% 0.7005 900/0 0.6025

.

AFIB-7 29:17 100/0 0.4981
20% 1.1579 100/0 2.3384

B-70:03 30% 1.2009 20% 1.5868
40% 1.0808 30% 1.2305

T-70:42 50% 0.9538 40% 1.0082
221 60% 0.8404 50% 0.8529

VT-70:04 70% 0.7511 60% 0.7438
80% 0.6826 700/0 0.6668
90% 0.6249 80% 0.6110

90% 0.5671

N-715:57
10% 0.6271 10% 1.1496

AB-71:28 20°,10 0.6967 20% 0.6116
30% 0.7250 30% 0.3309

SVTA-70:08 40%) 0.7176 40% 0.1928
222 50% 0.6877 50% 0.1295

AFL-77:03 60% 0.6490 60% 0.1157
70% 0.6078 70% 0.1282

AFIB-7 1:44 80% 0.5704 80% 0.1476
90% 0.5315 90% 0.1643

NOD-73:45
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Table 5.4 Sample entropy values of Healthy groups and the groups with abnormal
rhythm
Sample entropy Healthy groups The patient has the following

symptoms: T, AFIB, VT.
SampEn (m=2,r=0.ISD) 1.6979 1.4203

SampEn (m=2,r=0.2SD) 0.9981 0.9417
SampEn (m=2,r=0.3SD) 0.6881 0.7456

SampEn (m=2,r=0.4SD) 0.5171 0.6214

Sam pEn (m=2,r=0.5SD) 0.4077 0.5299
SampEn (m=2,r=0.6SD) 0.3226 0.4612

SampEn (m=2,r=0.7SD) 0.2611 0.4098

SampEn (m=2,r=0.8SD) 0.2205 0.3718

SampEn (m=2,r=0.9SD) 0.1884 0.3426

Table 5.5 Approximate entropy values of Healthy groups and the groups with abnormal
rhythm

Approximate Entropy Healthy groups The patient has the following
symptoms: T, AFIB, VT.

Apen (m-2,r=0.ISD) 0.7227 0.6096
Apen (m-2,r=0.2SD) 0.8882 0.8753

Apen (m-2,r=0.3SD) 0.7425 0.8862
Apen (m-2,r=0.4SD) 0.6077 0.8215
Apen (m-2,r-0.5SD) 0.5047 0.7451
Apen (m-2,r=0.6SD) 0.4205 0.6719
Apen (m-2,r=0.7SD) 0.3566 0.6078
Apen (m-2,r=0.8SD) 0.3117 0.5530
Apen (m=2,r=0.9SD) 0.2750 . 0.5064
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. t H I h b'. h . dT bl 56 HRVa e . parameters IDt e tIme omalD or ea tty su ).Iects
Record Symptoms~ duration (in Mean Variance SD SDSD RMSSD

minutes)

100 N~ 30:06 75.5387 24.7178 4.9705 6.7130 75.7021

105 N~ 30:06 85.8641 122.8857 11.0826 15.7009 86.5764
.

111 N~ 30:06 70.5141 14.2333 3.7718 3.9680 70.6149

112 N~ 30:06 84.9856 6.4985 2.5486 2.5156 85.0238

116 N~ 30:06 80.5884 113.1342 10.6338 17.4009 81.2869

118 N~ 30:06 75.6381 82.2148 9.0650 11.2915 76.1793

121 N~ 30:06 62.0243 36.2113 6.0159 3.5873 62.3154

122 N~ 30:06 82.4816 21.5514 4.6412 2.2309 82.6121

Table 5.7 HRV parameters in the time domain for the patient has the following
T AFIB VTsymptoms: , ,

Record Symptoms~ duration (in Mean Variance SD SDSD RMSSD
minutes)

106 N~ 22:36,B~ 07:15,T~ 75.1375 740.2 180 27.2001 43.2350 79.9093
00:13,VT~ 0:02

119 N~ 22:36,B~ 03:55,T~ 72.0916 507.2049 22.5155 39.9055 75.5259
03:34

201 N~ 12:57,SVTA~ 73.7016 855.6514 29.2438 29.1912 79.2914
0:02,AFIB~ 10:06,NOD~
0:24,T~ 6:37

.

208 N~ 24:43,T~ 5:22 103.2344 422.4636 20.5488 33.1580 105.2597
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Table 5.7 HRV parameters in the time domain for the patient has the following
svmntoms: T, AFIB, VT.
Record Symptoms7 dnration (in Mean Variance SD SDSD RMSSD

minutes)
210 AFIB729:30,B70:23,T7 91.4078 357.2318 18.8959 26.5548 93.3405 .

0:07,VT70:06

219 N~ 6:01 ,AFIB723:47,B7 75.5340 259.6622 16.1100 21.2834 77.2329
0:08,T70:10

221 AFIB729:17,B70:03,T7 87.6909 556.8831 23.5925 36.8294 90.8091
0:42,VT70:04

.

222 N715:57,AB71 :28,AFL7 87.4670 799.6668 28.2713 32.3258 91.9225
7:03,AFIB7 1:44,
NOD~3:45

Table 5.8 AveralJe HRV narameters in the time domain.
Average Healthy groups The patient has the following

svmntoms: T, AFIB, VT.
Variance 52.6808 562.3727
Standard Devision 6.5875 23.2972
SDSD 7.9260 32.8103
RMSSD 77.5388 . 86.6614

Table 5.9 HRV narameters in the Poincare plot for Healthv sub'ects.
Record Symptoms7 duration (in SDI sm SDlISD Area of

minutes) 2 the
ellipse(s)

100 N730:06 4.7468 5.1885 0.9149 77.3745

105 N730:06 11.1128 11.062 1.0045 386.2278
9

III N730:06 2.8096 4.5365 0.6193 40.0414

112 N730:06 1.7803 3.1347 0.5679 17.5326

116 N730:06 12.3134 8.6464 1.4241 334.4725
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Record Symptoms~ duration (in SDI SD2 SDlISD Area of

minutes) 2 the ellipse
(s)

118 N~ 30:06 7.9933 10.029 0.7969 251.8671
9

121 N~ 30:06 2.5426 8.1208 0.3131 64.8668

122 N~30:06 1.5712 6.3713 0.2466 31.4484

Table 5.10 HRV parameters in the Poincare plot for the patient has the following
t T AFlB VTsvrnDlOms: , ,

Record Symptoms~ duration (in 8Dl 8m 8D1I8D2 Area of the
minutes) ellipse (s)

106 N~ 22:36,B~ 07:15,T~ 00:13 30.5780 23.3466 1.3097 2243

VT~ 0:02

119 N~ 22:36,B~ 03:55,T~ 03:34 28.2220 14.7538 1.9129 1308

201 N~ 12:57,SVTA~ 0:02,AFIB~ 20.6603 35.8377 0.5765 2326
1O:06,NOD~ 0:24,T~ 6:37

208 N~ 24:43,T~ 5:22 23.4550 17.1691 1.3661 1265
.

210 AFIB~ 29:30,B~0:23,T~ 18.7895 19.0139 0.9882 1122
0:07,VT~ 0:06

219 N~ 6:01,AFIB~23:47,B~ 15.0562 17.1048 0.8802 809
0:08,T~ 0:10

221 AFIB~ 29:17,B~0:03,T~ 26.0621 20.8568 1.2496 1708
0:42,VT~ 0:04

222 N~15:57,AB~ I :28,SVTA~ 22.85 J 6 32.8033 0.6966 2355
0:08,AFL~ 7:03,AFIB~
I :44,NOD~ 3:45
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Table 5.11 Averal!e values of HRV Darameters in the Poincare Dlot
Averal!e Healthv l!roUDS l!roUDSwith heart diseases
8Dl 5.6087 23.2093
8m 7.1364 22.6107
Ratio 0.7359 1.1225
Area of the ellipse, (s) 150.4789 1642

5.3 Time domain indexes
All assessed conventional HRV parameters in the time domain (Variance, 8DNN, SDSD,

RMSSD) were reduced in Healthy groups (Table. 5, 6, 7). Variance, SDNN, SDSD, RMSSD

of healthy groups are shown in table 5 and groups with abnormal rhythm are shown in table 6.

A clear difference was found by analyzing these two groups. The average values of variance,

standard deviation, standard deviation of successive difference (SDSD), root mean square of

standard deviation (RMSSD) are shown in table 7. HRV parameters in the time domain were

higher in unhealthy groups.

5.4 Poincare plot indexes
Sixteen ECG recordings were analyzed. Table 8 and table 9 summarize the results from

Poincare indexes of the two groups. A clear reduction of SD I and SD2 in the healthy group

was observed, and we found significant differences between two groups. For healthy group

8D1= 5.6087 and for heart diseases group 8D1=23.2093. For healthy group 8D2= 7.1364 and

for heart diseases group 8D2=22.6107. Additionally, we may define a parameter which

reflects the total variability as measured by the Poincare plot, s =11:SD1SD2. This is the area of

the ellipse. A significant difference was found between two groups for healthy group Area of

the ellipse=150.4789 for abnormal rhythm group Area of the ellipse=1642 which was much

higher than healthy group.Poincare plot can provide supplementary information about beat

to beat HRV structure which cannot be obtained by conventional time and frequency

domain analysis [22]. From the Poincare plot indexes, healthy subjects had all measures

reduced (Table 8, 9, 10). The decreased long term HRV (represented by the length, SD2) and

decreased beat to beat HRV (represented by the width, SD1) was expected in healthy group.

SDl/SD2 represents the ratio of short term and long term variability. The smaller SD1/SD2
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ratio for the healthy subjects reflects that a lower percentage of its overall variance is

beat-to-beat variance. A significant difference was found between the SDl/SD2 ratio values

of the two groups. The average SD I/SD2 for healthy group was 0.7359 and other group was

1.1225.

5.5 Approximate entropy (ApEn) values of IHR between Healthy
groups and the groups with abnormal rhythm
ApEn of a time series RR(i) measures the logarithmic likelihood that runs of patterns of length

m that are close to each other will remain close in the next incremental comparisons, m+ I. A

greater probability of remaining close (high regularity) produces smaller ApEn values, and,

vice-versa, low regularity produces higher ApEn values. The two parameters, m and r, must

be fixed to compute approximate entropy. The values m = 2 and r between 10% and 90% of

the standard deviation of the data sets RR(i) were used in this project. Figure shows the

changes of Apen with m=2 and r=0.1 *SD to 0.9SD of IHR data for healthy groups and

unhealthy groups. Lower values of ApEn were found for healthy group. A significant

difference was found between healthy group and unhealthy group.

5.6 Sample Entropy ( SampEn) values of IHR between Healthy
groups and the groups with abnormal rhythm
To investigate the complexity of the heart rate variability, the sample entropy

(SampEn) of the IHR signals was calculated. Figure (5.18) demonstrates the change of

SampEn with m=2 and r=O.1*SD to 0.9*SD of IHR data for healthy groups and

unhealthy groups. The mean values of SampEn of the healthy group were found to be

lower than that of unhealthy groups at all r values except at 0.1*SD and 0.2*SD.

Statistically, healthy groups and unhealthy groups were found to be significantly different at

r>O.3*SD. SampEn values at different r values are summarized in Table 4. Figure (5.18)

shows the SampEn (m=2, r= [0.1"0.9]*SD) values of all subjects in this study. Lower values

of SampEn reflect more regular time series while higher values are associated with less

predictable (more complex) time series. The lower SampEn values for the healthy group

indicates an increase in regularity and a decrease in complexity in the IHR.
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5.7 Conclusion:
So, if we compare the three techniques we used namely Poincare plot, time domain analysis
and entropy measure, we can come out with the following facts. Poincare plot gives us a
visual observation of the ECG signals, whether they are from normal or abnormal rhythms.
Best result found by using area of ellipse. On the contrary, by using time domain indexes we
can identify the abnormality (in this project reduced value found for normal rhythms), entropy
measure quantifies the abnormality levels present in the ECG signals (lower values of ApEn
and SampEn found for normal rhythms). Moreover, it roughly gives an idea about the
abnormal ity type as observed in our work.
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Chapter 6

CONCLUSIONS

6.1 Discussions
In this work, effective ECG classification techniques are presented based on the Entropy

of Chaotic Attractor. This work describes the application of sample entropy (SampEn),

approximate entropy (ApEn), Poincare plot analysis and time domain HRV parameters to

differentiate the normal rhythm from the abnormal one. First IHR were calculated from

the ECG of eight normal rhythms as well as from that of eight abnormal rhythms, each

approximately 30 minutes in duration, and total sixteen data sets were constructed. Then

sample entropy (SampEn), approximate entropy (ApEn) , Poincare plot analysis and time

domain HRV parameters were determined from those data sets and results are compared

for normal and abnormal rhythm data sets. The entropy analysis is able to differentiate

between normal and abnormal ECG. This is a crucial step in cardiac signal analysis. The

results show that there is a significant difference between the Apen of normal rhythm data

sets and that of abnormal rhythm data sets. A lower ApEn were found for normal rhythm

and higher in abnormal rhythm data sets.Approximate entropy (ApEn) counts each

sequence as matching itself. In contrast, SampEn abates this self matching. So a better

result found by using SampEn. A lower SampEn were found for normal rhythm data sets

and higher in abnormal rhythm data sets. Poincare plot images represent short and long-

term variability. The results show that there is a significant difference between the

Poincare plot analysis of normal rhythm data sets and that of abnormal rhythm data sets. A

clear reduction of SDI and SD2 in the healthy groups was observed, and we found a

significant difference between two groups. All assessed conventional HRV parameters in

the time domain (Variance, SDNN, SDSD and RMSSD) were reduced in Healthy groups.

Hence, we can easily classify normal and abnormal ECG records based on the Entropy of

Chaotic Attractor. Moreover, for the BBI data set, we could roughly distinguish some

types of abnormalities like Atrial fibrillation (AFIB), Ventricular bigeminy(B), Ventricular

trigeminy(T). However, we could not generalize this abnormality detection since we

worked only with a limited number of records. Based on the computational simplicity and

high levels of accuracy obt<tined by this technique, it is logical to use this approach to

classifY the ECG as normal or abnormal.
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6.2 Future work
In this work, we have tried to classify ECG using the Entropy of Chaotic Attractor. We

have shown that approximate entropy (ApEn), sample entropy (SampEn) and Poincare

plot analysis can distinguish between normal and abnormal cardiac rhythm. In this work,

we determined the Poincare plot indexes and conventional HRV parameters in the time

domain (Variance, SD, SDNN, RMSSD) of the whole ECG record which contains both

the normal and abnormal beats. Future work may include working with more number of

abnormal records to generalize the detection of beat abnormality type.
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Appendix-A: QRS Detection Algorithm
An ECG beat is defined as the signal sample from one R-wave to the next. Figure A.I

shows the block diagram of the QRS detection algorithm.

original
ECG
signal

T1

differentiator

delay

Fig AI: Block diagram of QRS detection algorithm

search
peaks

detected
peaks

At first the ECG signal is passed through a linear phase bandpass filter (4 hz to 40 hz) for

smoothing operation and reducing base line shifting. The impulse response, magnitude

response and the phase response of the bandpass filter is shown in the figure A2 and A3.

The group delay of the filter is 150.

Impulse response of the bandpass filter
0.2

0.15

0.1

c:c
0.05

o

-0.05

o 50 100 150
n

200 250 300

Fig A.2: Impulse response of the bandpass filter
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Magnitude response of the bandpass filter
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Fig A.3: (a) The magnitude and (b) phase response of the bandpass filter

Differentiation of the filtered signal provides the slope information of QRS complexes.

Since there are quick rise and fall times of the QRS complex in the ECG signals, the

derivative makes it easier to detect the time of occurrence of the QRS complexes. The

transfer function ofthe five-point differentiation equation is given by

H(z) = (i)c-z-' -2z-' +2z' +z') (A.I)

The absolute value of the output of derivative filter can be found by the following

operation

yen) =~x(n)' (A. 2)

This absolute valued signal is then passed through a moving average filter which produces

high value at the region of QRS complex. The window size has to be taken properly,

neither so wide that merges the QRS complex and T wave together, nor so narrow that

produces several peaks in the integration waveform. It is calculated from the equation

below:

yen) =(~}X(n-(N -I»+x(n-(N -2»+ +x(n)] (A.3)

where N is the width of the integration window. This work takes N as 18
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As seen in figure A.I, the algorithm sets two thresholds Tl and T2 to make decisionsTl is

set 40 for the filtered ECG, and T2 is set 7 for the signals produced by the moving window

integration. The thresholded filtered signal is then delayed by 10 samples and a logical

'and' operation is performed with the thresholded moving squared average signal. As a

result, possible location of peaks of the original ECG signal is found. These locations are

delayed byl60 samples from the original ECG. Searching in these regions, we get the

peaks. If there are more than one peak in the vicinity of 50 samples, the highest peak is

considered from those.

The sequences of the QRSdetection algorithm is shown in figure AA where the ECG

signal is taken from the record 100/MLIl ofMIT-BIH arrhythmia database.
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Fig A.4: The sequences of peak detection of the EeG signal taken from the record

100 (MLIl) ofMIT-BIH arrhythmia database.
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