SOLUTION OF THE ECONOMIC DISPATCH PROBLEM OF HYDROTHERMAL POWER SYSTEMS

 $\mathbf{B}\mathbf{Y}$

A. K. M. DILDER HOSSAIN CHOWDHURY

A THESIS

SUBMITTED TO THE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY DHAKA 1000 BANGLADESH

MAY 1988.

Accepted as satisfactory for partial fulfillment of the requirements for the degree of Master of science in Electrical and Electronic Engineering, Department of Electrical and Electronic Engineering.

BOARD OF EXAMINERS:

DIL

. 🐔

lun and 25/5/88 i)

(Dr. Syed Fazl-i Rahman) Professor and Dean, Faculty of Electrical and Electronic Engineering. B U E T, Dhaka,

(Dr. Md. Mujibur Rahman) ii)__

(Dr. Md. (Mujibur Rahman)
 Professor and Head,
 Department of Electrical
 and Electronic Engineering.
 B U E T, Dhaka.

ahan 25/5/58 iii)

(Dr. Quamrul Ahsan) Associate Professor, Department of Electrical and Electronic Engineering. B U E T, Dhaka.

EBash iv) 25/5/88

(Dr. Enamul Basher) Associate Professor, Department of Electrical and Electronic Engineering. B U E T, Dhaka.

in mor $v) \sim 2 \Omega \sim r$

(Dr. Nazrul Islam) Chairman, Bangladesh Tea Board. Chairman and supervisor.

Member. (Ex - Officio)

Member.

Member.

Member

(External)

CERTIFICATE

This is to certify that this work was done by me and it has not been submitted elsewhere for the award of any degree or diploma.

Countersigned

noul

(PROFESSOR S. F. RAHMAN)

Signature of the candidate

7.5.88

(A. K. M. DILDER HOSSAIN CHOWDHURY)

Supervisor

ACKNOWLEDGMENT

It is a great pleasure on the part of the author to acknowledge his heartiest gratitude to his supervisor, Dr. Syed Fazl-i Rahman, Professor and Dean of the Faculty of Electrical and Electronic Engineering, BUET, for his constant encouragements, sincere guidance, valuable support and advice throughout the progress of this work.

The author also wishes to his thanks express and sincerest gratitude to Dr. Md. Mujibur Rahman, Professor Department of Electrical Electronic and and Head. BUET, for his valuable suggestions and Engineering. constant encouragement. The author wishes to thank Dr. Quamrul Ahsan, Associate Professor and Dr. Enamul Bashar, of Electrical Professor, Department and Associate BUET, for their timely help and Electronic Engineering, invaluable suggestions.

The author is also indebted to Mr. Alauddin Ahmed and Mr. Nazmul Haq for their sincere and kind cooperation throughout the progress of this work.

- (iii)

Abstract

With the rapid expansion of the integrated hydro-thermal grid system of BPDB (Bangladesh Power Development Board), it has become indispensable to operate the system in the most economic way, particularly because of the high fuel cost. This work presents the mathematical modeling of the hydro-thermal power system, the development of solution criteria and a computer program for the economic solution of the dispatch problem of a hydro-thermal power system.

The effect of a number of equality and inequality constraints together with transmission loss have been incorporated in the mathematical formulation of the hydrothermal power system. The LaGrangian method has been combined with Kuhn-Tucker's condition in developing the solution criteria. The effects of the constraints on the solution have been evaluated in some detail.

The incremental cost curves are based on the data of BPDB power generating units. Least square curve fitting method has been used to fit the BPDB discrete data of input output characteristics. ZBUS matrix has been used along with the Gauss Seidal method of load flow analysis for calculating the coefficients of the incremental transmission losses.

Optimization study has been carried out using the recent load curves of the BPDB system. A total of 33 buses out which 10 are thermal generating bus and one hydro generating bus have been considered in the study. The effect of the hydro unit generation on the total cost of generation has been considered in some details along with the effects of the constraints using the solution criteria developed here. Optimum scheduling within the power limit and within the water volume constraints have been studied. In the optimization study only the production cost of generation is considered as the cost. Results indicate that a considerable amount of saving in production cost of the BPDB generation system is possible for an increased hydro generation capacity (installation cost is not considered) and if it is loaded at the time of system peak load at its maximum capacity. The justification of this saving considering the installation cost of new hydro electric units has not been investigated. The impact of increased hydro capacity in the present demand as well as the future demand has been presented here.

List of Symbols and Abbreviations

•	. 1	
BPDB	=	Bangladesh Power Development Board
BUET	=	Bangladesh University of Engineering and Technology
SIKG	Ξ	Sikalbaha Grid
SIDG	=	Siddhirganj Grid
SHAG	. =	Shahjibazar Grid
ASHG	=	Ashuganj High voltage Grid
ASMG	. =	Ashuganj Main Grid
GHHG	. =	Ghorasal High voltage Grid
GHMG	=	Ghorasal Main Grid
BHEG	=	Bheramara Grid
BOGG	Ξ.	Bogra Grid
GOAG .	Ξ	Goalpara Grid
KAPG	. =	Kaptai Grid
MCFT	Ξ	Million Cubic Feet
MW	=	Mega watts
MWhr	=	Mega watt hour
Kwhr	Ξ	Kilo Watt hour
Hg	=	Heat value (Million of British thermal unit/hour)
Pg	Ξ	Total Thermal power generation (megawatts)
Pgi	Ξ	Thermal power generation for ith unit (megawatts)
Hi	=	Heating value for ith thermal unit
F.	=	cost of fuel
λ	= (Incremental cost of received power
λ_{min}	· =	Minimum value of $oldsymbol{\lambda}$
λ_{max}	=	Maximum value of $oldsymbol{\lambda}$
Fτ	' =	Total cost of generation (Tk)
Pr	=	Total received power
Pgi,min	Ξ	Minimum amount of power generation
Pgi,max	Ξ	Maximum amount of power generation
μī	=	Multiplier to include minimum value of thermal
		generation for ith unit

. •

	• • • • • • • • • • • • • • • • • • •
μ t	= Multiplier to include maximum value of thermal
	generation for ith unit
(ID) i	= Incremental discharge for ith Hydro unit
(IC) i	= Incremental cost of generation for ith unit
(ITL)i	= Incremental transmission loss for ith bus
Рн	= Hydro unit output (Megawatts)
q	= Hydro discharge (Acre-Ft/hr.)
qhi,min	= Minimum value of Hydro discharge
qhi,max	= Maximum value of Hydro discharge
$\mu_{\rm H}^{-1}$	= Multiplier to include hydro minimum power
$\mu_{\rm H}^+$	= Multiplier to include hydro maximum power
Ja	= Multiplier to include hydro minimum discharge
J_2+	= Multiplier to include hydro maximum discharge
Vj	= Water volume in the reservoir at a particular
	interval
Vmin	= Minimum allowable water volume in the reservoir at
	any interval
Vma x	= Maximum allowable water volume in the reservoir at
	any interval
Ľ	= Lagrangian equation (when objective function is
	augmented with a number of constraint equation)
መ ^{ተ ፡}	= Multiplier to include the effect of maximum value
	of water volume
Tr-	= Multiplier to include the effect of minimum value
	of water volume
m;	= Number of hours in a particular interval (jth
J	interval) of the study
2.	= Water conversion factor at particular jth interval
aj aj B. Vei	= coefficients of thermal unit characteristics
PL PL	= total system loss (real)
đr	= total system reactive loss
Jbus	= injected bus current matrix

Zbus	= bus impedance matrix
Rbus	= real part matrix of the bus impedance matrix
dir, Bir	= loss coefficients
hw	= water head
hwi,min	= Allowable minimum value of water head for ith unit
, hwi, max	= allowable maximum value of water head for ith unit
Po	= total system demand
Pdi	= power demand at each bus
NB	= number of buses

· .

· · ·

. .

· _

•

, e

.

. .

.

CONTENTS

CHAPTER 1 :	INTRODUCTION
	1.1 Economic operation of power systems1.1
	1.2 Literature survey1.2
	1.3 Objectives of the thesis1.3
	•
CHAPTER 2 :	ECONOMIC SCHEDULING OF HYDRO-THERMAL UNITS NEGLECTING
	LOSSES
	2.1 Power Generation unit characteristics2.1
	2.2 Intra station economic dispatch2.3
	2.3 Inter station economic dispatch of thermal units .2.5
<i>.</i>	2.4 Hydro thermal coordination2.9
•	2.5 Production cost2.13
•	2.6 Necessity of convexity of the cost function2.14
	2.7 Convexity of a function2.16
CHAPTER 3 :	TRANSMISSION LOSSES
	3.1 Introduction
	3.2 Incremental transmission losses
CHAPTER 4 :	HYDRO-THERMAL ECONOMIC DISPATCH
	4.1 Introduction4.1
•	4.2 Inequality constraints of thermal units4.2
	4.3 Inequality constraints of hydro units4.3
•	4.4 Equality constraints4.4
	4.5 Optimization within constraints4.5
,	4.6 Hydro thermal coordination equation4.11

CHAPTER 5 :	UNIT COMMITMENT
	5.1 Introduction5.1
	5.2 Constraints in unit commitment5.1
	5.3 Unit commitment
CHAPTER 6 :	RESULTS OF OPTIMUM HYDRO THERMAL SCHEDULING
	6.1 Description of the sample system6.1
	6.2 Optimum scheduling of units6.4
	6.3 Concluding remark on the results
CHAPTER 7 :	CONCLUSION AND RECOMMENDATIONS
	7.1 Introduction7.1
	7.2 Conclusion7.2
	7.3 Recommendation for further work
REFERENCES:	
APPENDIX A:	Flow diagram
APPENDIX B:	Computer program
APPENDIX C:	Load curves
APPENDIX D:	Cost curves
APPENDIX E:	Transmision line data

CHAPTER 1 INTRODUCTION

1.1 Economic operation of power system:

The word "Optimal" is far from being a mere synonym to best. It implies that a certain object(process) meets particular requirements, which are the optimality criteria, better than other objects (processes). Thus the notion of optimality is relative and involves a comparison of objects or processes with respect to some aspects (characteristics) [4].

The comparison of the processes is confined to such problems the solution of which should manifest, quantitatively as a rule, to what a degree or by how many times one process is more favourable than the other or others regarded in the light of optimization. The ultimate goal of solving such problems is to maximize the economical feasibility for the country as a whole or to ensure in particular applications the minimum or maximum values of some parameters of the process, e.g. decrease the fuel consumption to the lowest possible degree in the energy generation process without cutting power supplies. On some locations the quantitative terms of the optimization prove insufficient so that certain general qualitative characteristics have to be resorted to. An example is the optimization of the ecological effect of the energy generating unit, when the system is designed or operated with a view to minimizing pollution.

The power system processes are usually described by a set of ordinary differential and algebraic equations. The same equations may be successfully used for describing with a reasonable realism some economical processes in the so called macroeconomical models which represent the economy of the country.

When considering the processes within the economic system, account must be taken of the disturbances both external and internal. The disturbances necessitate the on-line control of the system, e.g. of the energy generation system. The object of such a control is to fulfill the production program in view of the particular situation with the aid of the operations research.

The energy production optimization problems may relate either to transient conditions when sets of differential equations are to be necessarily used, or to the steady state conditions, when it is possible to confine to the sets of algebraic equations. Optimization may be applied to the operation of the existing power systems including plants, substations, transmission lines, networks and consumers, and to the stage of designing, planning and prediction of the systems being constructed.

1.2 Literature Survey:

When optimization problems became urgent for the power industries in the 1920s, they were solved on the basis of the mathematical methods of determining the extrema of functions and functionals by the analytical study of the connections between separate parameters (variables) characterizing the process.

A transmission loss formula as a function of source powers (so called Bcoefficient method) was first presented by E.E. George [11] in 1943 and it was a longhand procedure then. Later in 1950 Network analyzer was first used to determine B-coefficients by Ward et.al.

In 1947 E.S.Loane & C.W.Watchorn [12] applied the probabilistic methods for solving the Generating capacity problems of a combined Hydro and Steam ` power system. In 1951 G.kron, G.W.Stagg and L.K.Kirchmayer [13] introduced an improved method for finding total transmission loss using Network analyzer. A.F.Glimm and R.Habermann, Jr., L.K. Kirchmayer [14] presented the way of utilizing digital computer in 1953 for calculating line losses. Utilizing generator voltages, angles and the X/R ratios of transmission circuits W.R.Brownlee expressed another method of transmission system losses. In the economic operation analysis of Hydro-thermal power system W.G.Chandler et.al.[15] first reported the progress in 1953.

For a Hydrothermal Electric system a Computer search was carried out for Economical Operation using gradient concept in 1954 by R.J. Cypser [16]. In 1954 A.F.Glimn, R. Habermann et.al. [17] developed an iterative method of calculating generation schedule using digital computer. For a given total load the computer calculates and tabulates incremental cost of received power, total transmission losses, total fuel input, penalty factors and received load along with the allocation and summation of generation. The American Gas and Electric service successfully utilized this method in 1955.

In 1960 a digital computer method for direct calculation of loss formula coefficients was presented by L.K.kirchmayer, H.Hopp, G.W.Stagg and J.F.Hohenstein, which offered significant improvements over previous methods with respect to cost and data handling. Improved accuracy of the solution was also assured. P.L.Dandeno [18] in 1961 presented a paper regarding Hydrothermal scheduling with approximated method of transmission losses. A direct method for construction of loss formulae for systems containing off-nominal auto-transformers was presented by them in 1964.This method needed less computer time.

In 1966 E.B.Dahlin and D.W.C.shen [19] applied the maximum principle by Pontryagin to the problem of determining the operation of a hydro-steam generating system for the minimum generating costs. The techniques they had showed, greatly simplified the computer solutions for fixed and varying head operation. An improved method of determining loss formulae Coefficients and hence the incremental transmission loss factor from power system admittance and voltages developed by E.F.Hill and W.D.Stevension Jr. in 1968.This method utilized second-partial derivative of system losses with respect to plant outputs to determine transmission-line-loss-Coefficients.

In 1969 A.M. Sasson proposed a unified approach to load flow, minimumloss, and economic dispatching problems. A load flow solution had been shown to coincide with the minimum of a function of the power system equations. An unconstrained minimization method developed by Fletcher-Powel was used to solve load-flow problem. This method always finds a solution or indicates non-existance of a solution. Its performance was highly independent of the reference slack bus position and required no acceleration factors.

J.S.Luo, E.P.Hill, and T.H.Lee [20] in their paper published in February 1986 utilized bus incremental costs as the key variable to Economic dispatch. They tried to show this method offering the possibility to get an insight into the Economic dispatch mechanism. Employing the Bender's method for decomposition H.Habibullahzadeh and J.A.Bubenko [21] in their paper published in 1986 developed a realistic model for Short term operation planning of Hydrothermal power system.

M.E El-Hawary and M. Kumar [22] presented a very good paper in IEEE transaction on power Systems Vol. PWRS-1 No.4 November 1986 with the heading "Optimal Parameter Estimation for Hydro-Plant performance models in Economic Operation Studies." which described the various way of representing Hydro models with relative analysis.

1.3 Objective of the Thesis:

With the increasing growth rate of BPDB (Bangladesh Development Board) power network it has become inevitable to run the Power system most economically. With the increasing load demand on the BPDB power network, the generation capacity of the BPDB power system has also been increasing from year to year. The hydro generation capacity will be 230 Mega Watt very soon. Therefore, the economic study of a hydrothermal power system is of considerable importance. This is for the first time a study of hydro thermal optimum scheduling has been carried out in BUET. According to the recent survey report the average inflow of water per year in Kaptai lake is a significant amount. It is necessary to dispatch the water in such a way that the thermal generation cost become minimum. The BPDB hydro station (hydro reservoir) at Kaptai is subject to water volume constraint - it can not operate at its maximum capacity throughout the period of study, it can operate only for part of the period with maximum generation. So it is very important that a water scheduling must be the proper amount for the right period.

The objectives of the thesis are:

- i) Mathematical formulation of the hydro thermal system co-ordination including a number of constraints.
- ii) Development of the solution criteria for a thermal power system and for a hydro thermal power system.
- iii) To use the economic solution criteria of hydro thermal power system for the economic scheduling of generation.
 - iv) To calculate the cost benefit of optimum hydro thermal scheduling.

CHAPTER 2

ECONOMIC SCHEDULING OF HYDRO-THERMAL GENERATING UNITS NEGLECTING TRANSMISSION LOSSES

2.1 Power Generation Unit Characteristics:

Thermal or Steam Units

Out of a number of different parameters fundamental to the economic operation problem is the set of input output characteristics of a thermal power generation unit. In a boiler turbine generating unit a typical steam turbine unit may require 2 to 6% of the gross output of the unit for the auxiliary power requirements necessary to drive boiler feed pumps, fans, condenser circulating water pumps and so on. In defining the unit characteristics, we will take gross input versus net output. The net output of the plant is the electrical power output available to the electrical utility system. And the gross input to the plant represents the total input whether measured in terms of taka per hour or gallons of diesel per hour or millions of cubic ft.of gas per hour or any other units. If data are specified in gross output they should be converted to net output to be more useful in scheduling the generation.

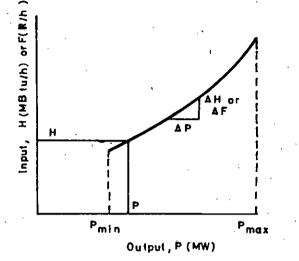
In defining the characteristics of steam turbine units, the following terms will be used.

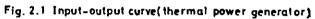
H: Btu per hour heat input to the unit (MBtu/h) or MCft/Hr of gas or gallons of diesel per hour.

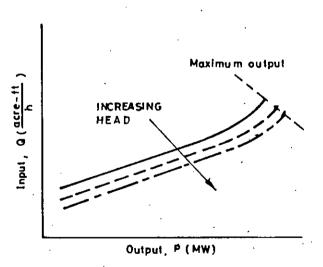
F: Fuel cost times H is the Tk. per hour (Tk./h) input to the unit for fuel.P: The output of the generating unit (Mega Watts).

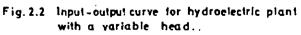
The characteristic shown in figure 2.1 is idealized in that it is presented as a smooth convex curve. In this chapter it will be shown that the curve for our study must be convex single valued function having a monotonically increasing slope or at best a constant positive slope.

Data for obtaining the required Characteristic curve may be found from design calculation or from heat rate tests. Steam turbine generating units have several critical operating constraints. Generally, most of the thermal units of this type cannot operate below 30% of design capability.


The incremental heat rate Characteristic is the slope of the input-Output Characteristic. This Characteristic is widely used in economic load dispatching. It is converted to an incremental fuel cost Characteristic by multiplying the incremental heat rate (fuel rate) in Btu per Kwhr (MCFT or gallon/KWHr) by the equivalent fuel cost in terms of Taka per Btu (Taka per MCFT or gallon).


The last important Characteristic of a steam unit is the unit (net) heat rate Characteristic. This Characteristic is H/P versus P. It is the reciprocal of the usual efficiency Characteristic for a machine.


Data obtained from heat rate (fuel rate) tests or from the plant design engineers may be fitted by a polynomial curve. In many cases quadratic Characteristic have been fitted to these data. If the input versus output Characteristic is a quadratic smooth convex function the incremental heat rate (fuel rate) will be a straight line. This incremental heat rate (fuel rate) Characteristic is monotonically increasing as a function of the power output of the unit.


Hydroelectric Units:

The input-output characteristic of Hydroelectric units are similar to steam turbine units. The input is in terms of volume of water per unit time; the output is in terms of electrical power. Figure 2.2 shows a typical input-output curve for a hydroelectric plant where the net hydraulic head is constant. The characteristic shows an almost linear curve of input water volume requirement per unit time as a function of power output as the power output increases from minimum to rated load. Above this point the volume requirements increases as the

efficiency of the unit falls off. Scheduling hydroelectric plants with variable head characteristics is more difficult than hydroelectric plants with fixed head. Maximum plant capacity varies with the hydraulic head. In our short range study we will assume hydraulic head fixed for the period. This assumption is true when the reservoir size is large enough compared to the period of study.

2.2 Intra Station economic dispatch:

The intra station optimization provides for saving the resources (fuel or water) by selecting the best availabilities, as well as active power of the units. It is assumed that the plant operates with load demand of the power system and that all the system constraints are satisfied.

It is unwise from the computer time point of view as well as from the computation complexity point of view to include all the units of all the generating station in the calculation. Of course, all the units must be included somehow but not during the total system optimization study. At first the units within the same station have to be loaded optimally by developing a composite cost curve including all the units of the station. Then for the total system evaluation this optimized composite curve for each station will be used for optimization study.

Composite Generation Production Cost Function:

A useful technique is to develop a composite generation production cost curve for all the generating units at the same station. For example, suppose there are n units to be scheduled at a generating station as shown in the figure. The procedure to obtain the composite cost curve for units 1,2,3,....n is given below:

Let the fuel inputs be,

.

 $H_{g}(P_{g})=H_{1}(P_{g1})+H_{2}(P_{g2})+\ldots+H_{n}(P_{gn})$ (2.1)

then the composite cost curve,

 $F_{g}(P_{g_{1}})=F_{1}(P_{g_{1}})+F_{2}(P_{g_{2}})+\ldots+F_{n}(P_{g_{n}})$ (2.2) where,

H (Heat value or fuel value) is in MBtu/hr or MCft./hr or gallon/hr

F is in Tk./hr = Fuel rate * H

and the total generation,

 $P_{g} = P_{g_{1}} + P_{g_{2}} + \dots + P_{g_{n}}$ (2.4)

And therefore the incremental costs are such that,

Pgi=Pgi, max

If one of the units hits a limit, its output is held constant.

A simple procedure to allow one to generate $F_g(P_g)$ consists of adjusting from λ_{\min} to λ_{\max} in specified increments, where,

$$\lambda_{\min} = \min[dF_i / dP_{g_i}], \quad i=1,2,3,...n] \text{ and}, \quad (2.6)$$

$$\lambda_{\max} = \max[dF_i / dP_{g_i}], \quad i=1,2,3,...n] \quad (2.7)$$

2.4

(2.3)

At each increment, calculate the total fuel consumption and the total power output for all the units. These points represents points on the $F_g(P_g)$ curve.

A smooth curve may be fitted to the points using a least-square curve fitting program. Care must always be taken so that the composite curve does not lose its convexity property. In that case different curve convex segments have to be taken.

Flow chart for obtaining the composite cost curve is given in figure A.6

2.3 Interstation economic dispatch (Transmission losses neglected)

Economic dispatch for thermal power system:

Let us consider a system of N thermal generating stations connected to a single bus bar serving an electrical load of P_R MW. This is so considered because transmission losses are neglected.

Now the objective function, that is the cost function to be minimized is,

$$F_T = F_1 + F_2 + - - - - + F_N = \sum F_i (P_{g1})$$
 (2.8)
i=1

Ν

Where, $F_i(P_{gi})$ = The composite cost curve of the ith thermal

generating plant.

Pgi = Power generated at the ith plant.

And the constraint equations are,

the power balance equation given by

N

$$P_R - \sum_{i=1}^{N} P_{g_i} = 0$$
; equality constraint. (2.9)

and the power limit equation given by

 $P_{gi,min} < P_{gi} \leq P_{gi,max}$; inequality constraint. (2.10)

Now dividing the each inequality constraint into two equality constraint along with one multiplier for each part such that the equation

Pgi, min ≤ Pgi ≤ Pgi, max becomes

 $\mu_{i} = (P_{gi,min} - P_{gi}) = 0 ; Where \mu_{i} > 0$ (2.11)

 μ_{i} + ($P_{gi} - P_{gi, max}$) = 0 ; Where μ_{i} + > 0 (2.12) Where i=1,2,3.....N

Now the resulting LaGrangian function is

$$\mathcal{Z} = \sum_{i=1}^{N} F_{i} (P_{gi}) + \lambda \{P_{R} - \sum_{i=1}^{N} P_{gi}\} + \sum_{i=1}^{N} \mu_{i} - (P_{gi, \min} - P_{gi})$$

$$i=1$$

$$i=1$$

$$N$$

$$+ \sum_{i=1}^{N} \mu_{i} + (P_{g} - P_{gi, \max}) = 0$$

$$i=1$$

$$(2.13)$$

To solve the above equation for a minimum value partial derivatives of the function with respect to each variable has to be taken and then equate each resulting equation to zero. And then the equations evolved are the required criteria which will be used for getting the value of the variables at the minimum value of the function under the influence of the constraints.

Hence the equations to be solved becomes

ЛГ.

$$\frac{dP_{i}}{dP_{gi}} - \lambda - \mu_{i}^{-} + \mu_{i}^{+} = 0 \qquad (2.14)$$

$$\frac{N}{P_{R} - \sum P_{gi} = 0 \qquad (2.15)$$

$$i = 1$$

 $(P_{gl,min} - P_{gl}) = 0$; If the lower limit is hit. (2.16)

 $(P_{gi} - P_{gi}, max) = 0$; If the upper limit is hit (2.17)

Where i=1,2,3.....N

* For the same unit the above two condition can never occur simultaneously (conditions given by equations 2.16 and 2.17)

Case İ

If P_{gi} where i=1,2,3....N are such that none of the station hits the limits (neither upper nor lower limit).

In that case,

 $\mu_i^- = \mu_i^+ = 0$ (2.18)

The equations to be solved becomes

ar		•			
	$-\lambda = 0$, or (IC) _i = λ				(2.19)
dP	<u>gi</u>				
	Ν				*
and, P_R	$- \Sigma P_{gi} = 0$,	·.	١	(2.20)
, .	i=1			•	
Case II					

Case II

46

If P_{g_i} (where i=1,2,3,....N) such that some of the units hit there upper limit,

Say first M number of units hit upper limit.

So for these M number of units,

$$M_{i}^{\tilde{}} = 0$$
 for $i=1,2,3,\ldots,M$ (2.21)

For all other units,

 $\mathcal{M}_{i}^{-} = \mathcal{M}_{i}^{+} = 0$ for i=M+1,M+2,M+3,....N (2.22)

Therefore, equations to be solved are

$$(IC)_i - \lambda + \mu_i^+ = 0$$
; for i=1,2,....M (2.23)

$$(IC)_{i} - \lambda = 0 \quad ; \text{ for } i=M+1, M+2, M+3, \dots, N \qquad (2.24)$$
and
$$P_{R} - \sum P_{gi} = 0 \qquad (2.25)$$

$$\mu_{i}^{+} (P_{g1} - P_{g1}, max) = 0 \qquad (2.26)$$
Where $i=1,2,3,\dots, M$
that is for those units hit upper limit, and
$$\frac{dF_{i}}{dP_{gi}} \int_{F_{gi} = P_{gi}, max} Summary: Equations to be solved,
$$(IC)_{i} \leq \lambda, i=1,2,3,\dots, M \qquad (2.27)$$

$$(IC)_{i} = \lambda, i=M+1, M+2,\dots, N \qquad (2.28)$$

$$N$$

$$P_{R} - \sum P_{gi} = 0 \qquad (2.29)$$

$$i=1$$
and,
$$P_{g1} = P_{gi}, max, \quad (if i \leq M \text{ and } (IC)_{i} \leq \lambda) \qquad (2.30)$$$$

Case III

If a number of units (say first M) hit lower limits. then,

 $\mathcal{M}_i^- = \mathcal{M}_i^+ = o; \quad i > M$

 $\mu_{i}^{+} = 0$; $i \leq M$ (2.31)

and

$$P_{R} - \sum_{i=1}^{N} P_{gi} = 0$$
 (2.32)

$$P_{gi, min} - P_{gi} = 0 \quad (\text{ if } i \leq M \text{ and } (IC)_i \geq \lambda)$$

$$(2.33)$$

Summary:

Equations to be used,

$$(IC)_i \rightarrow \lambda$$
; $i = 1, 2, 3, \dots, M$

(2.34)

$$P_{R} - \sum_{i=1}^{N} P_{gi} = 0$$
 (2.35)

$$(IC)_i = \lambda$$
; $i = M+1, M+2, \dots, N$ (2.36)

$$P_{gi} = P_{gi, \max} ; (if i \leq M and (IC)_i \geq \lambda)$$
 (2.37)

Case IV

If some of the units hit upper limit and some others hit lower limit in that case the conditions become

$$\mathcal{M}_i = 0$$
; for those hits upper limit (2.38)

$$\mu_i^+ = 0$$
 ; for those hits lower limit. (2.39)

(IC),
$$\leq \lambda$$
 ; for those hits upper limit (2.40)

 $(IC)_i \geq \lambda$; for those hits lower limit (2.41)

(IC) _;	= 0	; for those not violating any	(2.42)
4		constraints.	
$P_D = \sum_{i=1}^{N}$	Pyi	; Power balance equation.	(2.43)
Pgi =	Pgi, max	(for those units hit upper limit	(2.44)
	-	and (IC) $\leq \lambda$)	
Pgi =	Pgi, min	(for those units hit lower limit	(2.45)
		and (IC) $\geq \lambda$)	

2.4 <u>Hydro Thermal Co-ordination neglecting Transmission losses:</u>

For a power system of N thermal and M hydro units and K number of buses, the objective function of the system is exactly same as for the thermal system and is given by

29

$$\mathbf{F}_{\mathbf{T}}(\mathbf{P}_{\mathbf{g}}) = \sum_{i=1}^{N} \mathbf{F}_{i}(\mathbf{P}_{\mathbf{g}})$$

The equality constraints are

$$\sum_{i=1}^{K} P_{di} - \sum_{i=1}^{N} P_{gi} - \sum_{i=1}^{M} P_{Bi} = 0$$
(2.47)
$$\sum_{j=1}^{J_{max}} M$$
Power balance equation.
$$\sum_{j=1}^{K} \sum_{i=1}^{N} \{q_{i,j}(P_{Bi,j})\} n_{j} = q_{tot}$$
(2.48)
Discharge balance equation.

The inequality constraint equations are ,

i) for thermal generating units,

$$P_{gi,min} \leq P_{gi} \leq P_{gi,max}$$
 (2.49)

which can be further written as

$$\mathcal{\mu}_{ij}^{+} (P_{gi}, \min - P_{gi}) = 0 ; \quad \mathcal{\mu}_{ij}^{+} \ge 0$$

$$\mu_{ij}^{+} (P_{gi} - P_{gi}, \max) = 0 ; \quad \mu_{ij}^{+} \ge 0$$
(2.50)

ii) for hydroelectric generating units,

 $P_{\text{Hi},\min} \leq P_{\text{Hi}} \leq P_{\text{Hi},\max}$ (2.51)

which can be further written as

$$\mathcal{P}_{Hij}(P_{Bi,min} - P_{Bi}) = 0 ; \mathcal{P}_{Hij} \ge 0$$

$$\mathcal{P}_{Hij}^{+}(P_{Bi,min} - P_{Bi}) = 0 ; \mathcal{P}_{Hij}^{+} \ge 0$$
(2.52)

and the water discharge rate limit,

can be written as,

iv) For the whole period ,

the water volume constraints are

(2.46)

Vmin < Vj < Vmax

And

 J_j is the inflow rate to the reservoir for the particular interval (j).

Considering no spillage, the augmented LaGrangian equation becomes:

$$\begin{split} \chi &= \sum_{j=1}^{J_{max}} \left\{ \left(n_{j} \sum_{i=1}^{N} F_{ij} \left(P_{ij} \right) \right) - \lambda_{j} \left(\sum_{i=1}^{k} P_{di} - \sum_{i=1}^{N} P_{gij} - \sum_{i=1}^{M} P_{Hij} \right) \right. \\ &+ \left. \lambda_{j}^{\prime} \left(-V_{j-1} - n_{j} J_{j} + n_{j} \sum_{i=1}^{M} \vartheta_{ij} \left(P_{Hij} \right) + V_{j} \right) + H_{ij}^{-} \left(P_{gi,min} - P_{gij} \right) \right. \\ &+ \left. \mathcal{M}_{ij}^{+} \left(P_{gij} - P_{gi,max} \right) + \left. \sigma_{vj}^{-} \left(V_{min} - V_{j} \right) + \left. \sigma_{vj}^{+} \left(V_{j} - V_{max} \right) \right. \right. \\ &+ \left. \sigma_{Hj}^{-} \left(H_{min} - H_{j} \right) + \left. \sigma_{Hj}^{+} \left(H_{j} - H_{max} \right) + \mathcal{M}_{Hij}^{-} \left(P_{Hi,min} - P_{Hij} \right) \right. \\ &+ \left. \mathcal{M}_{Hij}^{+} \left(P_{Hij} - P_{Hi,max} \right) + \left. \sigma_{gij}^{-} \left(\vartheta_{i,min} - \vartheta_{ij} \right) + \left. \sigma_{\vartheta ij}^{+} \left(\vartheta_{ij} - \vartheta_{i,max} \right) \right. \right] \right. \\ &+ \left. \mathcal{M}_{Hij}^{+} \left(P_{Hij} - P_{Hi,max} \right) + \left. \sigma_{gij}^{-} \left(\vartheta_{i,min} - \vartheta_{ij} \right) + \left. \sigma_{\vartheta ij}^{+} \left(\vartheta_{ij} - \vartheta_{i,max} \right) \right. \right] \right. \\ &= 0 \end{split}$$

Now for short term hydro thermal scheduling some of the constraints may be ignored e.g, head constraint. And considering the discharge constraint within power generation constraints the LaGrangian function can be written as

$$\mathcal{L} = \sum_{j=1}^{j_{max}} \left\{ \left[n_{j} \sum_{i=1}^{N} F_{ij} \left(P_{a}^{ij} \right) \right] - \lambda_{j} \left(P_{b} - \sum_{i=1}^{N} P_{a}^{ij} - \sum_{i=1}^{M} P_{Hij} \right) \right. \\ \left. + \mathcal{V}_{j} \left(\mathcal{V}_{j-1} - n_{j}^{ij} J_{j}^{i} + n_{j}^{ij} \sum_{i=1}^{M} \mathcal{V}_{ij} \left(P_{Hij} \right) + \mathcal{V}_{j} \right) + \mathcal{M}_{ij}^{-} \left(P_{a}^{ij} - P_{a}^{ij} \right) \right. \\ \left. + \mathcal{M}_{ij}^{+} \left(P_{a}^{ij} - f_{a}^{ij} \right) + \mathcal{M}_{Hij}^{-} \left(P_{Hij} - P_{Hij} \right) + \mathcal{M}_{Hij}^{+} \left(P_{Hij} - P_{Hij} \right) \right. \\ \left. + \left. \mathcal{T}_{vj}^{-} \left(\mathcal{V}_{min} - \mathcal{V}_{j} \right) + \left. \mathcal{T}_{vj}^{+} \left(\mathcal{V}_{j} - \mathcal{V}_{max} \right) \right] = 0 \right]$$

$$(2.57)$$

...

Assuming only one hydro unit, the equation further reduces to

$$\mathcal{L} = \sum_{j=1}^{J_{max}} \left\{ n_{j} \sum_{i=1}^{N} F_{ij} \left(P_{ij} \right) - \lambda_{j} \left(P_{b} - \sum_{i=1}^{N} P_{gij} - P_{Hij} \right) \right. \\ + Y_{j} \left(-V_{j-1} - n_{j} J_{j} + n_{j} \gamma \left(P_{Hj} \right) + V_{j} \right) + \mathcal{M}_{ij}^{-} \left(P_{gi,min} - P_{gij} \right) \\ + \mathcal{M}_{ij}^{+} \left(P_{gij} - P_{gi,max} \right) + \mathcal{M}_{Hj}^{-} \left(P_{Hi,min} - P_{Hj} \right) \\ + \mathcal{M}_{Hj}^{+} \left(P_{Hj} - P_{H,max} \right) + \nabla_{vj}^{-} \left(V_{min} - V_{j} \right) + \mathcal{T}_{vj}^{+} \left(V_{j} - V_{max} \right) = 0$$
(2.58)

Then the equations to be used for solution are:

$$m_{j} \frac{dF_{ij}(P_{qij})}{dP_{qij}} - \lambda_{j} - \mu_{ij}^{-} + \mu_{ij}^{+} = 0 \ ; \ i = 1, 2, \dots N \qquad (2.59)$$

$$-\lambda_{j} + Y_{j} \eta_{j} \frac{d^{2} \varphi(P_{Hj})}{dP_{Hj}} - \mu_{Hj}^{-} + \mu_{Hj}^{+} = 0 ; j = 1, 2, \dots j_{max}$$
(2.60)

$$\dot{Y}_{j} - \dot{Y}_{j+1} - \bar{T}_{v_{j}} + \bar{T}_{v_{j}}^{\dagger} = 0$$
; $j = 1, 2 \cdots j_{max}$ (2.61)

and the equality and inequality constraint equations.

When some of the thermal units hit upper limits and some others hit lower limit and some of them are within the constraint, Then

$$m_{j} \frac{dF_{ij}(P_{gij})}{dP_{gij}} \leq \lambda_{j} \quad ; \text{ for those hits upper limit} \qquad (2.62)$$

$$m_{j} \frac{dF_{ij}(P_{gij})}{dP_{gij}} \geq \lambda_{j} \quad ; \text{ for those hits lower limit} \qquad (2.63)$$

$$m_{j} \frac{dF_{ij}(P_{gij})}{dP_{gij}} = \lambda_{j} \quad ; \text{ for those within the constraint} \qquad (2.64)$$

$$-n_j \gamma_j - \frac{d \vartheta(P_{Hij})}{d P_{Hi}} = \lambda_j$$

; when the hydro unit hits the upper

limit of its generation capacity

limit of its generation capacity

$$m_{j}\gamma_{j} \frac{d \Re(P_{Hj})}{d P_{Hj}} \leq \lambda_{j}$$

$$m_{j} \gamma_{j} \frac{d \gamma(P_{Hj})}{d P_{Hj}} \geq \lambda_{j}$$

 $Y_j = Y_{j+1} \ge 0$

(2.66)

- ; when the water volume hits minimum (2.68)value of the volume constraint (V = V_{min})
- $y_{j} y_{j+1} \leq 0$

; when the water volume hits maximum (2.69) value of the volume constraint (V =
$$V_{max}$$
)

$$\vec{v}_{j} = \vec{v}_{j+1}$$

along with the original equality and inequality constraints.

;

Now if only hydro unit hits the limit of power generation then equations to be solved becomes:

$$m_{j} \frac{dF_{ij}(F_{ij})}{dP_{g_{ij}}} = \lambda_{j} ; \text{ when all the thermal units are} \qquad (2.71)$$
within the constraints

$$m_{j} \chi_{j} \frac{d \mathscr{C}(\mathbf{P}_{Hj})}{dP_{Hj}} \leq \lambda_{j} \quad ; \text{ when the hydro unit hits upper limit.(2.72)}$$

$$m_{j} \chi_{j} \frac{d \mathscr{C}(\mathbf{P}_{Hj})}{dP_{Hj}} \geq \lambda_{j} \quad ; \text{ when hydro unit hits lower limit. (2.73)}$$

$$\chi_{j}^{2} = \chi_{j+1}^{2} \quad ; \text{ when no volume constraints are} \quad (2.74)$$

violated.

violated

Now if hydro unit hits volume constraints then governing equations become:

- $\mathcal{T}_{ij} \frac{dF_{ij}(P_{gij})}{dP_{gij}} = \lambda_{j} \qquad ; \text{ when no thermal constraints are} \qquad (2.75)$ violated.
- $\gamma_{j} \gamma_{j} \frac{d \gamma(\mathbf{f}_{Hj})}{d\mathbf{f}_{Hj}} = \lambda_{j}$; when no hydro generation limits (2.76) are violated.
- $\dot{\chi}_{j} \ddot{\chi}_{j+1} = -\sigma_{v_{j}}^{+} \leq 0$; when the upper limit of the volume (2.77) constraint is reached. $\dot{\chi}_{j} - \ddot{\chi}_{j+1} = \sigma_{v_{j}} \geq 0$
- $\hat{\chi}_{j} \hat{\chi}_{j+1} = \sigma_{v_{j}} \geq 0$; when the lower limit of the volume (2.78) constraint is reached.

Therefore, the water conversion factor for the effectiveness of the water utilization remain constant during the period of study unless a storage volume constraint is hit.

2.5 Production cost:

The system lambda is the incremental cost in Taka/NWhr. to produce the last Megawatt for 1 hour. The total cost per hour is termed production cost, F_T $F_T = \int_{-\infty}^{P_T} \frac{1}{\lambda(P)} dP$ (2.79)

where F_T is in Taka/Hour.

The production cost is readily evaluated numerically using the trapizoidal rule when (P) versus P is available in tabular form. Economic dispatch programs are commonly known as production costing programs.

2.6 Necessity of convexity of the cost function:

For a thermal power system, the objective function is,

$$\mathbf{F}_{\mathbf{T}} = \sum_{i=1}^{N} \mathbf{F}_{i} \left(\mathbf{P}_{gi} \right) \tag{2.80}$$

where,

$$F_{i} (P_{gi} = \alpha_{i} + \beta_{i} P_{gi} + \gamma_{ci}^{2} P_{gi}$$
 (2.81)

Now for F_T to be minimum,

$$\frac{\partial F_{\tau}}{\partial P_{gi}} = \frac{\partial F_i(P_{gi})}{\partial P_{gi}} = \frac{dF_i}{dP_{gi}} = 0; i = 1, 2, 3, \cdots, M \quad (2.82)$$

That is,
$$\beta_i + 2 Y_{ci} P_{gi} = 0$$
 (2.83)

That is the optimum value of the power generation is,

$$P_{gi}^{\text{oPt}} = -\frac{\beta_i}{2 \chi_{ci}}$$
 (2.84)

Now if second partial derivative is positive in that case this will assure minimum value of F_T .

Therefore, for
$$F_{\tau}$$
 to be minimum, $\frac{\partial^2 F_{\tau}}{\partial P_{\theta_i}^2} = \frac{d^2 F_i}{d P_{\theta_i}^2} > 0$
i.e., $v_{ci} > 0$; & $\frac{d F_i}{d P_{\theta_i}} = 0$ (2.85)

along with

$$\frac{\partial F_{T}}{\partial P_{gi}} = \frac{dF_{i}}{dP_{gi}} = 0 \qquad (2.85)$$

Again equation 2.85 must be modified to some equation with the inclusion of another constraint equation called power balance equation.

$$P_{D} = \sum_{i=1}^{NB} P_{di} = \sum_{j=1}^{N} P_{gj}$$
(2.87)

Introducing Lagrangian multiplier, the augmented Langrangian equation become,

$$\mathcal{L} = F_{\tau} + \lambda \left(P_{b} - \sum_{i=1}^{N} P_{g_{i}} \right)$$
(2.88)

where,

$$F_{T} = \sum_{i=1}^{N} F_{i}(P_{g_{i}})$$
 (2.89)

For optimality,

$$\frac{\partial \mathcal{L}}{\partial P_{qi}} = 0$$
; $P_{qi} = \frac{\lambda - \beta_i}{2 \gamma_{ci}}$ (2.90)

And

(2.92)

$$\lambda = \left\{ 2 P_0 + \sum_{i=1}^{N} \beta_i / Y_{ci} \right\} / \sum_{i=1}^{N} (1/Y_{ci})$$

 $P_{\rm D} = \sum_{i=1}^{\rm NB} P_{\rm gi}$

From equation 2.85 it is clear that χ_{i}^{j} must always be positive. β_{i} may be positive or negative depending on the generation constraints. Now to have λ the incremental cost of received power always positive A_{i} has to be positive because otherwise for some value of P_{D} , λ will be negative. Physically it is never possible to have power output without input or negative input that is why β_{i} is to be positive. A_{i} may be positive or negative depending on the minimum generation limit. (β_{i} may be negative under the generation constraints).

So it is clear that the cost function must be such that \bigwedge_{i} and $\bigvee_{c_{i}}$ must be positive, i.e. the cost function must be strictly convex. And because $F_{T} = F_{i}$, and the summation of a number of strictly convex functions is strictly convex. So the objective function is also convex. It can be proved by evaluating the eigen value of the Hessian matrix of the total cost function.

Now for the whole system to check the convexity property of the objective function, the objective function can be used. The objective function is given by,

 $F_T = F_1(P_{g1}) + F_2(P_{g2}) + \dots + F_N(P_{gN})$ (2.93)

2,16

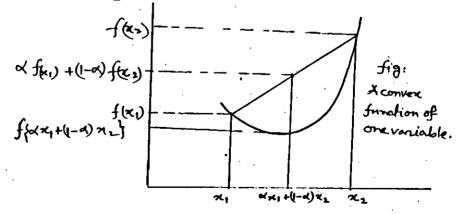
There fore,

$$\frac{\partial F_{I}}{\partial P_{q_{i}}} = \frac{dF_{i}}{dP_{q_{i}}} = \beta_{i} + 2\gamma_{i}P_{q_{i}} \qquad (2.92)$$

$$\Rightarrow \frac{\partial^2 F_i}{\partial P_{i}} = \frac{\partial^2 F_i}{\partial P_{i}} = 2 \chi_i^2 \qquad (2.93)$$

$$\dot{\mathbf{L}} = \mathbf{1}, \mathbf{2}, \cdots \mathbf{N}^{T}$$

 $\frac{\partial^2 F_T}{\partial P_{g_i} \partial P_{g_j}} = 0 \quad \text{for } i \neq j \qquad (2.94)$ So, the Hessian on trive becomes; $H = \begin{bmatrix} 2Y_i & 0 & 0 & 0 \\ \dots & 2Y_i & 0 & 0 \\ \dots & 2Y_i & 0 & 0 \\ \dots & 2Y_i & 0 & 0 \\ \dots & & 0 & 0 \\ \dots & & & 0 \end{bmatrix}$


2.7 Convexity of a Function:

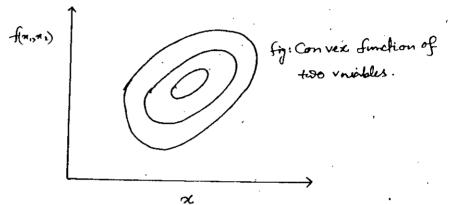
In real world problem, if the objective function or the constraints are not concave or convex, the problem is usually mathematically intractable. A function is strictly convex if a line connecting any two points on the function lies completely above the function. The following is a mathematical statement and illustration of this definition for a function of one variable.

$$f[x_1, y_1 - (1 - \alpha_1)y_2] = (\alpha_1 f(y_1) + (1 - \alpha_1) f(y_2))$$
(2.96)

where, $0 \leq \P \leq 1$

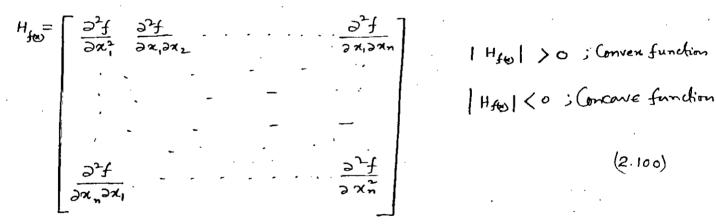
If "<" is replaced by " \leq " the expression will define convex functions. The above relationship is illustrated in figure

A function is strictly convex if its slope is continually increasing, or



(2.97)

It is convex if its slope is nonincreasing or $\frac{d^2 f}{d a^2} \ge 0.$ (2.98)


A function of two variables, f(x) where, $[x]=[x_1,x_2]$, is strictly convex if $f[\langle x_1+(1-\langle \rangle x_2] \langle \langle f(x_1)+(1-\langle \rangle f(x_2) \rangle \rangle$ where, x_1 and x_2 are points located by the coordinates given in their

respective vectors.

Hessian Matrix:

Hessian matrix of a function of multiple variables, f(x), where, x=[x₁,x₂,x₃,....x_n], is a matrix of second partial derivative.

To determine convexity and concavity of a function of multiple variables, the eigenvalues and its Hessian matrix should be examined.

(a) If all eigen values of the Hessian are negative the function is strictly concave.

(b) If all eigen values of the Hessian are positive the function is strictly convex.

(c) If some eigen values are positive and some are negative, or if some are zero, the function is neither strictly concave nor strictly convex.

The following brief statements are some properties of concave and convex functions.

1. Local minimum of a convex function is also the global minimum and a local maximum of a concave function is also a global maximum.

2. A straight line is both concave and convex.

3. The sum of (strictly) convex functions are (strictly) convex, and the sum of (strictly) concave functions are (strictly) concave.

4. If f(x) is a convex function and k is a constant, then,

(a) kf(x) is convex if k>0

(b) kf(x) is concave if k<0.

CHAPTER 3

Transmission losses:

3.1 Introduction

Load flow solution gives currents, voltages and power flows at every bus in the system. In the load flow problem a set of non lilear relationship between voltage and current at each bus must be solved. The nonlinear relationship involve, the real and reactive power consumption at a bus, or the generated real and scheduled voltage magnitude at a generator bus. The load flow solution gives the electrical response of the transmission system to a particular set of loads and generator unit outputs.

One of the quantities available from a load flow solution is the electrical losses of the network. This result plays an important role in the optimum dispatch of generation. However, it is not simply the value of the losses but the derivatives of losses with respect to generator outputs (incremental transmission losses) that are important.

3.2 Incremental transmission loss :

The total network loss formula is given by,

$$P_{L} + jQ_{L} = \sum_{i=1}^{N} S_{i} = \sum_{i=1}^{N} V_{i} \quad J_{i}^{*}$$
$$= V_{bus} \quad J_{bus}^{*}$$

Therefore, $P_L + jQ_L = J_{bus}^T Z_{bus} J_{bus}^*$ Where,

> $P_L = real power, Q_L = reactive power,$ $J_{bus} = injected bus current matrix,$ $Z_{bus} = bus impedance matrix,$ $R_{bus} = matrix containing elements <math>\gamma_K$.

(3.1)

The total loss P_L is readily identified as being the total active power injected into the network

$$P_{L} = \operatorname{Re} \left(J_{bus}^{\mathsf{T}} Z_{bus} J_{bus}^{\star} \right)$$

= $\left[\operatorname{Re}(J_{bus})\right]^{\mathsf{T}} \operatorname{R}_{bus} \left[\operatorname{Re}(J_{bus})\right] + \left[\operatorname{Im}(J_{bus})\right]^{\mathsf{T}} \operatorname{R}_{bus} \left[\operatorname{Im}(J_{bus})\right]$ (3.2)
because P_{L} is due only to the resistive part of Z_{bus} namely R_{bus} .
The required incremental transmission loss is the derivative of equation
The incremental transmission loss [9] is given by,

$$(ITL)_{j} = \frac{\partial P_{L}}{\partial P_{j}} = 2 \sum_{k=1}^{N} (P_{k} \alpha_{jk} - Q_{k} \beta_{jk})$$
(3.3)

Where,

3.2.

$$d_{jk} = \frac{P_{jk}}{|V_j| |V_k|} \cos \left(\delta_j - \delta_k\right)$$
(3.4)

$$\beta_{jk} = \frac{P_{jK}}{|V_j||V_K|} \sin \left(\delta_j - \delta_k\right)$$
(3.5)

This incremental transmission loss formula involves only line resistance, bus injection and load flow data. CHAPTER 4

HYDRO THERMAL ECONOMIC DISPATCH

4.1 Introduction:

It is usually more complex in scheduling a hydro thermal electrical power generating system than a system that constitutes only thermal units. The one single aspect of hydroelectric power plants is that differentiates the coordination of their operation more than any other is the many, and highly varied constraints. In many cases, care must be taken in the release of water volume for control of flood of water or regular scheduled release of water for irrigation. Water head must be maintained carefully all the time. To keep the river navigable all the time, water release in a river have to be controlled. Again high volume of sudden water release may also create problem in the downstream.

The coordination of the operation of hydro electric plants involves, of course, the scheduling of water release. The long range hydro scheduling problem involves the long range forecasting of water availability and the scheduling of reservoir water release for an interval of time that depends on the reservoir capacity. Typical long range scheduling may be from one week to one year or several years. And it involves metrological and statistical analysis.

But for short range hydro scheduling which may be for few hours or one day or one week that involves the hour by hour scheduling of all the generating units to achieve the minimum production cost for the given period of time. In such scheduling problem, the hydraulic inflows, load, volume and head of the reservoir, unit availabilities are assumed to be known. In hydro thermal scheduling we must be aware that hydro generations are cost free and thermal generations are fuel cost dependent. So hydro scheduling along with the thermal scheduling must be such that the cost becomes minimum for a fixed amount of water volume discharge.

41

There are several constraints involved with the thermal and hydro generation. For an efficient scheduling this constraints must be carefully taken into amount. Improper involvement may cause loss of economy.

4.2 Inequality Constraints of Thermal Units:

A typical thermal unit is usually bounded by several constraints. Out of a number of constraints the inequality constraints to be considered here will be the generation constraint. That is generation limits. It is usually not economic to run any unit at less than 30% of the rated load. It is one of the major considerations involved in the optimization study. Although ignoring this constraint the optimization problem become very straight forward and simple. But excluding this consideration the ultimate result will fail to show highest economy. So its impact in the study is inevitable.

The inequality constraint of a thermal unit is,

$$P_{gi,min} \leq P_{gi} \leq P_{gi,max}$$
 (4.1)

where, $P_{gi,min}$ = Minimum possible generation from the ith unit when the unit is at running condition.

Pgi = Thermal generation at any interval.

 $P_{gi,max}$ = Maximum possible generation from the ith unit when

running

And another constraint of thermal units that can be taken into account is given by,

Hgi, min ≤Hgi ≤Hgi, max

H_{gi,min} = Minimum fuel input limit (MBtu/hr.) or MCFT./hr. or gallons/hr. (4.2)

H_{gi} = Instanteneous fuel input

Hgi, max = Maximum value of fuel input that is possible

where, $H_{gi}(P_{gi}) = a_i + b_i * P_{gi} + C_i P_{gi}^2$

and ai, bi dnd ci are constants.

4.3 Inequality Constraints in Hydro Units:

There are a number of constraints for a hydro unit. Some of them can be taken into account using mathematics i.e. quantitavely. Some others are metrological and statistical in nature, which can not be easily accounted for.

The constraints are;

(i) Discharge Constraint: This is the constraint offered by the water turbine, given by

where,qbi = Instanteneous discharge rate of the unit i
qhi,min= Minimum amount of discharge rate that must be maintained
qhi,max= Maximum amount of discharge rate that must not be
violated for unit i

(ii) Head Constraint:

 $h_{wi}, \min \langle h_{wi} \langle h_{wi}, \max \rangle$ (4.4)

Water head constraint must be maintained. Below certain head level it is not possible to create useful torque in the machine to produce electrical energy and above some level reservoir may cause flood.

43

(iii) Power Generation Constraints: This is the constraint offered by the alternator, given by,

PHi, min≤PHi ≤PHi, max

where, PHi, min = Instanteneous hydro generation

 P_{Bi} = Minimum generation for particular unit i $P_{Bi,max}$ = Maximum generation for particular unit i

(iv) Total Amount of Discharge Constraint Including Inflow Rate of Water: The minimum water volume constraint must not be violated at any instant of the study period.

Volume of the reservoir water constraint:

Vmin <Vj <Vmax

where, V = reservoir volume.

and, J; =Inflow rate during the interval j

S_j = Spillage discharge rate during interval j

4.4 Equality Constraints:

(i) Active Power Balance Constraint:

$$P_{D} + P_{L} - \sum_{i=1}^{N} P_{Hi} - \sum_{K=1}^{M} P_{gk} = 0$$

where, for a particular interval,

1

$$K = NB$$

 $P_D = \sum_{i=1}^{N} P_{d_i}$ = Total demand. NB=Number of buses

4.4

(4.5)

(4.6)

(4.7)

 $P_L = P_L (P_{g1}, P_{g2}, \dots, P_{gN}, P_{H1}, P_{H2}, \dots, P_{HN})$ ---- System loss function

PHi	= Hydro generation for the ith unit.
Pg k	= Thermal generation for the kth unit.
M	= Number of hydro units within the system
N	- Number of thermal units within the syste

4.5 OPTIMIZATION WITHIN CONSTRAINTS (ALL THERMAL):

The objective is to maximize the profit i.e. to minimize the cost of generation of several units. The cost is the function of generation. It is relatively straight forward to find the maximum or minimum using the rules of Of course, at first we must find a set of values for the variables calculus. where the first derivatives of the total cost function with respect to each variable (Each generating unit's generation) is zero. In addition, the second derivatives should be used to determine whether solution found is a maximum or minimum, or a saddle point.

Here, the objective function is the summation of the cost functions of the generating units and the constraints may be classified in the following category;

(a) For individual generating units;

(b)

 $P_{gi, min.} \leq P_{gi} \leq P_{gi, max}$; Generator power limit. (4.9)

i=1,2,3,...,No. of generating units(N)

 $\sum_{i=1}^{D} P_{gi} - \sum_{i=1}^{NB} P_{di} - P_{L} = 0 \quad ; \text{ Active power balance.}$ (4.10)

(4.8)

The objective function is

$$F_{T} = \sum_{i=1}^{N} F_{i} (P_{gi})$$
 (4.11)

And here each cost function must be concave upward (convex) and single valued .

That is,

$$F_{i}(P_{gi}) = \alpha_{i} + \beta_{i} * P_{gi} + \delta_{ci} * P_{gi}^{2}$$
where β_{i} and γ_{ci} must be positive constant.
$$(4.12)$$

We see that the problem is subject to both equality and inequality constraints. This is, in fact it is a optimization problem of general type.

Detail of the optimization rules for this type of problem has been reached in the following part.

Minimize:

$$F_T = H_i (P_{gi}) = F_i (P_{g1}, P_{g2}, P_{g3}, \dots, P_{gN})$$
 (4.13)
Subject to:

$$\sum_{i=1}^{N} P_{g_i} - P_D - P_L = 0$$

where, $P_{D} = \sum_{i=1}^{ND} P_{di}$, and P_{L} is the transmission loss and is a function of P_{g1} , P_{g2} , P_{g3} , ..., P_{gN}

and, Pgi, min≤Pgi≤Pgi, max

for i=1,2,3,....n.

At first let us consider all the units are thermal i.e. no hydro units are present. Then the problem definition will be as follows;

Objective function (the function to maximize or minimize):

 $F_{T} = F_{i}(P_{gi}) = F_{1}(P_{g1}) + F_{2}(P_{g2}) + \dots + F_{N}(P_{gN})$ (4.15)

4.6

(4.14)

Subject to:

Equality constraint,

$$h(P_{g_1}, P_{g_2}, \dots, P_N) = \sum_{j=1}^{N} P_{g_1} - P_D - P_L$$

where the total demaind, $P_0 = \sum_{i=1}^{n} P_{di}$

and inequality constraints:

Pgi, min (Pgi (Pgi, max for i=1,2,3,.....N

i,e g:(Pg:)<u><</u>0

such that,

and

$$g_i + (P_{g_i}) = P_{g_i} - P_{g_i}, \max \leq 0$$
 (4.18)

$$g_i = (P_{g_i}) = P_{g_i}, m_i = P_{g_i} \le 0$$
 (4.19)

after introducing a multiplier eqns become

$$\mu_{i+g_{i}+=0}; \mu_{i+>0}$$
(4.20)

$$\mu_i - g_i - = 0$$
; $\mu_i - \ge 0$ (4.21)

Then the LaGrangian function become,

$$\mathcal{L} = F_{T} - h(P_{g1}, P_{g2}, P_{g3}, \dots, P_{gN}) + \int_{i}^{h} f_{i} + g_{i} - (P_{g1}) + \int_{i}^{h} g_{i} (P_{g1}) = 0$$
(4.22)

(4.16)

.

(4.17)

(4,19)

. Now taking the derivatives with respect to different variables we have,

$$(IC)_{i} - \lambda (1 - (ITL)_{i}) + \mu_{i}^{+} \mu_{i}^{-} = 0$$
; for i=1,2,3,...N (4.23)

where,

 dF_i

Incremental cost = ----- = (IC)_i

dPgi

dPL

Incremental transmission loss = ----- = (ITL);

dPg i

from equality constraints,

$$\sum_{i=1}^{N} P_{g_i} - P_D - P_L = 0 \qquad (4.24)$$

from inequality constraints,

$$\mathcal{M}_{i}^{-}(P_{gi,min} - P_{gi}) = 0 ; \mathcal{M}_{i} \ge 0$$
 (4.25)

$$\mathcal{M}_{i}^{+}(P_{gi} - P_{gi}, \max) = 0 \quad ; \quad \mathcal{M}_{i}^{+} \geq 0 \qquad (4.26)$$

There are several cases depending upon the position or value of the control variable (P_{gi}) for optimum solution.

Case 1

if the values of P_{gi} 's are such that they are not at either generation limits. Then all μ multipliers are zero and

the coordination equation becomes

(IC)_i

_____= λ ; for i=1, 2,Ν

 $1. - (ITL)_{i}$

(4.27)

or can be written as

$$(PF)_i * (IC)_i = \lambda \qquad (4.28)$$

1.0

Case II

Now suppose that optimum solution requires P_{gi} (i=1,2,..K; K<N) to be at there upper limit of generation ($P_{gi}=P_{gi}, max$; i=1,2,...K) and that P_{gi} (i= K+1,K+2,...,N) within its limits. Then

$$\mu_i^+ > 0$$
; for i= 1,2,....K
 $\mu_i^- = 0$; for i= 1,2,....K

and
$$\mu_i = \mu_i^+ = 0$$
; for $i = K+1, K+2, \dots, N$ (4.30)

therefore,

$$(IC)_{i} - \lambda (1.0 - (ITL)_{i}) + \mu_{i}^{+} = 0 ; i < K$$

$$(IC)_i - \lambda (1.0 - (ITL)_i) = 0$$
; $i > K$ (4.31)

Hence the coordination equations become

$$\frac{(IC)_{i}}{I - (ITL)_{i}} \leq \lambda \quad ; i < k \tag{4.32}$$

$$\frac{(IC)_{i}}{I-(ITL)_{i}} = \lambda \quad ; i > k \qquad (4.33)$$

(4.29)

<u>Case III</u>

Let the optimum solution requires P_{gi} (i= 1,2,...J ; J < N) to be at there lower limit ($P_{gi} = P_{gi, min}$) and the other units within there limits (i > J), Then

 $\mathcal{M}_{i}^{-} \ge 0 \quad ; \quad \mathbf{i} \le \mathbf{J}$ $\mathcal{M}_{i}^{+} = 0 \quad ; \quad \mathbf{i} \le \mathbf{J}$ and $\mathcal{M}_{i}^{-} = \mathcal{M}_{i}^{+} = 0 \quad ; \quad \mathbf{i} > \mathbf{J}$

Hence

$$(IC)_{i} - \lambda (1.0 - (ITL)_{i}) - \mu_{i}^{-} = 0$$
; for $i \leq J$
 $(IC)_{i} - \lambda (1.0 - (ITL)_{i}) = 0$; for $i > J$ (4.35)

Therefore the coordination equations become,

$$\frac{(IC)_{i}}{4.0 - (ITL)_{i}} \geq \lambda \quad ; \quad i \leq J$$

$$\frac{(IC)_{i}}{1.0 - (ITL)_{i}} = \lambda \quad ; \quad i > J$$

$$(4.36)$$

$$(4.37)$$

Case IV

If the optimum solution requires that all the units are at there limits and the equality constraint can be met. Then and nonzero 's are indeterminate.

Then cordination equations become:

$$\frac{(Ic)_i}{I - (ITL)_i} \leq \lambda \quad ; \text{ for those thermal units hits upper limit.} \tag{4.38}$$

$$\frac{(Ic)_i}{I - (ITL)_i} \geq \lambda \quad ; \text{ for those thermal units hits lower limit.} \tag{4.39}$$

4.10

(4.34)

4.6 Hydro thermal generating system:

Short term scheduling

It is usually assumed that hydro generations are free of cost and that a given amount of water be used in such a way that the cost of thermal generation be minimized.

Here in the study a number of thermal unit and one hydro unit is used. So in the mathematical modeling will include a number of thermal generating unit and only one hydro unit. The assumption with the hydro plant is that it is not sufficient to supply all the load demands during any period and that there is a maximum total volume of water that may be used during the total period, say T_{max} hours.

The objective function:

$$F_{T} = \sum_{j=1}^{J_{max}} n_{j} \{ F_{1j}(P_{g1}) + F_{2j}(P_{g2}) + \dots + F_{Nj}(P_{gN}) \}$$
(4.40)

subject to

equality constraints:

 $\sum_{j=1}^{j_{max}} n_{j}q_{j} = q_{tot} ; \text{ Discharge balance}$ (4.41) where $q_{tot} = \text{Total allowable water volume}$ volume to be discharged

NB N

$$\sum_{i=1}^{N} P_{dij} + P_{Lj} - P_{Hj} - \sum_{k=1}^{N} P_{gkj} = 0 ; Active power balance (4.42)$$

where $j = 1, 2, ..., j_{max}$

$$j_{\text{max}} = T_{\text{max}}$$

$$j=1$$
(4.43)

Loads are assumed to be constant during each interval (j). Other constraints are :

> $V_{j} \downarrow_{j=0} = V_{s} =$ Water volume of the reservoir at the beggining of the study or starting volume $V_{j} \downarrow_{j=jmax} = V_{E} =$ Water volume of the reservoir at the beggining of the study or starting volume $q_{j} = Q_{j} =$ Amount of water discharge for the particular period j.

 $J_j =$ Water inflow during the jth period. (4.44)

Inequality constraints:

For thermal units:

 $P_{gi,min} \leq P_{gi} \leq P_{gi,max}$; Generation limit (4.45) for i=1,2,3,....N for all j

i,e $g_i(P_{g_i}) \leq 0$

such that,

 $g_{i}^{+}(P_{gi}) = P_{gi} - P_{gi, max} \leq 0$ and $g_{i}^{-}(P_{gi}) = P_{gi, min} - P_{gi} \leq 0$ (4.46)

after introducing a multiplier eqns become

 $\mathcal{M}_{i} + g_{i} + = 0 \qquad ; \quad \mathcal{M}_{i} + > 0$

$$M_{i} = g_{i} = 0$$
; $\mu_{i} = > 0$ (4.47)

For Hydro unit:

 $q_{\min} \leq q_j \leq q_{\max}$; Water discharge rate limit (4.48) for $j = 1, 2, ..., j_{\max}$. Splitting the equation 4.48 into two parts:

$$G_{qj}^{+}$$
 (q_j - q_{max}) = 0; $G_{qj}^{+} \ge 0$ (4.49)

Hydro equality constraints:

 $V_s = V_0$ = Volume of water at the beginning.

 $V_E = V_{jmax} = V_{olume}$ of water at the end.

Then, volume of the reservoir for each time interval becomes,

 $V_{j-1} + n_j J_j = q_j (P_{Hj}) n_j + V_j$ (4.51); for j = 1,2,3,.....jmax

The total study period is divided into three intervals :

BL (base load) IL (intermediate load) PL (Peak load)

 $J_{max} = 3$ so,

And hydro inequality constraints are

v

$$\mathsf{min} \leq \mathsf{Vj} \leq \mathsf{V}_{\mathsf{max}} \tag{4.53}$$

PR, min <u><</u> Paj < Pa, max

(4.54)

(4.52)

4.13

(4.50)

So the augmented LaGrangian equation becomes:

$$L = \sum_{j=1}^{j_{max}} \{ n_{j} \sum_{i=1}^{N} F_{i,j}(P_{g,i,j}) \} + \sum_{j=1}^{j_{max}} (P_{D,j} + P_{L,j} - P_{H,j} - \sum_{k=1}^{N} P_{g,k,j})$$

$$+ \sum_{j=1}^{j_{max}} Y_{j} \{ -V_{j-1} - n_{j}(J_{j} - q(P_{H,j})) + V_{j} \} + \sum_{j=1}^{j_{max}} \sum_{k=1}^{N} P_{k,j} - (P_{g,k,mi,n} - P_{g,k,j})$$

$$+ \sum_{j=1}^{j_{max}} \sum_{k=1}^{N} P_{k,j} + (P_{g,k,j} - P_{g,k,max}) + \sum_{j=1}^{j_{max}} \sigma_{v,j} - \{ V_{mi,n} - V_{j} \}$$

$$+ \sum_{j=1}^{j_{max}} \sigma_{v,j} + \{ V_{j} - V_{max} \} + \sum_{j=1}^{j_{max}} P_{H,j} - (P_{H,mi,n} - P_{H,j}) + P_{H,j} + (P_{H,j} - P_{H,max})$$

$$+ \sum_{j=1}^{j_{max}} \sigma_{q,j} - (q_{mi,n} - q(P_{H,j})) + \sum_{j=1}^{j_{max}} \sigma_{q,j} + (q(P_{H,j}) - q_{max}) = 0$$

$$(4.55)$$

The hydro unit characteristics:

$$q = q(P_{H})$$
; assuming constant head for a . (4.56)
particular study period.

Here the unknowns are

 P_{gi} = thermal generation for each plant

for j = 1,2,..., jmax

and

 λ = lagrangian multiplier that includes the effect of

balance equality constraints for each interval (BL, IL etc.).

 $i = 1, 2, \dots, N$ (Number of thermal plant)

 \forall ; = another lagrangian multiplier that includes the effect of the hydro constraints (effect of hydro volume , inflow rate and discharge of water constraints).

 \mathcal{M}_{kj} = Multiplier take into account the effect of minimum amount of allowable generation for each unit at each interval.

 μ_{kj} = Multiplier to take into account the effect of maximum amount of allowable generation for each unit at each interval.

load

 $\mathcal{T}_{v,i}$ = Multiplier to represent the effect of maximum amount of water volume of the reservoir so that there is no spillage at each interval.

 $\mu_{\rm Hj}$ = Maximum allowable amount of hydro generation at each interval is included with this multiplier.

 $\mu_{\text{H}j}$ = Minimum allowable amount of hydro generation at each interval is included with this multiplier.

 T_{qj} -=To include the minimum allowable amount of hydro discharge rate at each interval to produce hydro power.

 $\Gamma_{q,i}$ = To include the maximum allowable amount of hydro discharge rate at each interval to produce useful hydro power.

and

 $q(P_B)$ = Hydro discharge rate as a function of hydro power generation and so it is implicit that for maximum discharge rate there will be a maximum power generation. That is indirectly the maximum hydro power generation is made limited. Similarly for minimum generation. Therefore it is clear that only one constraint out of these two is enough.

It may be mentioned that for the same amount of discharge rate power generation may be different for seasonal variation of water head at the water reservoir. So, if we take the power generation limits as the constraint, in that case care must be taken about the variation of this limit for different seasonal calculation. For short range operation it can be taken as a constant say, for a particular day of of a season. Similar is the case for discharge rate.

In the development of the mathematical model maximum possible number of constraints have been used both equality and inequality constraints. Thus, it is a nonlinear optimization problem with a number of equality and inequality constraints.

From the knowledge of calculus, to minimize a function of multiple variable partial derivative of the function with respect to each variable has to be taken and then equate it to zero. Then the set of equations evolved will be enough to find out the optimum setting of the variables to minimize the function under constraint condition. The function of multiple variable is the augmented LaGrangian function or the augmented objective function.

Now we can set up the conditions for an optimum solution of hydro thermal generation scheduling.

Taking the derivative of the LaGrangian function with respect to the variables thermal and hydro generation and with respect to another variable V(volume) we get the first set of conditions given by

$$m_{j} \frac{dF_{ij}(f_{gij})}{dP_{gij}} \lambda_{j}(1 - \frac{\partial P_{Lj}}{\partial P_{gij}}) - \mu_{ij}^{-} + \mu_{ij}^{+} = 0 ; \text{ for } i=1,2,3,...N$$
(4.57)
for $j=1,2,3,...j_{max}$
$$-\lambda_{j}(1 - \frac{\partial P_{Lj}}{\partial P_{Hj}}) + n_{j} \chi_{j} \frac{dP_{j}(f_{Hj})}{dP_{Hj}} - \mu_{Hj}^{-} + \mu_{Hj}^{+} = 0 ; \text{ for } j=1,2,3,...j_{max}$$
(4.58)

and $\forall j - \forall j+1 - \sigma v j + \sigma v j = 0$; for j=1,2,3,... jmax (4.59)

Let us assume that discharge limit is always such that it will never lead to violat the power generation constraints. That is, if the power generation limits are satisfied the discharge is automatically satisfied. considering this fact it can be written that

$$\overline{\sigma}_{aj} = \overline{\sigma}_{aj}^{+} = 0, j=1,2,3,\ldots, j_{max}$$
(4.60)

Next set can be obtained from the equality and inequality constraints as follows:

1. From equality constraints:

$$P_{Dj} + P_{Lj} - P_{Hj} - \sum_{K=1}^{N} P_{gkj} = 0 , j=1,2,3 \dots j_{max}$$
 (4.61)

$$-V_{j-1} - n_j (J_j - q(P_{Bj})) + V_j = 0, j=1,2,3, \dots j_{max}$$
 (4.62)

2. From inequality constraints:

$$\mu_{ij}^{-}$$
 (Pgi, min - Pgij) = 0 ; $\mu_{ij}^{-} \ge 0$ (4.63)

$$\mu_{ij}^{+} (P_{gij} - P_{gi, max}) = 0 ; \mu_{ij}^{+} \ge 0$$
 (4.64)

$$\mathcal{T}_{\mathbf{v}_{\mathbf{j}}} (\mathbf{V}_{\mathbf{m}\mathbf{i} \mathbf{n}} - \mathbf{V}_{\mathbf{j}}) = 0 ; \quad \mathcal{T}_{\mathbf{v}_{\mathbf{j}}} \geq 0$$

$$(4.65)$$

$$\sigma_{vj}^{+} (V_{j} - V_{max}) = 0 ; \ \sigma_{vj}^{+} \ge 0$$
(4.66)

$$\mu_{\rm HJ}^{-}$$
 (P_H, min - P_{HJ}) = 0; $\mu_{\rm HJ}^{-} \ge 0$ (4.67)

$$\mu_{\rm Hj}^{+} (P_{\rm Hj} - P_{\rm H, max}) = 0 ; \mu_{\rm Hj}^{+} \ge 0$$
(4.68)

Case I

If the condition is such that all the constraints are satisfied then the equations for optimum solution becomes,

$$\frac{dF_{ij}(P_{gij})}{dP_{gij}} = \lambda_{j}; \text{ for } j = 1, 2, 3, \dots j_{max}$$

$$\frac{P_{Lj}}{1 - \frac{P_{Lj}}{P_{gij}}} = \lambda_{j}; \text{ for } j = 1, 2, 3, \dots N$$
(4.69)

$$\frac{n_{j}}{dP_{H,j}} = \frac{dq (P_{H,j})}{dP_{H,j}} = \lambda_{j} ; \text{ for } j = 1, 2, 3, \dots j_{max}$$
(4.70)
$$\frac{1 - \frac{P_{1,j}}{P_{H,j}}}{P_{H,j}}$$

and, $\delta_{j} = \delta_{j+1}$; for $j = 1, 2, 3, ..., j_{max}$

(4.71)

$$\begin{array}{ll} & \operatorname{OR}, \\ & \operatorname{n_{j}} & \frac{(\operatorname{IC})_{i,j}}{1 - (\operatorname{ITL})_{i,j}} = ; \text{ for } i = 1, 2, 3, \dots, N \\ & j = 1, 2, 3, \dots, j_{\max} \end{array} \tag{4.72} \\ & \operatorname{n_{j}} & \sqrt[4]{j} & \frac{(\operatorname{ID})_{i,j}}{1 - (\operatorname{ITL})_{i,j}} = ; \text{ for } j = 1, 2, 3, \dots, j_{\max} \end{aligned} \tag{4.73} \\ & \sqrt[4]{j} & \frac{(\operatorname{ID})_{i,j}}{1 - (\operatorname{ITL})_{i,j}} = ; \text{ for } j = 1, 2, 3, \dots, j_{\max} \end{aligned} \tag{4.74} \\ & \text{Where,} \\ & (\operatorname{IC})_{i,j} & = \frac{\operatorname{dF}_{i,j} \left(\operatorname{Pg}_{i,j}\right)}{\operatorname{dPg}_{i,j}} ; \text{ Incremental cost of ith thermal unit at} \end{aligned} \tag{4.75} \\ & (\operatorname{ID})_{j} & = \frac{\operatorname{dq}(\operatorname{Pn}_{j})}{\operatorname{dPg}_{i,j}} ; \text{ Incremental discharge rate of hydro unit} \end{aligned} \tag{4.76} \\ & (\operatorname{ITL})_{i,j} & = \frac{\operatorname{\partial}\operatorname{P}_{i,j}}{\operatorname{\partial}\operatorname{Pg}_{i,j}} ; \text{ Incremental transmission loss for the} \\ & (\operatorname{ITL})_{i,j} & = \frac{\operatorname{\partial}\operatorname{P}_{i,j}}{\operatorname{\partial}\operatorname{Pg}_{i,j}} ; \text{ Incremental transmission loss for the} \end{aligned} \tag{4.76} \\ & (\operatorname{ITL})_{n,j} & = \frac{\operatorname{\partial}\operatorname{P}_{i,j}}{\operatorname{\partial}\operatorname{Pg}_{i,j}} ; \text{ Incremental transmission loss for the hydro} \end{aligned} \tag{4.78} \end{aligned}$$

Case II

Assuming some thermal units hitting the upper limit and some others hitting the lower limits and the rests are within the constraint limits. considering all other constraints are satisfied the solution criteria becomes:

For those thermal units which hit upper limits,

$$n_{j} \xrightarrow{(IC)_{i,j}}_{1 - (ITL)_{i,j}} \leq \lambda_{j} ; \text{ for } i = 1, 2, 3, \dots, N \qquad (4.79)$$

For those thermal units which hit lower limits,

$$n_{j} \xrightarrow{(IC)_{ij}} \sum \lambda_{j}; \text{ for } i = 1, 2, 3, \dots N \qquad (4.80)$$

$$1 - (ITL)_{ij} \qquad j = 1, 2, 3, \dots j_{max}$$

For those thermal units within the constraint limits,

$$n_{j} \frac{(IC)_{ij}}{1 - (ITL)_{ij}} = j; \text{ for } i = 1, 2, 3, \dots N$$

$$j = 1, 2, 3, \dots j_{max}$$
(4.81)

$$n_j = \begin{cases} (ID)_j \\ j & ---- \\ 1 & -(ITL)_{Hj} \end{cases}$$
; for $j = 1, 2, 3, ..., j_{max}$ (4.82)

$$\chi_{j} = \chi_{j+1}$$
; for $j = 1, 2, 3, \dots j_{max}$ (4.83)

Case III

If it is so happens that the volume constraints are hit and all other constraints are satisfied then,

$$n_{j} \frac{(IC)_{i,j}}{1 - (ITL)_{i,j}} = j; \text{ for } i = 1,2,3,..., N \qquad (4.85)$$

$$n_{j} \sqrt[2]{j} \frac{(ID)_{j}}{1 - (ITL)_{H,j}} = j; \text{ for } j = 1,2,3,..., j_{max} \qquad (4.86)$$

$$\sqrt[2]{j} - \sqrt[2]{j+1} = \sqrt[2]{j} - \sqrt[2]{j} ; \text{ for } j = 1,2,3,..., j_{max} \qquad (4.87)$$

$$\geq 0; \text{ if the lower limit of the volume of water is hit} \qquad (4.88)$$

$$\leq 0; \text{ if the upper limit of the volume of water is hit} \qquad (4.89)$$

Summary of the solution criteria of a hydrothermal power system having one hydro unit and N numbers of thermal units, subject to constraints are given below:

$$\begin{array}{ccc} (\mathrm{IC})_{ij} \\ 1 & n_j & & = \lambda_j \\ 1 & - (\mathrm{ITL})_{ij} \end{array} = \lambda_j ; \text{ When the ith thermal unit generation} \qquad (4.90) \\ \end{array}$$

2.
$$n_j \xrightarrow{(IC)_{ij}} \leq \lambda_j$$
; When the ith thermal unit hits upper (4.91)
1 - (ITL)_{ij} limit at jth interval.

$$\begin{array}{c} (IC)_{ij} \\ 3. n_j & \underline{} > \lambda_j ; \text{ When the ith thermal unit hits lower} \\ 1 - (ITL)_{ij} & limit at jth interval. \end{array}$$

4.
$$n_j \chi_j = \frac{(1D)_j}{1 - (1TL)_{Hj}} = \lambda_j$$
; When the hydro unit, generation (4.93)
1 - (ITL)_{Hj} is within the limit at jth interval.

5.	$n_{j} \bigvee_{j} \frac{(ID)_{j}}{1 - (ITL)_{Hj}} \geq \lambda_{j}$; When the hydro unit generation hits lower limit at jth interval.	(4.94)
6.	$n_{j} \forall j \frac{(ID)_{j}}{1 - (ITL)_{Hj}} \leq \lambda_{j}$; When the hydro unit generation hits upper limit at jth interval.	(4.95)
7. ⁻	$\bigvee_{j} = \bigvee_{j+1}$; When volume constraint limits are not violated	(4.96)
8.	√j - ×j+1 ≥ 0	; When the volume of the water hits the lower limit of the volume constraint.	(4.97)
9.	$\forall_{J} - \forall_{J+1} \leq 0$; When the volume of the water hits the upper limit of the volume constraint.	(4.98)

4.7 Hydrothermal optimization problem.

The flow diagram for solution of hydrothermal dispatch problem is given in appendix A and the program for computation is given in appendix B.

UNIT COMMITMENT

5.1_INTRODUCTION:

In the case of an electric power system, the total load on the system will generally be higher during the day time and early evening when industrial loads are high, lights are on, and so forth and lower during the late evening and early morning when most of the population are asleep. In addition, the load being lower over the weekend days than week days. So it is unnecessary to run more than enough unit and have them running all the time. It is also expensive to run too many generating units. To "commit" a generating unit is to "turn it on", that is to bring the unit upto speed, synchronize it to the system and connect it so that it can deliver power to the network.

5.2 CONSTRAINTS IN THE UNIT COMMITMENT:

Number of constraints is never fixed. Many constraints can be placed on the unit commitment problem. Any rule or condition imposed on a scheduling problem is one constraint. Here some of them (considered important) are given below.

SPINNING RESERVE:

The total amount of generation available from all the units synchronized on the system minus the present load plus losses being supplied. Spinning must be carried so that the loss of one or more units does not cause too far a drop in the system frequency. Simply, if one unit is lost, there must be ample reserve on the other units to make up for the loss in a specified time period. Typical rules specify that reserve must be a given percentage of forecasted peak demand, so that reserve must be capable of making up the loss of the most heavily loaded unit in a given period of time (Reliability requirement). THERMAL UNIT CONSTRAINTS:

In the operation of a thermal power plant, various constraints arises, such as:

Minimum up time: Once the unit is running, it should not be turned off immediately.

Minimum down time: Once the unit is disconnected, there is a minimum time before it can be recommitted.

Crew constraints: If a plant consists of two or more units, they can not both be turned on at the same time.

A certain amount of energy must be expended to bring the unit on line called start-up cost, because this energy does not result in any Megawatt generation from the unit. finally, the capacity limits of thermal units may change frequently due to maintenance or unscheduled outages of various equipments in the plant. This must also be taken into account in unit commitment.

HYDRO CONSTRAINTS:

Unit commitment can not be completely separated from the scheduling of hydro units.

. 5.2

5.3 UNIT COMMITMENT:

The priority list of unit commitment method has been used here. PRIORITY LIST METHOD:

The method consists of creating a priority list of units. The priority list can be obtained using the full load average production cost of each unit, where the full load average production cost is simply the net fuel rate at full load times the fuel cost. Priority list schemes are built around a simple shut down algorithm that might operate as follows;

At each hour when load is dropping, determine whether dropping the next unit on the priority list will leave sufficient generation to supply the load plus spinning reserve requirements. If not, continue operating as is, if yes, go on to the next step.

Determine the number of hours, H, before the unit will be needed again. That is assuming that the load is dropping and will then go back up some hours later.

If H is less then the minimum shut down time for the unit, keep commitment as is, if not go to the next step.

Calculate two costs. The first is the sum of hourly production cost from the next H hours with the unit up. Then recalculate the same sum for the unit down and add in the start-up cost for either cooling the unit or banking it, whichever is less expensive. If there is sufficient savings from shutting down the unit, it should be shut down, otherwise, keep it on.

Repeat this entire procedure for the next unit on the priority list. If it is also dropped, go to the next and so forth.

To ensure that various constraints are met various enhancements can be made by grouping of units.

 \sim

CHAPTER 6

RESULTS OF THE OPTIMIZATION STUDY OF HYDRO THERMAL GENERATION

6.1 Description of the sample system

The sample system considered here for optimization study contains the following :

1. 33 bus system

2. 11 Generating bus

3. Out of 11 Generating buses (corresponds 11 generating plant) there is only 1 Hydro plant and 10 Thermal plants.

4. Most of the data from BPDB integrated Hydrothermal power network

5. The sample system single line diagram is given at the fig 6.1.

Generator data description of the sample system I

The generator input-output characteristics is given by the equation

 $H(P_{Gi}) = Alp_i + Bet_i * P_{Gi} + Gem_i * P_{Gi} * P_{Gi}$

where,H is expressed in MBtu/Hr or MCft/Hr or Gallon/Hr

Poi is in Megawatts

and Alp, Bet and Gam are the coefficients of the polynomial of input output characteristics of the generating unit when least square method of curve fit is utilized to the generator discrete input output data.

Bus Name of the	e M	inimum	11	laximum	Alp	Beti	ł	Gami	i t	Fuel	1
No. Generating	¦c	apacity	-	capacity	;	1	ł		1	cost	ŧ
i station	{P	Gi, min.	1	Pgi, max.	1	:	ł		ł	rate	;
	ł	MW	1	MW	1	<u> </u>	1		13	rk/MCf	t¦
2 ¦Sikalbaha	;	18.00	ł	60.00	0.1917	10.0040) 5	5.056 *10 -5	13	12.*10	3 ¦
3 ¦Siddhirgan	H.	24.00	ł	80.00	0.2142	10.0058	8;4	.868*10-	13	12.*10	3 ¦
4 ¦Shahjibazar		18.00	ł	60.00	0.0274	0.0139	9;4	.519*10-6	Ľ	12.*10	3 ¦
5 (Ashuganj	1	90.00	ľ	300.00	0.2601	10.0069	913	8.812*10-@		12.*10	a ¦
6 ¦Ashuganj	ł	72.00	ł	230.00	;0.2400	10.0078	815	5.490*10-5	13	12.*10	3 ¦
7 (Ghorasal	ł	33.00	ł	110.00	0.1852	10.0077	';1	l,143*10-ª	13	12.*10	3 {
8 Ghorasal	ł	63.00	;	210.00	0.2000	10.0060)¦{	5.000*10-6	1	12.*10	3 ¦
9 ¦*Bheramara	ł	18.00	ł	60.00	248.714	60.027	711	.0069	ł	5.00	ľ
10 ¦*Bogra	ł	24.00	;	80.00	120.600	68.230);1	.0340	ł	5.00	1
11 ¦*Goalpara	l.	40.00	;	200.00	550.00	60.161	110	0.0800	1	5.00	

* for deisel unit & cost rate is in Tk./gallon.

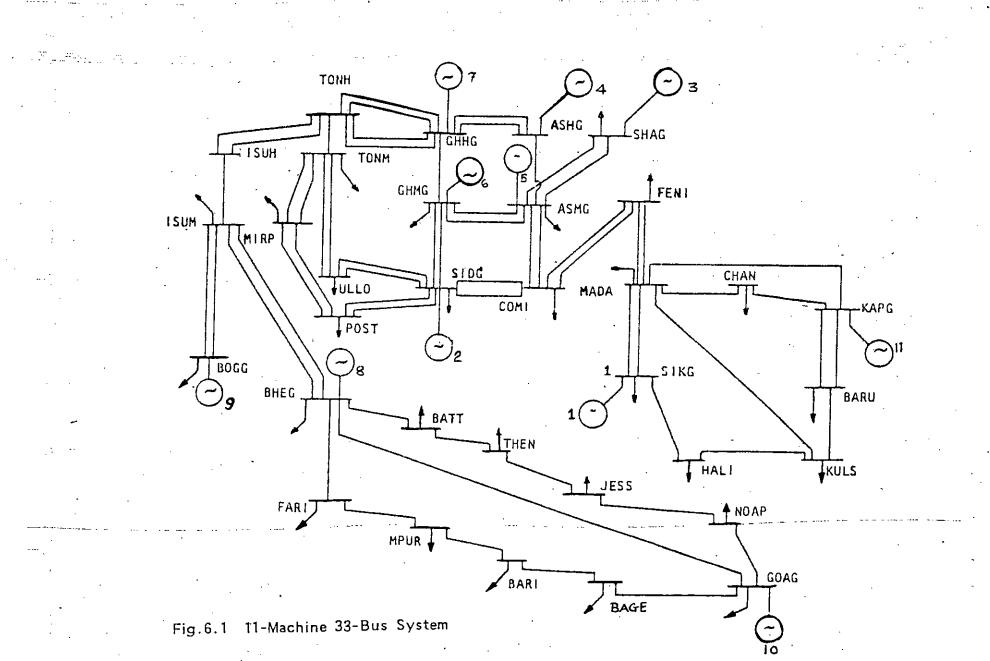
The input output characteristics of a hydro plant is given by the following equation :

 $q(P_{\rm H}) = a + b * P_{\rm H} + c * P_{\rm H}^2$

Where,

70443

(assuming constant head of water)


 $q(P_{H})$ is in acre ft per hour.

P_H is in M W (power output)

, a, b and c are the coefficient of polynomial.

6.1.1 KAPTAI HYDROELECTRIC POWER PLANT

In the year 1982 BPDB had 857 installed capacity in M₩ of hydro, steam, gas turbine and diesel Power station. The only Hydro Station located at Kaptai has 130 MW of installed capacity in three units. Although the installed capacity was 857 MW, the maximum capability was only 678 MW and the maximum demand was 600 MW. Demand was forecast to reach 1823 MW by 1990 MW. Generation capability was tentatively planned to reach 2210 MW by the same year. Kaptai Hydro power station Extension project (4th & 5th Unit) was a part of the plan and suppose to be completed by this year(1988).

The initial development of Hydro power at Kaptai was based on 18 years hydrological data since 1936. The records of the recent operating data (7 years: 1973 to 1979) showed an average in flow (run-off) of 16.05 million acre-feet. A recent survey revealed that the reservoir created by the dam has a capacity of 5.44 million acre-feet of water at a potential difference of 119 ft. Out of the three units, two units having capacity of 40 Mw each were installed in 1962 and the third unit having capacity of 50 MW was installed in September 1982.

REVISED RULE CURVE FOR RESERVOIR OPERATION OF RAPTAI HYDRO BLECTRIC POWER STATION (WATER YEAR NOVEMBER-NOVEMBER

Date¦ '	1	8		15		22	MWHR
Month\	L						
!	HWH(ft)-TWH(ft	<u>)-Discg¦HWH(ft)-</u>	TWH(ft)-Discg	HWH(ft)-T	WH(ft)-Discg	HWH(ft)-TWH(ft)	-Discg
Year 1885	-86						
November	91.61 - 8.0 -	5185 90.97 -	1.6 - 6246	90.25 -	9.2 - 5984	90.29 - 3.2 -	8396 32702
December	89.28 - 7.0 -	10118 88,46 -	3.0 - 9567	87.34 - 1	7.5 - 7936	86.33 - 1.5 -	9518 35008
January	85.41 - 4.5 -	8030 84.43 -	3.0 - 7115	83.32 -	4.5 - 9148	82.14 - 2.2 -	9151 33553
Pebruary	80.57 - 4.0 -	9825 78.95 -	5.0 - 9950	77.56 - 3	2.0 - 7666	75.88 - 2.5 -	5186 2892!
Harch	74.61 - 4.0 -	4088 73.47 -	3.0 - 4412	72.13 -	5.3 - 3692	70.87 - 3.0 -	5202 18828
April	68.78 - 2.0 -	2107 67.63 -	5.2 - 3599	66.17 -	4.0 - 1087	66.38 - 4.5 -	5964 12745
lay	65.73 - 1.0 -	2022 65.75 -	4.5 - 3206	64.73 - 3	3.5 - 1625	64.72 - 4.5 -	2231 7362
June	64.00 - 1.0 -	1973 63.28 -	5.3 - 2311	63.59 - 3	2.0 - 2865	63.64 - 6.5 -	3428 8143
July	67.48 - 3.0 -	4258 72.05 -	7.0 - 7966	74.01 - 1	1.8 - 7525	73.53 - 8.5 -	9771 31137
lugust		8354 83.12 -			2.0 - 8089	86.18 - 8.5 -	6445 37171
September	91.39 - 4.3 -	9485 94,26 -	11.0 - 18418	96.87 - 3	3.0 - 8904	97.20 - 8.5 -	12674 53505
October	97.84 - 4.0 -	10049 100.59 -	9.0 - 8233 1	02.53 - 3	3.0 - 3845	102.71 - 6.5 -	7425 36029
Year 1986	-87						
lovenber	102.37 - 4.5 -	3826 102.21 -	3.0 - 6947 1	03:66 - 3	3.5 - 9844	103.65 - 6.6 -	9301 42488
)ecember	103.17 - 5.5 -	14336 102.04 -	5.5 - 15524 1	01.11 - (6.0 - 16477	100.00 - 6.0 -	13989 73499
January						89.87 - 5.0 -	
Pebruary	88.85 - 8.7 -	18041 88.08 -	5.5 - 16330	85.73 - 1	8.0 - 15468	83.88 - 1.6 -	19574 58338
larch	82.36 - 6.5 -	10453 81.15 -	1.0 - 8054	80.13 - 1	8.3 - 11333	79.18 - 6.0 -	8105 37597
lpril	75.66 - 12.0 -	15720 73.14 -	8.2 - 8459	76.23 - 10	0.5 - 13211	74.58 - 0.5 -	5712 . 36130
lay .	74.12 - 4.3 -	7408 73.47 -	3.0 - 10479	72.24 -	4.8 - 5551	70.94 - 0.4 -	2526 17106
lune	70.09 - 4.0 -	3129 72.63 -	3.5 - 7073	75.24 - 8	8.5 - 8590	78.46 - 3.5 -	6054 20759
July	77.78 - 7.5 -	5726 77.68 -	5.0 - 6078	78.26 - 9	9.0 - 8159	79.98 - 5.0 -	5620 25452
August	94.59 - 10.5 -	12661 103.73 -	6.0 - 6311 1	04.66 - 10	0.0 - 13227	105.03 - 11.5 - 1	13079 57737

6.2 Optimum scheduling of units :

Unit commitment:

This is usually done one day in advance considering the predicted load of the following day. There are many ways of load prediction. Usual practice of committing generating units is to put the most efficient one first and then the next most efficient one. But this does not offer maximum economy. Strictly priority order unit commitment method is used here. The priority order is set using the full load average production cost of generation. Top priority is given to the generator having minimum full load average cost of generation. Next priority is given to the unit having minimum full load average production cost of generation among the rest and so on. After the priority order list is made commitment is done considering a load demand equal to the predicted load plus reliability requirement. Reliability requirement impose some extra unit to run to backup the system load when any of the running unit fails. Depending upon the reliability requirement reserve amount varies (i,e, number of extra units). Here reserve is taken in such a way that even if the largest running unit fails reserve will be sufficient to provide the necessary power to the system.

The optimum scheduling of units is done using the recent load curves of BPDB system. It is found that there is a distinct variation of load from season to season, and consequently, optimum dispatch studies for summer, winter and rainy season have been made. The daily load curves have been divided into three periods- base load, intermediate load and peak load periods. The available water for hydro generation can be used in any period or throughout a day. Consequently, twenty four studies have been made using recent load curves assuming maximum hydro generation of 130 MW as detailed in case studies- set A, no. 1-6. The studies have been repeated for a maximum hydro generation of 230 MW resulting in a further 24 studies as detailed in case studies- set B, no. 1-6.

Considering the general pattern of load growth 8 studies of future system demand have also been made as detailed in case studies- set A, no. 7 and set B, no.7.

Three sets of case studies have been made here as detailed in the following sections.

6.2.1 Case study - Set A.

Using the recent load curves, the following cases have been studied. It is considered that the hydro station can generate 130 MW maximum.

1. Winter weekend:

BL = 540 MW ; Duration = 16 hours. IL = 650 MW ; Duration = 04 hours. PL = 950 MW ; Duration = 04 hours.

1a. For maximum hydro generation at BL,

The generation cost for the day = Tk. 318740.90 1b. For maximum hydro generation at IL,

The generation cost for the day = Tk. 306425.60 lc. For maximum hydro generation at PL,

The generation cost for the day = Tk. 304084.50 1d. For fixed hydro generation throughout the day,

The generation cost for the day = Tk. 307390.00

2. <u>Winter weekday:</u>

BL = 550 MW; Duration = 12 hours IL = 750 MW; Duration = 8 hours PL = 1025 MW; Duration = 4 hours

2a. For maximum hydro generation at BL,

The generation cost for the day = Tk. 343076.30 2b. For maximum hydro generation at IL,

The generation cost for the day = 1k. 336449.60 2c. For maximum hydro generation at PL,

The generation cost for the day = Tk. 323912.60 2d. For fixed hydro generation throughout the day, The generation east for the day = The 200502.50

The generation cost for the day = Tk. 326503.50

,	
3. <u>Summer weekend:</u> B	L = 570 MW ; Duration = 12 hours
I	L = 630 MW; Duration = 08 hours
	L = 905 MW ; Duration = 04 hours
3a. For maxim	um hydro generation at BL,
	neration cost for the day = Tk. 318079.70
•	um hydro generation at IL,
	neration cost for the day = $Tk. 310472.10$
—	-
	hum hydro generation at PL,
, —	neration cost for the day = Tk. 305269.80
	d hydro generation throughout the day,
The ge	meration cost for the day = Tk. 309923.70
4. Summer weekday:	BL = 575 MW; Duration = 8 hours
	L = 690 MW; Duration = 10 hours
P	L = 1090 MW ; Duration = 6 hours
(um hydro generation at BL,
· · · · · · · · · · · · · · · · · · ·	meration cost for the day = Tk. 362852.10
	wm hydro generation at IL,
The ge	neration cost for the day = Tk. 349559.90
4c. For maxim	um hydro generation at PL,
. The ge	neration cost for the day = Tk. 339048.60
4d. For fixe	d hydro generation throughout the day,
The ge	neration cost for the day = Tk. 343571.81
f Di () li	
5. <u>Rainy/weekend:</u>	BL = 590 MW; Duration = 7 hours
season	IL = 645 MW; Duration = 12 hours
	PL = 1015 MW; Duration = 5 hours
E. Day and	
	um hydro generation at BL,
	meration cost for the day = Tk. 338526.40
1 · · · · · · · · · · · · · · · · · · ·	um hydro generation at IL,
_	meration cost for the day = Tk. 337647.40
	um hydro generation at PL,
The ge	eneration cost for the day = Tk. 326919.40
5d. For fixe	d hydro generation throughout the day,
The ge	eneration cost for the day = Tk. 328685.70
6. <u>Rainy/ weekday</u> :	BL = 670 MW; Duration = 9 hours
season	IL = 837 MW ; Duration = 12 hours
	PL = 1153 MW; Duration = 3 hours

6a. For maximum hydro generation at BL,

The generation cost for the day = Tk. 410911.90 6b. For maximum hydro generation at IL,

The generation cost for the day = Tk. 382933.90 6c. For maximum hydro generation at PL,

The generation cost for the day = Tk. 376169.806d. For fixed hydro generation throughout the day,

The generation cost for the day = Tk. 387452.40

7. <u>Typical</u> predicted weekday :

BL = 705.4 MW ; Duration = 12 hours IL =1015.0 MW ; Duration = 8 hours PL =1370.0 MW ; Duration = 4 hours

7a. For maximum hydro generation at BL,
The generation cost for the day = Tk. 410911.90
7b. For maximum hydro generation at IL,
The generation cost for the day = Tk. 382933.90
7c. For maximum hydro generation at PL,
The generation cost for the day = Tk. 376169.80
7d. For fixed hydro generation throughout the day,
The generation cost for the day = Tk. 387452.40

Discussion:

The above set of study is carried out with the existing recent system data and system load curves of BPDB power network. The results reveal that cost of generation become minimum in all the cases when the hydro plant is run at its maximum capacity at the system peak load and surplus energy at the intermediate load. The details of scheduling along with the information of incremental cost of received power, conversion factor for hydro unit (effectiveness of water utilization), water used during each period and total generation cost of power of each period is given in the following computer printout set-A on pages 6.9 - 6.23. Least cost of generation among the other condition varies between the constant loading , base loading and intermediate loading of the hydro at its full capacity. Consequently, it can be said that loading of the hydro plant should be at its maximum capacity at the period of system peak load to get maximum cost benefit. In all the cases this gives maximum economy.

67

SET A: Case study 2

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAND = 550.	0000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	27.18	4053.8710
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	90.00	10943.730
. 05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	G H H G	75.31	8162.6680
08	внес	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	КАРС	128.5	
INCRE	EMENTAL COST OF	RECEIVED POWER	= 81.037280
WA	ATER USED = 93	33.46 ACRE-FT	PER HOUR
CONVE	ERSION FACTOR FO	OR HYDRO UNIT =	10.9440

TOTAL GENERATION COST = TK 85009.63

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 750.00	000		
UNIT	GENERATING STN	GENERATION	COST OF	GEN
NO	NAME	MEGA WATTS	TAKA/H	R
01	SIKG	39.88	5181.04	10
02	SIDG	24.00	4577.27	60
03	SHAG	18.00	3348.77	00
04	ASH.G	149.5	16519.5	50
05	ASMG	72.00	13034.4	20
06	G H M G	33,00	5420.96	70
07	СННС	204.0	19580.9	00
08	BHEG	18.00	8277.20	50
09	BOGG	24.00	11768.5	20
10	GOAG	40.00	15422.2	· 00
11	KAPG	127.7		
				E O

INCREMENTAL COST OF RECEIVED POWER = 96.474950 WATER USED = 927.39 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 13.0390 TOTAL GENERATION COST = TK 103130.8

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	DEMAND = 1025.0	000 · /	
UNIT	GENERATING STN	GENERATION '	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	80.00	11877.020
03	S Н А G	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	119.2	23400.160
06	GHMG	110:0	14046.040
07	СННС	210.0	20166.000
08	внес	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	КАРС	3.791	
INCRE	MENTAL COST OF F	RECEIVED POWER	= 250.67050
WA	TER USED = 64 .	689 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FOR	R HYDRO UNIT =	38.4070
TOTA	L GENERATION COS	ST = TK ¹⁵⁴⁹³	5.8

GRAND TOTAL OF GENERATION COST = TK 343076.3

BL

SETA: Case Study 2

1	DEMAND = 550.00	· 00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	33.17	4561.4990
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	90.00	10943.730
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	СННС	136.0	13304.930
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	61.79	
INCRE	MENTAL COST OF R	ECEIVED POWER	= 88.324310
WA	TER USED = 455	.09 ACRE-F	r per hour

CONVERSION FACTOR FOR HYDRO UNIT = / 12.7360 TOTAL GENERATION COST = TK 90659.52

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 750.00	.00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	39.82	5175.0460
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	148.6	16439.900
05	A S M/G	72.00	13034.420
06	GHMG	. 33.00	5420.9670
07	СННС	203.3	19520.170
08	внес	18.00	8277.2050
09	BOGG .	24.00	11768.520
10	GOAG	40.00	15422.200
11	КАРС	129.2	
	warden an an an	COTURN DOUDD	00 000000

INCREMENTAL COST OF RECEIVED POWER = 96.399380 WATER USED = 938.63ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 13.0100 TOTAL GENERATION COST = TK 102984.5

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

DEMAND = 1025.0000Q

3	DEMAND = IC	125.0000	
UNIT	GENERATING	STN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00 /	7368.4800
02	SIDG	80.00	11877.020
03	SHAG	49.79	8767.5270
04	ASHG	300.0	32078.160
05	ASMG	72:00	13034.420
06	GHMG	110.0	14046.040
07	GHHG	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	61.21	·
INCRE	MENTAL COST	OF RECEIVED POWER	= 172.19960
WA	TER USED =	451.08 ACRE-FT	PER HOUR
CONVE	RSION FACTO	R FOR HYDRO UNIT =	24.8450
TOTA	L GENERATIO	N COST = TK 14280	5.6
	· · · · · ·		

GRAND TOTAL OF GENERATION COST = TK 336449.6

SET A : Case Study 2

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAND = 550.0	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKC	30.98	4371.0210
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	90.00	10943.730
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	СННС	113.9	11375.390
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	86.16	
INCRE	MENTAL COST OF R	ECEIVED POWER	= 85.662670
WA	TER USED = 626	18 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FOR	HYDRO UNIT =	12.0540
тота	L GENERATION COS	Г = ТК 88539	.50

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 750.00	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	39.82	5175.0460
02	SIDG	24.00	4577.2760
03	SHAG	. 18.00	3348.7700
04	ASHG	148.6	16439,900
05	ASMG	72.00	13034.420
06	СНМС	33.00	5420,9670
07	Сннс	203.3	19520.170
80	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	129.2	

INCREMENTAL COST OF RECEIVED POWER = 96.399380 WATER USED = 938.63 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 13.0100 TOTAL GENERATION COST = TK 102984.5

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3 DEMAND = 1025.0000

		2010000			
UNIT	GENERATING	STN GENERATION	COST OF GEN		
NO	NAME	MEGA WATTS	TAKA/HR		
01	SIKG	60.00	7368.4800		
02	SIDG	45.27	6918.0870		
03	SHAG	18.00	3348.7700		
04	ASHG	300.0	32078.160		
05	ASMG	72.00	13034.420		
06	GHMG	109.7	14006.780		
07	GHHG	210.0	20166.000		
08	BHEG	18.00	8277.2050		
09	BOGG	24.00	11768.520		
10	GOAG	40.00	15422.200		
11	KAPG	128.1	101221200		
INCRE	MENTAL COST	OF RECEIVED POWER	= 122.48730		
WATER USED = 930.06 ACRE-FT PER HOUR					
CONVE	RSION FACTOR	FOR HYDRO UNIT =	16.5490		
τοτα	L GENERATION	COST = TK 13238			

GRAND TOTAL OF GENERATION COST = TK 323912.6

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAND =	550.00	000	
UNIT	GENERATIN	G STN	GENERATION	COST OF GEN
NO	NAME		MEGA WATTS	TAKA/HR
01	SIKO	ł	28.88	4193.7710
02	SIDO	ł	24.00	4577.2760
03	SHAC	ł	18.00	3348.7700
04	ASHO	ł	90.00	10943.730
05	ASMO	н .	72.00	13034.420
06	GHMO	1	33.00	5420.9670
07	GHHO	ł	92.58	9579.8520
08	внес	÷	18.00	8277.2050
09	BOGO	÷ .	24.00	11768.520
10	GOAO	ł .	40.00	15422.200
11	KAPO	ł	109.5	
INCRE	MENTAL COS	T OF RI	ECEIVED POWER	= 83.109350
WΛ	TER USED	- 794	25 ACRE-E	T DER HOUR

WATER USED = 794.25 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 11.4300 TOTAL GENERATION COST = TK 86566.70

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 750	.0000	
UNIT	GENERATING ST	N GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	40.88	5278.8440
02	SIDG	24.05	4582.2770
03	SHAG	18.00	3348.7700
04	ASHG	162.9	17819.050
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	GHHG	210.0	20166.000
· 08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	107.2	
INCRE	EMENTAL COST OF	RECEIVED POWER	= 97.699500
WA	ATER USED = 7	77.30 ACRE-FT	PER HOUR
~~~~	DATAN DIAMAD D	on uunno luirm	10 1000

CONVERSION FACTOR FOR HYDRO UNIT = 13.4670 TOTAL GENERATION COST = TK 105118.3

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	DEMAND = 1025.00	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKC	60.00	7368.4800
02	SIDG	63.24	9308,7900
03	SHAG ,	18.00	3348.7700
04	ASHG	300.0	32078.160
05	ASMG	72.00	13034.420
06	GHMG	110.0	14046.040
07	СННС	210.0	20166.000
80	BHEG	18.00	8277.2050
09.	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	109.8	
INCRE	MENTAL COST OF RE	CEIVED POWER	= 143.48990
WA	TER USED = $795.$	81 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FOR	HYDRO UNIT =	19.7300

TOTAL GENERATION COST = TK 134818.6

GRAND TOTAL OF GENERATION COST = TK 326503.5

STUDY FOR BASE LOAD PERIOD, DURATION = 8 HOUR

1	DEMAND =	: 575.	.0000			
UNIT	GENERATI	NG ST	N GENERATION	C	COST OF	GEN
NO	NAME	2	MEGA WATTS		TAKA/H	R
01	SIK	G	29.43		4239.33	20
02	SID	G	24.00		4577.27	60
03	SHA	G	18.00		3348.77	00
04	ASH	G	90.00		10943.7	30
05	ASM	G	72.00		13034.4	20
06	GHM	G	33.00		5420.96	70
07	<b>G H H</b>	G	98.11		10041.3	90
08	вне	G	18.00		8277.20	50
09	BOG	G	24.00		11768.5	20
10	GOA	G	40.00		15422.2	00
11	КАР	G	128.5			
INCRE	EMENTAL CO	OST OF	RECEIVED POWER	=	83.7731	00

WATER USED = 933.10 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 11.3140 TOTAL GENERATION COST = TK 87073.81

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 10 HR

2	DEMAND = 690.00	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	38.65	5063.1630
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	133.1	14953.290
05	ASMG ·	72.00	13034.420
06	· GHMG	33.00	5420.9670
07	<b>G H H G</b>	191.5	18386.790
08	BHEG.	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	97.76	

INCREMENTAL COST OF RECEIVED POWER = 94.978040 WATER USED = 709.08 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 13.2130 TOTAL GENERATION COST = TK 100252.6

STUDY FOR PEAK LOAD PERIOD, DURATION = 6 HR.

3	DEMAND = 1090.00	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	80.00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	184.3	42494.240
06	<b>G H M G</b>	110.0	14046.040
07	<b>СННС</b>	210.0	20166.000
08	внес	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	44.47	16917.980
11	КАРС	.7308	
INCRE	MENTAL COST OF RI	ECEIVED POWER	= 336.38130
WA	TER USED = $45.2$	251 ACRE-F1	PER HOUR
CONVE	RSION FACTOR FOR	HYDRO UNIT =	51.7920
TOTÀ	L GENERATION COST	Г = ТК 17552	25.7

GRAND TOTAL OF GENERATION COST = TK 362852.1.

STUDY FOR BASE LOAD PERIOD, DURATION = 8 HOUR

1 ໍ	DEMA	ANI	) :	= .5	575.00	00					
UNIT	GENI	ER/	۲1	ENG	STN	GENEI	RATION	С	OST	OF ·	GEN
NO		NA	٩MI	Ξ		MEGA	WATTS		TAI	KA/H	R
01	S	Ι	Κ	G		3 (	5.71 👘		4789	9.58	10
02	S	I	D	G		24	4.00		457'	7.27	60
03	$\mathbf{S}$	Н	Α	G		18	8.00	•	334	8.77	00
04	Α	$\mathbf{S}$	Η	G		94	4.11		113	18.2	20
05	Α	$\mathbf{S}$	Μ	G		7 :	2.00		130	34.4	20
06	G	Н	М	G		3:	3.00		542	0.96	70
07	G	Н	Η	G		10	61.7		156	15.4	00
08	в	Н	Ε	G		18	8.00		827	7.20	50
09	В	0	G	G		24	4.00		117	68.5	20
10	G	0	Α	G		- 40	0.00		154	22.2	00
11	К	Α	Ρ	G.		54	4.44				
INCRE	MENTA	ł٢	CO	ЭSТ	OF RE	CEIVE	D POWE	R =	91	4095	. 00
WA	TER	US	SEI	D =	404.	28	ACRE-	FŤ P	ER 1	HOUR	
CONVE	RSIO	1	FA(	CTOF	FOR	HYDRO	UNIT	=	13.	2800	

TOTAL GENERATION COST = TK 93572.56

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 10 HR

2	DEMAND = 690.00	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	37.26	4932.2280
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	114.6	13213.570
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420,9670
07	<b>G H H G</b>	177.4	17060.420
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	КАРС	131.7	
TNODD	WINNING COOM ON NY		

INCREMENTAL COST OF RECEIVED POWER = 93.287190 WATER USED = 957.27 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 12.5600 TOTAL GENERATION COST = TK 97055.58

STUDY FOR PEAK LOAD PERIOD, DURATION = 6 HR

3	DEMA	ANI	) :	= 10	90.0	0000						
UNIT	GENI	ERA	AT:	LNG	STN	G	ENE	RATIC	N	COST	OF	GEN
NO		NA	AM)	Ξ		M	EGA	WATI	s	TAI	KA/HI	2
01	S	Ι	Κ	G			6.0	0.00		7368	3.48	00
02	$\mathbf{S}$	I	D	G			80	0.00		1181	77.03	20
03	S	Н	Α	G			60	0.00		105	32.03	20
04	Α	$\mathbf{S}$	Н	G			30	0.0		3201	78.10	50
05	Α	$\mathbf{S}$	Μ	G			13	34.5		· 2739	96.16	50
06	G	Н	Μ	G			. 11	10.0		1404	16.04	10
07	G	Н	Η	G			21	10.0		2016	6.00	00
08	В	Н	Ε	G			- 18	3.00		8277	7.20	50
09	В	0	G	G			24	1.00		1176	58.52	20
10	G	0	А	G			40	0.00		1542	22.20	00
11	K	А	$\mathbf{P}$	G	·		53	3.47				
INCRE	MENTA	۱L	C	DST	OF F	ECE:	IVEI	) POW	ER =	270	8615	50
WA	TER	US	SEI	) =	397	.59		ACRE	-FT	PER I	IOUR	
CONVE	RSION	N E	FA(	CTÓ	₹ FOF	гии з	DRO	UNIT	- =	39.3	3900	
TOTA	L GEN	IEF	2A7	101	I COS	ST =	ΤК	15	8931	.8		

GRAND TOTAL OF GENERATION COST = TK 349559.9

STUDY FOR BASE LOAD PERIOD, DURATION = 8 HOUR

1	DEMAND = 575.0	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	37.92	4994.7570
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	123.5	14044.390
05	ASMG	72.00	13034.420
06	<b>G H M G</b>	33.00	5420.9670
07	СННС	184.2	17693.840
08	внес	18.00	8277.2050 ·
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	КАРС	.4268	
INCRE	MENTAL COST OF R	ECEIVED POWER	= 94.098460
WA	TER USED = $42$ .	775 ACRE-F1	PER HOUR
CONVE	RSION FACTOR FOR	HYDRO UNIT =	14.4700

TOTAL GENERATION COST = TK 98582.34

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 10 HR

2	DEMANI	) = 6	590.00	00			
UNIT	GENERA	ATING	STN	GENERATION	0	COST · OF	GEN
NO	NA	AME .		MEGA WATTS		TAKA/H	R.
01	SI	KG		37.68		4972.18	40
02	S I	DG		24.00		4577.27	60
03	SH	AG	•	18.00		3348.77	00
04	AS	ΗG		120.3		13744.4	70
05	AS	MG		72.00		13034.4	20
06	GΗ	MG		33.00		5420.96	70
07	GH	ΗG		181.7		17465.1	80
08	ВН	ΕG		18.00		8277.20	50
09	ВО	GG		24.00		11768.5	20
10	GΟ	AG		40.00		15422.2	00
11	ΚA	ΡG		121.3		,	
TNORF	MENTAL	COST	OF PF	CEIVED DOWER	_	93.8064	10

INCREMENTAL COST OF RECEIVED POWER = 93.806410 WATER USED = 880.19 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 12.7560 TOTAL GENERATION COST = TK 98031.20

STUDY FOR PEAK LOAD PERIOD, DURATION = 6 HR

· 3	DEMAND = $1090$ .	0000	,
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	80.00	11877.020
03	SHAG.	47.63	8396.9620
04	ASHG	· 300.0	32078.160
05	ASMIG	72.00	13034.420
06	GHMG	110.0	14046.040
07	сннс –	210.0	20166.000
08	BHEG	18.00	8277.2050
09 ·	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	128.4	
INCRE	MENTAL COST OF	RECEIVED POWER	= 171.96600
WA	TER USED = 93	2.39 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FO	R HYDRO UNIT =	23.2270
ΤΟΤΑ	L GENERATION CO	ST = TK 14243	5.0

GRAND TOTAL OF GENERATION COST = TK 339048.6

STUDY FOR BASE LOAD PERIOD, DURATION = 8 HOUR

CL

		•		
1	DEMAND = 575.000	00		
UNIT	GENERATING STN		COST OF GEN	
NO		MEGA WATTS	TAKA/HR	
01	SIKG	33.37	4579.0520	
02	SIDG		4577.2760	
03	SHAC	18.00	3348.7700	
04	SHAG ASHG	90.00	10943.730	
05	ASMG	72.00	13034.420	
		33.00		
06	GHMG			
07	GHHG	138.0	13482.750	
08	BHEG	18.00	8277.2050	
09	BOGG	24.00	11768.520	n
10	GOAG	40.00	15422.200	
11	KAPG	84.58		
INCRE	IENTAL COST OF RE	CEIVED POWER :	= 88,565570	
WA:	$\Gamma ER USED = 614.9$	97 ACRE-FT	PER HOUR	
CONVE	RSION FACTOR FOR	HYDRO UNIT =	12.4820	• •
	L GENERATION COST			
STUDY	FOR INTERMEDIATE	LOAD PERIOD	DURATION- 10	ир
51001	TOR INTERNEDIATE	DOND FERIOD,	DOMATION= 10	1110
2	DEMAND = 690.00	0.0		
			000m 00 000	
	GENERATING STN			
NO		MEGA WATTS	TAKA/HR	
01	SIKG	39.16	5112.4420	
·02	S I D G S H A G	24.00 18.00	4577.2760	、
03	SHAG	18.00	3348.7700	
04	ASHG	140.0	15608.080	
05	ASMG	72.00	13034.420	
~ ~	<b>G H M G</b>	33.00	5420.9670	
07	GHHG		18885.990	
08	BHEG	18.00	8277.2050	
09	BOGG	24.00	11768.520	
10				
	GOAG	40.00	15422.200	
11	KAPG	85.13	05 000000	•
	IENTAL COST OF RE			
	TER USED = $618.3$			
	RSION FACTOR FOR 1			•
τοται	GENERATION COST	= TK 10145	5.9	
STUDY	FOR PEAK LOAD PER	RIOD, DURATIO	N = 6 HR	
3	DEMAND = 1090.000	00		
UNIT	GENERATING STN	GENERATION	COST OF GEN	
NO	NAME	MEGA WATTS	TAKA/HR	
. 01	SIKG	60.00	7368.4800	
02	SIDG	80.00	11877.020	
03	SHAG	60.00		
			10532.020	
04	ASHG	.300.0	32078.160	
05	ASMG	103.9	19725.450	
06	GHMG	110.0	14046.040	
07	GННG	21.0.0	20166.000	
08	BHEG	18.00	8277.2050	
09	BOGG	24.00	11768.520	
10	GOAG	40.00	15422.200	
11	KAPG	. 84.06		
	IENTAL COST OF RE		= 230.54740	
	CER USED = 611.2		PER HOUR	
	SION FACTOR FOR I			

CONVERSION FACTOR FOR HYDRO UNIT = 32.5090 TOTAL GENERATION COST = TK 151261.1

GRAND TOTAL OF GENERATION COST = TK 343571.8

6:15

STUDY FOR BASE LOAD PERIOD, DURATION = 9 HOUR

1	DEMAND = 670.0	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	36.56	4867.6660
02	SIDG	24.00	4577.2760
, 03	SHAG	18.00	3348.7700
04	ASHG	105.4	12355.740
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	<b>G H H G</b>	170.4	16406.410
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG ·	40.00	15422.200
11 ·	KAPG	128.7	
INCRE	MENTAL COST OF R	ECEIVED POWER	= 92,442080
WA	TER USED = $934$	.84 ACRE-F1	F PER HOUR
CONVE	RSION FACTOR FOR	HYDRO UNIT =	12.4820
ΤΟΤΑ	L GENERATION COS	T = TK 95479	9.17

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 12 HR

2	DEMAND = 837.10	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	48.44	6051.9860
02	SIDG	31.92	5386.7070
03	SHAG	18.00	3348.7700
04 -	ASHG	263.3	28091.780
05	ASMG	72.00	13034.420
06	GHMG	52.81	7484.6760
07	<b>СННС</b>	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GÒAG	40.00	15422.200
11	KAPG	58.65	

INCREMENTAL COST OF RECEIVED POWER = 106.88710 WATER USED = 433.33 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 15.4620 TOTAL GENERATION COST = TK 119032.3

STUDY FOR PEAK LOAD PERIOD, DURATION = 3 HR

3. DEMAND = 1153.5000UNIT GENERATING STN GENERATION COST OF GEN NO NAME MEGA WATTS TAKA/HR 01 SIKG 60.00 7368.4800 02 SIDG 80.00 11877.020 SHAG 03 60.00 10532.020 04 ASHG 300.0 32078.160 05 ASMG 206.7 50380.470 06 GHMG 110.0 14046.040 07 GHHG 210.0 20166.000 08 BHEG 18.00 8277.2050 09 BOGG 24.00 11768.520 10 GOAG 81.46 29906.600 11 KAPG 3.327 INCREMENTAL COST OF RECEIVED POWER = 365.97020. WATER USED = 61.661ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 56.1010 TOTAL GENERATION COST = TK 196400.5

GRAND TOTAL OF GENERATION COST = TK 410911.9

STUDY FOR BASE LOAD PERIOD, DURATION = 9 HOUR

1	DEMAND =	670.0000	
UNIT	GENERATING	STN GENERATION	COST OF GEN
NO .	NAME	MEGA WATTS	TAKA/HR
01	SIKG	42.71	5458.9980
02	SIDG	25.95	4769.7220
03	SHAG	18.00	3348.7700
04	ASHG	187.1	20212.750
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	GHHG	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	.7396	
INCRE	MENTAL COST	OF RECEIVED POWER	<b>= 99.915880</b>
WA	TER USED =	45.195 ACRE-FT	PER HOUR

CONVERSION FACTOR FOR HYDRO UNIT = 15.3840 TOTAL GENERATION COST = TK 107879.5

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 12 HR

2	DEMAND = 837.10	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO,	NAME	MEGA WATTS	TAKA/HR
01	SIKG	44.93	5684.4240
02	SIDG	28.26	5004.2710
03	SHAG	18.00	3348,7700
04	ASHG	216.7	23207.990
05	. ASMG	72.00	13034.420
06	GHMG	37.26	5855.8920
07	<b>G H H G</b>	210.0	20166.000
08	BHEG	18,00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	128.0	

INCREMENTAL COST OF RECEIVED POWER = 102.62180 WATER USED = 929.51 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 13.8660 TOTAL GENERATION COST = TK 111769.7

STUDY FOR PEAK LOAD PERIOD, DURATION = 3 HR

3	DEMAND `= 1153.50		
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG .	80.00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	150.0	31749.070
06	GHMG	110.0	14046.040
07	СННС	210.0	20166.000
08	BHEG	18,00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	101.5	······
INCREN	IENTAL COST OF RE	CEIVED POWER	= 291.26750
WAT	TER USED = $735$ .	86 ACRE-FT	PER HOUR
CONVER	SION FACTOR FOR	HYDRO UNIT =	40.3730
τοται	J GENERATION COST	' = TK 16328	<b>4.</b> 7 ·

GRAND TOTAL OF GENERATION COST = TK 382933.9

STUDY FOR BASE LOAD PERIOD, DURATION = 9 HOUR

1	DEMAND = 670.00	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	42.71	5458;9980
02	SIDG	25.95	4769.7220
03	SHAG	18.00	3348.7700
04	ASHG	187.1	20212.750
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	GHHG	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10 ⁻	GOAG	40.00	15422.200
11	KAPG	.7396	
ÍNCRE	MENTAL COST OF RE	CEIVED POWER =	99.915880
WA	TER USED = $4H5$ .	195 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FOR	HYDRO UNIT =	15.3840
тота	L GENERATION COST	' = TK 107879	.5

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 12 HR

2	DEMAND = 837.10	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKĠ	45.27	5719.2940
02	SIDG	28.62	5040.5520
03	SHAG	18.00	3348.7700
04	ASHG	221.2	23671.310
05	ASMG	72.00	13034.420
06	GHMG	38.77	6010.4130
07	<b>G H H G</b>	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG ,	40.00	15422.200
11	KAPG	121.3	- · · · · · · · · · · · · · · · · · · ·

INCREMENTAL COST OF RECEIVED POWER = 103.03400 ' WATER USED = 880.08 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 14.0110 TOTAL GENERATION COST = TK 112458.7

STUDY FOR PEAK LOAD PERIOD, DURATION = 3 HR

3	DEMAND = 1153.5	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368,4800
02	SIDG	80.00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	122.8	24295.940
06	GHMG	110.0	14046.040
07	СННС	210.0	20166.000
08	BHEG	18.00	8277,2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	КАРС	128.7	
INCRE	MENTAL COST OF RI	ECEIVED POWER	= 255.33550
WA	TER USED = $935$	.22 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FOR	HYDRO UNIT =	34.4750
TOTA	L GENERATION COST	Г = ТК 15583	1.6
	•		

GRAND TOTAL OF GENERATION COST = TK 376169.8

STUDY FOR BASE LOAD PERIOD, DURATION = 9 HOUR

1	DEMA	ND	) =	6	70.00	00 · 00				•	
UNIT	GENE	RA	TI	NG	STN	GENEF	NOITAS	۱ C	OST	OF	GEN
NO		NA	ME	3		MEGA	WATTS	3	TAF	KA/H	R
01	S	Ι	К	G		38	3.62		5060	):32	20
02	S	Ι	D	G		24	1.00		4577	.27	60
03	S	Н	Α	G		18	3.00		3348	3.77	00
04	٠A	S	Н	G		13	32.7		1491	15.5	50
<b>`05</b>	Α	S	Μ	G		72	2.00	-	1303	34.4	20
06	G	Н	М	G		33	3.00		5420	).96	70
07	G	Н	Н	G		19	91.2		1835	58.0	10
08	в	Ħ	Ε	G		18	3.00		8277	7.20	50.
09	В	0	G	G		24	.00		1176	58.5	20
10	G	0	Α	G		4 (	0.00		1542	22.2	00
11	K	Α	Ρ	G		78	3.49				
INCRE	MENTA	$\mathbf{L}$	CC	)ST	OF RE	CEIVEI	) POWE	ER =	94.9	9416	80
WA	TER	US	ΕI	) =	571.	87	ACRE-	-FT F	PER H	IOUR	
CONVE	RSION	F	'AC	TOR	FOR	HYDRO	UNIT	=	13.4	1620	
ጥርተለ		<b>FD</b>	л п	TON	COOT	- TV	100	1100	2		

TOTAL GENERATION COST = TK 100183.3

STUDY FOR INTERMEDIATE LOAD PERIOD; DURATION= 12 HR

2	DEMAND = 8	37.1000	
UNIT	GENERATING	STN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	47.42	5943.7570
02	SIDG	30.86	5274.0980
03	SHAG	18.00	3348.7700
. 04	ASHG	249.7	26653.740
. 05	ASMG	72.00	13034.420
06	GHMG	48.30	7005.0790
07 -	GHHG	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	78.77	•
TNODE	MENTAL COOT	OF DEGETURE DOURD	. 105 04010

INCREMENTAL COST OF RECEIVED POWER = 105.64910 WATER USED = 573.86 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 14.9760 TOTAL GENERATION COST = TK 116893.8

STUDY FOR PEAK LOAD PERIOD, DURATION = 3 HR

3	DEMAND = 1153.5	000	
UNIT	GENERATING STN	<b>GENERATION</b>	COST OF GEN
NO .	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	80.00	11877.020
03	SHAG	60.00 .	10532.020
04	A S H G	300.0	32078.160
05	ASMG	173.2	38839.760
06	GHMG	110.0	14046.040
07	бннс	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	78.35	
INCR	EMENTAL COST OF R	ECEIVED POWER	= 321.74850
W	ATER USED = $570$	.85 ACRE-FT	PER HOUR
CONV	ERSION FACTOR FOR	HYDRO UNIT =	45.6280
тот	AL GENERATION COS	Т = ТК 17037	5.4

GRAND TOTAL OF GENERATION COST = TK 387452.4

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

BL

1	DEMAND = 705.4	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	37.98	5000.3070
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	124.3	14118.140
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	<b>СННС</b>	184.8	17750.060 [,]
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422,200
· 11	KAPG	129.4	`
INCRE	MENTAL COST OF R	ECEIVED POWER	= 94.170140
WA	TER USED = $939$	.95 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FOR	HYDRO UNIT =	12.7070

TOTAL GENERATION COST = TK 98717.86

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

	2	DEMAND = 1015.00	00 [.]	
UN	TI	GENERATING STN	GENERATION	COST OF GEN
NC	)	NAME	MEGA WATTS	TAKA/HR
	01	SIKG	59.52	7310.9360
	02	SIDG	43.44	6696.6050
	03	· S H A G	18.00	3348.7700
	04	ASHG	300.0	32078.160
	05	ASMG	72.00	13034.420
	06	GHMG	101.9	13063.490
	07	<b>G H H G</b>	210.0	20166.000
	80	BHEG	18.00	8277.2050
	09	BOGG	24.00	11768.520
,	10	GOAG	40.00	15422.200
	11	КАРС	128.1	

INCREMENTAL COST OF RECEIVED POWER = 120.35620 WATER USED = 930.58 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 16.2600 TOTAL GENERATION COST = TK 131166.3

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	<b>DEMAND = 1370.</b>	0000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	80,00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	230.0	59258.520
06	<b>G H M G</b>	110.0	14046.040
07	<b>СННС</b>	210.0	20166.000
08	внвс	43.57	23879.760
09	BOGG	38.46	21374.090
10	; G O A G	200.0	78911.000
11	KAPG	37.96	•
INCRE	MENTAL COST OF	RECEIVED POWER	= 738.87040
WA	$\mathbf{TER}  \mathbf{USED} = 29$	1.83 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FO	R HYDRO UNIT =	109.183
TOTA	L GENERATION CO	ST = TK 27949	1.1

GRAND TOTAL OF GENERATION COST = TK 509375.3

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAND = 70	05.4000	
UNIT	GENERATING S	STN GENERATION C	OST OF GEN
NO	NAME	. MEGA WATTS	TAKA/HR
01	SIKG	38.95	5092.5710
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	137.2	15344.050
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	GHHG	194.6	18684.700
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40,00	15422.200
11	KAPG	105.6	
INCRE	EMENTAL COST	OF RECEIVED POWER =	95.353700
WA	TER USED =	765.75 ACRE-FT I	PER HOUR
CONVE	RSION FACTOR	FOR HYDRO UNIT =	13.1640
TOTA	L GENERATION	COST = TK 100970	.7

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

	2	DEMAND = 1015.0	0000	
t	JNIT	GENERATING STN	GENERATION	COST OF GEN
ŀ	10	NAME	MEGA WATTS	TAKA/HR
	0.1	SIKC	59.52	7310.9340
	02	SIDG	43.44	6696.6040
	03	S H A G	18.00	3348.7700
	04	ASHG	300.0	32078.160
	05	ASMG	72.00	13034.420
	06	GHMG	101.9	13063.480
	07	<b>СННС</b>	210.0	20166.000
	08	внес	18.00	8277.2050
	09	BOGG	24.00	11768.520
	10	GOAG	40.00	15422.200
	11	KAPG	128.1	•
			RECEIVED POWER	= 120.35620

WATER USED = 930.58 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 16.2600 TOTAL GENERATION COST = TK 131166.3

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3 DEMAND = 1370.0000	
UNIT GENERATING STN GENERATION COST (	OF GEN
NO NAME MEGA WATTS TAKA	A/HR
01 SIKG 60.00 7368	.4800
02 SIDG 80.00 1187	7.020
03 SHAG 60.00 10533	2.020
04 ASHG 300.0 3207	8.160
, 05 A S M G 230.0 5925	8.520
06 GHMG 110.0 1404	6.040
07 GHHG 210.0 2016	6.000
08 BHEG 18.00 8277	.2050
09 BOGG 24.00 1176	8.520 [,]
10 GOAG 169.2 6510	9.020
11 KAPG 108.8	
INCREMENTAL COST OF RECEIVED POWER = 436.	18580
WATER USED = 788.68 ACRE-FT PER H	OUR
CONVERSION FACTOR FOR HYDRO UNIT = 60.03	330
TOTAL GENERATION COST = TK 240481.0	

GRAND TOTAL OF GENERATION COST = TK 472617.9

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

			,
1	DEMAND = 705.40	000	,
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	39.20	5115.5090
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	140.4	15648.820
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	GHHG	197.0	18917.060
08	внес	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	99.75	
		ECEIVED POWER	= 95.645670
1	TER USED = 723		T PER HOUR
	RSION FACTOR FOR		13.2800
CONVI	SUBTON PROTON ION		

TOTAL GENERATION COST = TK 101530.8

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND =	1015.0000	
UNIT	GENERATIN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	59.52	7310.9340
02	SIDG	43.44	6696.6040
03	SHAG	18.00	3348.7700
04	ASHG		32078.160
05	ASMG	72.00	13034.420
06	GHMG	101.9	13063.480
07	GHHG	210.0	20166.000
08	BHEG	18.00	8277.2050
		24.00	11768.520
- 09		40.00	15422.200
10	GOAG		104221200
11	K A P G	128.1	- 120.35620

INCREMENTAL COST OF RECEIVED POWER = 120.35620 WATER USED = 930.58 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 16.2600 TOTAL GENERATION COST = TK 131166.3

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	DEMAND = 1370	.0000	-
UNIT	GENERATING ST	N GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	80.00	11877.020
03	SHAG	60.00 [.]	10532.020
04	ASHG	300.0	32078.160
05	. A S M G	230.0	59258.520
06	GHMG	110.0	14046.040
07	GHHG	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	150.0	56857.910
11	KAPG	128.0	
INCRE	MENTAL COST OF	RECEIVED POWER	= 420.78060
WA	TER USED = 9	29.90 ACRE-FT	PER HOUR
CÔNVE	RSION FACTOR F	FOR HYDRO UNIT =	56.8520
τοτα	L GENERATION C	COST = TK 23222	9.9

GRAND TOTAL OF GENERATION COST = TK 464926.9

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAND = 705.	4000	1
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	38.61	5059.4120
. 02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	132.6	14903.460
05	ASMG	,72.00	13034.420
06	GHMG	33.00	5420,9670
07	СННС	191.1	18348.790
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	114.1	
INCRE	MENTAL COST OF	RECEIVED POWER	= 94,930020
WA	TER USED = $82$	27.65 · ACRE-F1	PER HOUR
CONVE	DOTAN PACTOR PO		12 0000

CONVERSION FACTOR FOR HYDRO UNIT = 12.9980 TOTAL GENERATION COST = TK 100161.0

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2`	DEMAND = 10	15.0000	
UNIT	GENERATING	STN GENERATION	COST. OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368,4800
02	SIDG	46.90	7119.6310
03.	SHAG	18.00	3348.7700
04	ASHG	300.0	32078.160
05.	ASMG	72.00	13034.420
06	GHMG.	110.0	14046.040
07	GHHG	• 210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	. 40.00	15422.200
11	KAPG	116.1	
INCRE	MENTAL COST	OF RECEIVED POWER	= 124.39480

INCREMENTAL COST OF RECEIVED POWER = 124.39480 WATER USED = 842.09 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 17.0000 TOTAL GENERATION COST = TK 132629.4

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	DEMA	ND	= 13	370.00	00				
ŲNIT	GENE	RA'I	ING	STN	GENEF	RATION	COST	OF	GEN
NO		NAM	1E		MEGA	WATTS	ТА	KA/H	R
01	S	IF	G·		60	0.00	736	8.48	00
02	S	ΙI	) G	,	80	).00	118	77.0	20
03	S	H A	G		60	).00	105	32.0	20
04	Α	S H	I G		30	0.0	. 320	78.1	60
05	Α	S N	1 G		23	30.0	592	258.5	20
06	G	H M	1 G		11	10.0	140	46.0	40
07	G	ΗH	IG		21	10.0	201	66.0	00
08	В	ΗI	G		18	3.00	827	7.20	50
09	В	0 0	G		24	1.00	117	68.5	20
10	- <b>G</b>	0 /	G		16	35.0	632	91.8	50
11	K	AI	P G		1 1	13.0			
INCRE	MENTA	L (	COST	OF RE	CEIVEI	) POWER	₹ = 432	:.840	10
WA	TER	USI	ED =	819.	13	ACRE-F	T PER	HOUR	
CONVE	RSION	I FA	(CTO	R FOR	HYDRO	UNIT =	= 59.	3320	
тота	L GEN	IER/	TIO	N COST	Г = ТК	2386	563.8		

GRAND TOTAL OF GENERATION COST = TK 471454.3

So the suggestion for BPDB hydro plant is to run the plant at the system peak load and its vicinity, instead of usual practice of loading it at the base load for all the season, to get the maximum cost benefit from the only hydro plant in Bangladesh.

#### 6.2.2 Case study - Set B.

The recent load curves of BPDB system have been used in these studies, with a maximum generation of 230 MW.

1. Winter weekend:<br/>seasonBL = 540 MW ; Duration = 16 hours.IL = 650 MW ; Duration = 04 hours.PL = 950 MW ; Duration = 04 hours.

1a. For maximum hydro generation at BL, The generation cost for the day = Tk. 321677.90
1b. For maximum hydro generation at IL,

The generation cost for the day = Tk. 301966.901c. For maximum hydro generation at PL,

The generation cost for the day = Tk. 289432.30

1d. For fixed hydro generation throughout the day, The generation cost for the day = Tk. 307390.00

2. <u>Winter weekday:</u>	BL = 550 MW ; Duration = 12 hours
season	IL = 750 MW ; Duration = 8 hours
,	PL = 1025 MW; Duration = 4 hours

2a. For maximum hydro generation at BL,

The generation cost for the day = Tk. 344205.002b. For maximum hydro generation at IL,

The generation cost for the day = Tk. 332356.802c. For maximum hydro generation at PL,

The generation cost for the day = Tk. 313967.90 2d. For fixed hydro generation throughout the day, The generation cost for the day = Tk. 326503.50

3.	Summer weekend:	BL	=	570	MW	;	Duration	=	12	hours
	•	IL	=	630	MW	;	Duration	=	80	hours
		$\mathbf{PL}$	=	905	MW	;	Duration	Ξ	04	hours

	·
За.	For maximum hydro generation at BL,
	The generation cost for the day = $Tk. 320736.00$
3b.	For maximum hydro generation at IL,
	The generation cost for the day = Tk. $313740.60$
· 3c.	For maximum hydro generation at PL,
	The generation cost for the day = Tk. 298301.80
3d.	For fixed hydro generation throughout the day,
,	The generation cost for the day = $Tk$ . 309923.70
4. Summer we	ekday: BL = 575 MW ; Duration = 8 hours
	IL = 690 MW; Duration = 10 hours
	PL = 1090 MW; Duration = 6 hours
48.	For maximum hydro generation at BL,
14.	The generation cost for the day = Tk. $362945.50$
· · 4b	For maximum hydro generation at IL,
-10.	The generation cost for the day = Tk. $365662.60$
10	For maximum hydro generation at PL,
40.	
· 14	The generation cost for the day = $Tk$ . 330875.00
- 4d.	• • • • • • • • • • • • • • • • • • • •
	The generation cost for the day = $Tk. 343571.81$
5 Painy/waa	kend: $\mathbf{D} = 500  \mathbf{M} + \mathbf{D} = 7  \mathbf{h} = \mathbf{D}$
5. Rainy/wee	
5. <u>Rainy/wee</u> <u>season</u>	IL = $645$ MW ; Duration = $12$ hours
•	
<u>season</u> .	IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours
<u>season</u> .	IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours For maximum hydro generation at BL,
<u>season</u> 5a.	IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20
<u>season</u> 5a.	<pre>IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20 For maximum hydro generation at IL,</pre>
<u>season</u> 5a. 5b.	<pre>IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20 For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80</pre>
<u>season</u> 5a. 5b.	<pre>IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20 For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80 For maximum hydro generation at PL,</pre>
<u>season</u> 5a. 5b. 5c.	<pre>IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20 For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80 For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20</pre>
<u>season</u> 5a. 5b.	<pre>IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20 For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80 For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20 For fixed hydro generation throughout the day,</pre>
<u>season</u> 5a. 5b. 5c.	<pre>IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20 For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80 For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20</pre>
<u>season</u> 5a. 5b. 5c. 5d.	<pre>IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours</pre> For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20 For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80 For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20 For fixed hydro generation throughout the day, The generation cost for the day = Tk. 328685.70
<u>season</u> 5a. 5b. 5c.	IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20 For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80 For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20 For fixed hydro generation throughout the day, The generation cost for the day = Tk. 328685.70 <u>kday :</u> BL = 670 MW ; Duration = 9 hours
<u>season</u> 5a. 5b. 5c. 5d.	IL = 645  MW  ; Duration = 12  hours $PL = 1015  MW  ; Duration = 5  hours$ For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20 For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80 For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20 For fixed hydro generation throughout the day, The generation cost for the day = Tk. 328685.70 kday : BL = 670 MW ; Duration = 9 hours IL = 837 MW ; Duration = 12 hours
<u>season</u> 5a. 5b. 5c. 5d. 6. <u>Rainy/wee</u>	IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20 For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80 For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20 For fixed hydro generation throughout the day, The generation cost for the day = Tk. 328685.70 <u>kday :</u> BL = 670 MW ; Duration = 9 hours
<u>season</u> 5a. 5b. 5c. 5d. 6. <u>Rainy/wee</u> <u>season</u>	IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hoursFor maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20For fixed hydro generation throughout the day, The generation cost for the day = Tk. 328685.70kday :BL = 670 MW ; Duration = 9 hours IL = 837 MW ; Duration = 12 hours PL = 1153 MW ; Duration = 3 hours
<u>season</u> 5a. 5b. 5c. 5d. 6. <u>Rainy/wee</u> <u>season</u>	IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20 For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80 For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20 For fixed hydro generation throughout the day, The generation cost for the day = Tk. 328685.70 <u>kday :</u> BL = 670 MW ; Duration = 9 hours IL = 837 MW ; Duration = 12 hours PL' = 1153 MW ; Duration = 3 hours For maximum hydro generation at BL,
<u>season</u> 5a. 5b. 5c. 5d. 6. <u>Rainy/wee</u> <u>season</u>	IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hoursFor maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20For fixed hydro generation throughout the day, The generation cost for the day = Tk. 328685.70kday :BL = 670 MW ; Duration = 9 hours IL = 837 MW ; Duration = 12 hours PL = 1153 MW ; Duration = 3 hours
<u>season</u> 5a. 5b. 5c. 5d. 6. <u>Rainy/wee</u> <u>season</u> 6a.	IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20 For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80 For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20 For fixed hydro generation throughout the day, The generation cost for the day = Tk. 328685.70 <u>kday :</u> BL = 670 MW ; Duration = 9 hours IL = 837 MW ; Duration = 12 hours PL' = 1153 MW ; Duration = 3 hours For maximum hydro generation at BL,
<u>season</u> 5a. 5b. 5c. 5d. 6. <u>Rainy/wee</u> <u>season</u> 6a.	IL = 645 MW ; Duration = 12 hours PL = 1015 MW ; Duration = 5 hours For maximum hydro generation at BL, The generation cost for the day = Tk. 337087.20 For maximum hydro generation at IL, The generation cost for the day = Tk. 343723.80 For maximum hydro generation at PL, The generation cost for the day = Tk. 319847.20 For fixed hydro generation throughout the day, The generation cost for the day = Tk. 328685.70 <u>kday :</u> BL = 670 MW ; Duration = 9 hours IL = 837 MW ; Duration = 12 hours PL = 1153 MW ; Duration = 3 hours For maximum hydro generation at BL, The generation cost for the day = Tk. 411789.60

6c. For maximum hydro generation at PL,

The generation cost for the day = Tk. 359013.40

6d. For fixed hydro generation throughout the day, The generation cost for the day = Tk. 387452.40

7. <u>Typical weekday</u>: BL = 705.4 MW; Duration = 12 hours (predicted future) IL =1015.0 MW; Duration = 8 hours PL =1370.0 MW; Duration = 4 hours 7a. For maximum hydro generation at BL, The generation cost for the day = Tk. 551160.50 7b. For maximum hydro generation at IL,

> The generation cost for the day = Tk. 494224.507c. For maximum hydro generation at PL,

The generation cost for the day = Tk. 431374.70

7d. For fixed hydro generation throughout the day,

The generation cost for the day = Tk. 471454.30

Discussion

The above set of study is carried out considering the fact that within a very short period BPDB utility service is going to generate 230 MW of maximum hydro power. Its effect on the total future economy of generation is more important than to see what actually happened in the previous years with a maximum generation of 130 MW from the hydro plant. It has been found from the above study that benefit is more for this case when 230 MW hydro loading is at the peak load period of the same load curves. Details of the economic scheduling along with the other important factors are given in the computer printout set-B on pages 6.27 - 6.42. For the same load curve as the load increases the cost benefit also increases. It is found from the study for the future predicted load that when the hydro plant is loaded at its maximum capacity at the peak load period, maximum economy results.

Due to the continuous variation of water energy reserve from season to season, the quantity of water to be used at different season is different. But the energy of water for each of the above two studies was kept same, but the maximum hydro generation capacity was different.

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

BL

1	DEMAND = $\sqrt{550}$	.0000	
UNIT	GENERATING ST	N GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	18.00	3361.3270
02,	SIDG	24.00	4577.2760
03	SHAG	18,00	3348.7700
04	ASHG	90.00	10943.730
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	СННС	- 63.00	7174.1400
08	внес	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	150.0	
INCRE	MENTAL COST OF	RECEIVED POWER	= 61.203600
WA	TER USED = 1	094.2 ACRE-FT	PER HOUR
CONVE	RSION FACTOR F	OR HYDRO UNIT =	8.10000
mom A			56 -

TOTAL GENERATION COST = TK 83328.56

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 750.00	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	41.43	5332.5000
02	S. I. D. G	24.62	4638.1040
03	SHAG	18.00	3348.7700
04	ASHG	170.1	18531.980
05	ASMG	72.00	13034.420
06	GHMG	33.00 '	5420.9670
07	<b>G H H G</b>	210.0	20166.000
08	внес	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	98.82	
		ODIVED DOUED	- 00 004040 5

INCREMENTAL COST OF RECEIVED POWER = 98.364840 WATER USED = 716.68 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 13.6700 TOTAL GENERATION COST = TK 105940.7

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR.

3	DEMAND = 1025.00	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	80.00	11877.020
03	SHAG	60.00	10532.020
04	A-SHG	300.0	32078.160
05	ASMG	119.2	23400.140
06	GHMG	110.0	14046.040
07	<b>G H H G</b>	210.0	20166.000
08	внес	1800	8277.2050
09	BOGG	24.00	11768.520
. 10	GOAG	40.00	15422.200
11	КАРС	3.791	
INCRE	EMENTAL COST OF RE	ECEIVED POWER	= 250.67040
W A	ATER USED = $64.6$	S89 ACRE-F1	r per hour
CONVE	ERSION FACTOR FOR	HYDRO UNIT =	38.4070
TOT	AL GENERATION COST	Г = ТК 15493	35.8

GRAND TOTAL OF GENERATION COST = TK 344205.0

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

ĨЦ

1	DEMAND =	550.0000	
UNIT	<b>GENERATING</b>	STN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	* 34.84	4710.8900
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	90.00	10943.730
05	ASM G	72.00	13034.420
06	GHMG	33.00	5420.9670
07	<b>СННС</b>	153.0	14818:270
08	ΒΗΈG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	43.18	
INCRE	MENTAL COST	OF RECEIVED POWER	= 90.356990

WATER USED = 327.24 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 13.2800 TOTAL GENERATION COST = TK 92322.25

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 750.00	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	35.74	4792.4230
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	94.52	11355.980
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	<b>G H H G</b>	162.1	15644.190
08	BHEG	18.00	8277.2050
09	BOGG ·	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	228.7	

INCREMENTAL COST OF RECEIVED POWER = 91.447290 WATER USED = 1710.5 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 11.2760 TOTAL GENERATION COST = TK 93641.95.

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

-3 DEMAND = 1025,0000

	D = 10	2010000	
UNIT	GENERAT1NG	STN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60,00	7368.4800
02	SIDG	80.00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	81.36	14856.900
06	GHMG	110.0	14046.040
07	GHHG	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	41.64	
INCRE	MENTAL COST	OF RECEIVED POWER	= 200.80460
WΛ	TER USED =	316.74 ACRE-F	L DEB HOUB

WATER USED = 316.74 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 29.5600 TOTAL GENERATION COST = TK 146392.5

GRAND TOTAL OF GENERATION COST = TK 332356.8

PL

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAND = 5	50.0000	
UNIT	GENERATING :	STN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	. S I K G	36.94	4903.0590
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	A S'H G	110.5	12826.000
05	ASMG	72.00	13034.420
`06	GHMG	33.00	5420.9670
07	GHHG	174.2	16764.940
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	6272	
TNODE	MENTAL COST	OF PECETVED DOWER	- 92 906330

INCREMENTAL COST OF RECEIVED POWER = 92.906330 WATER USED = 35.924 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 14.3030 TOTAL GENERATION COST = TK 96343.36

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 750.00	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
. 01	SIKG	37.10	4917.7790
02	SIDG	24.00	4577.2760
03	SHÁG	18.00	3348,7700
04	ASHG	112.6	13021.600
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	бннс	175.8	16914.060
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	КАРС	195.5	

INCREMENTAL COST OF RECEIVED POWER = 93.098730 WATER USED = 1445.3 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 11.8200 TOTAL GENERATION COST = TK 96702.80

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	DEMAND = $1025$ .	0000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	49.33	6147.6120
02	SIDG	32.84	5486.2030
03	SHAG	18.00	3348.7700
04	ASHG	275.1	29362.360
05	ASMG	72.00	13034.420
06	GHMG	56.76	7908.4260
07	GHHG	210.0	20166.000
08	BHEG	18.00	8277.2050
· 09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	229.0	
INCRE	MENTAL COST OF	RECEIVED POWER	= 107.96920
WA	TER USED = $17$	12.8 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FC	R HYDRO UNIT =	13.3100

TOTAL GENERATION COST = TK 120921.7

GRAND TOTAL OF GENERATION COST = TK 313967.9

CL

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

· 1	DEMAND = 5	50.0000	
UNIT	GENERATING	STN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	28.88	4193.7710
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	90.00	10943.730
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	<b>G H H G</b>	92.58	9579.8520
08	BHEG	18.00	8277.2050 '
09	BOGG	24.00	11768.520
10.	GOAG	40.00	15422.200
11	KAPG	109.5	
INCR		OF RECEIVED POWER	= 83.109350
W	ATER USED =	794.25 ACRE-F	F PER HOUR

CONVERSION FACTOR FOR HYDRO UNIT = 11.4300 TOTAL GENERATION COST = TK 86566.70

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 7	50.0000	
UNIT	GENERATING	STN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	40.88	5278.8440
02	SIDG	24.05	4582.2770
03	SHAG	18.00	3348.7700
04	ASHG	162.9	17819.050
05	ASMG	72.00	13034.420
. 06	GHMG	33.00	5420.9670
07	GHHG	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	107.2	•
INCRE	MENTAL COST	OF RECEIVED POWER	= 97.699500
ሠለ	TER USED -	777.30 ACRE-FT	PER HOUR

WATER USED = 777.30 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 13.4670 TOTAL GENERATION COST = TK 105118.3

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	DEMAND = 1	025.0000	
UNIT	GENERATING	STN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	63.24	9308,7900
03	SHAG	18.00	3348.7700
04	ASHG	300.0	32078.160
05	· ASMG	72.00	13034.420
06	G.H.M.G	110.0	14046.040
· 07	<b>СННG</b>	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	109.8	
INC	REMENTAL COST	OF RECEIVED POWER	= 143.48990
	WATER USED =	795.81 ACRE-F1	F PER HOUR

CONVERSION FACTOR FOR HYDRO UNIT = 19.7300 TOTAL GENERATION COST = TK 134818.6

GRAND TOTAL OF GENERATION COST = TK 326503.5

BL

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAND = 5	75.0000	
UNIT	GENERATING	STN GENERATION	COST OF GEN
NO	· NAME	MEGA WATTS	TAKA/HR
01	SIKG	18.00	3361.3270
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	90.00	10943.730
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	G H H G	63.00 .	7174.1400
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	175.0	
		OF RECEIVED POWER =	62.629200
	TER USED -	1285.3 ACRE-FT	PER HOUR

WATER USED = 1285.3 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 8.10000 TOTAL GENERATION COST = TK 83328.56

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 690.00	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	40.28	5220.3760
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	154.9	17042.190
05	ASMG [°]	72.00	13034.420
06	GHMG	33.00	5420.9670
07	СННС	208.1	19979.360
08	внес	18.00	8277.2050
09	BOGG	24.00	11768.520
· 10	GOAG	40.00	15422.200
11	KAPG	57.76	

INCREMENTAL COST OF RECEIVED POWER = 96.969310 WATER USED = 427.20 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 14.0400 TOTAL GENERATION COST = TK 104091.3

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	DEMA	١N	) :	: 10	90.00	00					`
UNIT	GENE	ER/	<b>T</b>	[NG	STN	GENE	RATIO	۷ C	OST	OF	GEN
NO		NA	١MF	3		MEGA	WATTS	3	TA	KA/H	IR
01	S	Ι	K	G		60	0.00		7368	8.48	00
02	S	Ι	D	G		80	0.00		1187	77.0	20
03	S	Н	Α	G		60	0.00		1053	32.0	20
04	Α	S	Н	G		30	0.00		3201	78.1	60
05	Α	S	М	G		11	84.3		4249	94.2	240
06	Ġ	Н	Μ	G		1	10.0		1404	46.0	)40
07	G	Н	Н	G		2	10.0		2016	56.0	000
08	В	Н	Е	G		13	8.00		8271	7.20	)50
09	В	0	G	G		2	4.00		1176	58.5	520
10	G	0	Α	G		4	4.47		169	17.9	980
11	К	Α	Ρ	G		'	7308				
INCRE	MENT	ΑL	CO	OST	OF RE	CEIVE	D POWI	ER =	336	. 381	130
WA	TER	U	SE	D =	35.2	51	ACRE	-FT P	ER I	HOUF	2
CONVE	RSIO	N I	FA	CTOR	FOR .	HYDRO	UNIT	=	51.7	7920	)
ΤΟΤΑ	L GEI	NE	RA'	LION	COST	= TK	17	5525.	7		

GRAND TOTAL OF GENERATION COST = TK 362945.5

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

TL

1	DEMAND =	575.0000	
UNIT	GENERATING	STN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	. SIKG	37.92	4994.7570
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	123.5	14044.390
05	ASMG	72.00	13034.420
06	GHMG	33,00	5420.9670
07	<b>СННС</b>	184.2	17693.840
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	.4268	
INCRE	MENTAL COST	OF RECEIVED POWER	= 94.098460
WA	TER USED =	42.775 ACRE-FT	PER HOUR

CONVERSION FACTOR FOR HYDRO UNIT = 14.4700 TOTAL GENERATION COST = TK 98582.34

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND =	690.0000	
UNIT	GENERATING	STN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKĠ	34.08	4641.9040
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	90.00	10943.730
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	GHHG	145.2	14119.440
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	191.7	
TNOD	EMENTAL COOT	OF PROFIVED DOWER	- 90 121090

INCREMENTAL COST OF RECEIVED POWER = 89.424080 WATER USED = 1415.6 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 11.3920 TOTAL GENERATION COST = TK 91554.44

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

ł

3	DEMAND = 1090.00	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	80.00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	184.3	42494.320
06	GНМС ·	110.0	14046.040
07	бннб	210.0	20166.000
08	внес	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	44.47	16918.110
11	KAPG	7314	
INCRE	EMENTAL COST OF R	ECEIVED POWER	= 336.38170
WA	ATER USED = $35$ .	248 ACRE-FT	PER HOUR
CONVE	ERSION FACTOR FOR		51.7920
TOTA	AL GENERATION COS	T = TK = 17552	25.9

GRAND TOTAL OF GENERATION COST = TK 365662.6

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

PL

1	DEMANI	) = 5	575.	0000		
UNIT	GENERA	TING	STN	GENERATION	C	OST OF GEN
NO	NA	ME		MEGA WATTS		TAKA/HR
01	S I	KG		37.92		4994.7570
02	S I	DG		24.00		4577.2760
03	' S H	AG		18.00		3348.7700
. 04	AS	ΗG		123.5		14044.390
05	AS	MG		72.00		13034.420
06	GH	MG		33.00		5420.9670
07	GH	ΗG		184.2		17693.840
08	вн	ΕG		18.00		8277.2050
09	. ВО	GG		24.00		11768.520
10	GΟ	AG		40.00		15422.200
11	КА	ΡG	•	.4268		
INCR	EMENTAL	COST	OF	RECEIVED POWER	=	94.098460

WATER USED = 42.775 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 14.4700 TOTAL GENERATION COST = TK 98582.34

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 690.0	000	"
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	40.28	5220.3760
02	SIDG	24.00	4577.2760
03	S'H A G	18.00	3348.7700
04	ASHG	154.9	17042.200
05	· A S M G	72.00	13034.420
06	СНМС	33.00	5420.9670
07	<b>G H H G</b>	208.1	19979.370
08	внес	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOÀG	40.00	15422.200
11	KAPG ·	57.76	
THODE	MENTAL COOR OF D	PORTVED DOWED	- 06 060210

INCREMENTAL COST OF RECEIVED POWER = 96.969310 WATER USED = 427.20 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 14.0400 TOTAL GENERATION COST = TK 104091.3

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	DEMAND = 1090.00	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	55.64	6852.8010
02	SIDG	39.40	6219.9300
03	SHAG	18.00	3348.7700
04	ASHG	300.0	32078.160
05	ASMG	72.00	13034.420
06	GHMG	84.71	11033.350
07	<b>G H H G</b>	210.0	20166.000
08	внес	18.00	8277.2050
09	BÓGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	228.2	

INCREMENTAL COST OF RECEIVED POWER = 115.63650 WATER USED = 1707.0 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 14.2640 TOTAL GENERATION COST = TK 128201.3

GRAND TOTAL OF GENERATION COST = TK 330875.0

STUDY FOR BASE LOAD PERIOD, DURATION = 8 HOUR

1	DEMA	ND	= !	575.000	00			
UNIT	GENE					ATION	COST OF	GEN
NO	d Lina	NAM			MEGA	WATTS	TAKA/HI	R
01	S	IF			33	.37	4579.053	20
02		ΙI			24	.00	4577.27	60
03	S	ΗA	G		18	.00	3348.77	00
04	Α	SH	IG		90	.00	10943.7	
05	Α	SN	1 G	•	7 2	2.00	13034.4	20
06	G	ΗN	1 G		33	1.00	5420.96	
07	G	ΗI	ł G		13	38.0	13482.7	
08	в	ΗI	E G		18	3.00	8277.20	50
09	' B	0 (	3 G		24	1.00	11768.5	
10	. G	0 /	A G		40	).00	15422.2	00
11	К	A I	P G			1.58		
INCRE	MENTA	L (	COST	OF RE	CEIVEI	) POWER	= 88.5655	70
WA	TER	US!	ED =	614.	97	ACRE-F1	F PER HOUR	
CONVE	RSIO	N FA	ACTO	R FOR	HYDRO	UNIT =	12.4820	
ТОТА	L GEI	VER.	ATIO	N COST	= TK	90854	1.89	
								_
STUDY	FOR	IN	TERM	EDIATE	LOAD	PERIOD	, DURATION	= 10 HR

2	DEMAND = 690.000	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG.	39.16	5112.4420
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	140.0	15608.080
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	<b>СННС</b>	196.7	18885.990
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	85.13	
		·	of 000000

INCREMENTAL COST OF RECEIVED POWER = 95.606680 WATER USED = 618.87 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 13.4670 TOTAL GENERATION COST = TK 101455.9

STUDY FOR PEAK LOAD PERIOD, DURATION = 6 HR

3	DEMAND = 1090	.0000	
UNIT	GENERATING ST		COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG [.]	80.00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	103.9	19725.450
06	GHMG	110.0	14046.040
07	GHHG	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
<u>`</u> 10 ,	GOAG	40.00	15422.200
11	KAPG	84.06	
INCRE	MENTAL COST OF	RECEIVED POWER	= 230.54740
WA	TER USED = $6$	11.28 ACRE-FT	PER HOUR
CONVE	RSION FACTOR F		32.5090
тота	L GENERATION C	OST = TK  15126	1.1

GRAND TOTÁL OF GENERATION COST = TK 343571.8

Յե

STUDY FOR BASE LOAD PERIOD, DURATION = 9 HOUR

1	DEMAND = 670.00	00	•
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	31.73	4435.2690
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	90.00	10943.730
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	СННС	121.4	12026.220
08	BHEG	18,00	8277.2050
09	BOGG	24.00	11768.520
10	GOAĠ	40.00	. 15422.200
11	КАРС	197.9	
INCRE	MENTAL COST OF RE	CEIVED POWER	= 86.569590
WA	TER USED = $1463$	.9 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FOR	HYDRO UNIT =	10.9680
ጥ ር ጥ ለ	I OFNERATION COOM		50

TOTAL GENERATION COST = TK 89254.58

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 12 HR

2	DEMAND = 837.10	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME .	MEGA WATTS	TAKA/HR
01	SIKG	51.58	6392.9870
02	SIDG	35.18	5741.5080
03	SHAG 🕔	18.00	3348.7700
04	ASHG	300.0	32078.160
05	ASMG	72.00	13034.420
06	GHMG	66.70	8995.7630
07	<b>СННС</b>	210.0	20166.000
08	внес	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	1.646	
THORE			,

INCREMENTAL COST OF RECEIVED POWER = 110.69730 WATER USED = 50.706 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 17.0000 TOTAL GENERATION COST = TK 125225.5

STUDY FOR PEAK LOAD PERIOD, DURATION = 3 HR

3	DEMAND = 1153.50	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	80.00	11877.020
03	SHAG	60.00	10532.020
04	A`SHG	300.0	32078,160
05	ASMG	207.7	50723.860
06	GHMG	- 110.0	14046.040
07	<b>G H H G</b>	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	83.00	30472.180
11	KAPG	.8471	•
INCRE	MENTAL COST OF RE	CEIVED POWER	= 367.20450
	TER USED = $45.5$	09 ACRE-FT	PER HOUR
		HYDRO UNIT =	56.4410
τοτα	L GENERATION COST	° = TK 19730	9.5
		10,00	

GRAND TOTAL OF GENERATION COST = TK 411789.6

STUDY FOR BASE LOAD PERIOD, DURATION = 9 HOUR

-		· .	
1	DEMAND = 670.00		
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	42.71	5458.9980
02	SIDG	25.95	4769.7220
03	GENERATING STN NAME S I K G S I D G S H A G A S H G	18.00	3348.7700
04	ASHG	187.1	20212.750
05	ASMG	72.00	13034.420
06	, GHMG	33.00	5420.9670
07	G Н Н G	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11		7396	
INCRE	MENTAL COST OF RE	CEIVED POWER	= 99.915880
		95 ACRE-FT	
	RSION FACTOR FOR		
TOTAL	L GENERATION COST	= TK 10787	9.5
STUDY	FOR INTERMEDIATE	LOAD PERIOD,	DURATION= 12 HR
2	DEMAND = 837.10	00 '	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME SIKG	MEGA WATTS	TAKA/HR
01		43.50	5538.9440
02	SIDG	26.78	4852.9040
03	SHAG	18.00	3348.7700
04	ASHG	197.7	21275.010
05	ASMG	72.00	13034.420
0.6	GHMG '	33.00	5420.9670
0,7	<b>G H H G</b>	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	
10	UÇAU	40.00	15422.200

11 K A P G 154.2 INCREMENTAL COST OF RECEIVED POWER = 100.88380 WATER USED = 1125.7 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 13.3000 TOTAL GENERATION COST = TK 109104.9

STUDY FOR PEAK LOAD PERIOD, DURATION = 3 HR

			•
3	DEMAND = 11	53.5000	
UNIT	GENERATING	STN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60,00	7368.4800
02	SIDG	. 80.00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	206.7	50380.470
[`] 06	GHMG	110.0	14046.040
07	GHHG	210.0	20166.000
08	BHEG	1800	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	81.46	29906.600
11	KAPG	3.327	
INCRE	MENTAL COST	OF RECEIVED POWER =	365.97020
WA	TER USED =	61.661 ACRE-FT	PER HOUR
CONVE	RSION FACTOR	FOR HYDRO UNIT =	56.1010 ·
τοτα	L GENERATION	COST = TK 196400	.5
	•		

GRAND TOTAL OF GENERATION COST = TK 413385.0

STUDY FOR BASE LOAD PERIOD, DURATION = 9 HOUR

1	DEMAND = 0	570.0000	
1111775	GENERATING		COST OF GEN
UNIT	GENERALING		0
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	42.69	5457.4180
02	SIDG	25.93	4768.0780
03	SHAG	18.00	3348.7700
04	ASHG	186.9	20191.760
05	ASMG	.72.00	13034.420
06	GHMG	33.00	5420.9670
07	GHHG	210.0	20166.000
08	BHEG	18.00 /	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	4974	
INCRE	EMENTAL COST	OF RECEIVED POWER	= 99.896660
WA	TER USED =	36.768 ACRE-F	T PER HOUR

CONVERSION FACTOR FOR HYDRO UNIT = 15.3770 TOTAL GENERATION COST = TK 107855.3

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 12 HR

			-
2	DEMAND = 837.10	000	4
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	ŚIKG	46.62	5859.2280
02	SIDG	30.02	5186.1490
03	SHAG	18,00	3348.7700
04	ASHG	239.1	25530.610
05	ASMG	72.00	13034.420
06	GHMG	44.74	6630.5060
07	сннс	210.0	20166.000
08	внес	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	карс	94.65	

INCREMENTAL COST OF RECEIVED POWER = 104.67200 WATER USED = 686.79 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 14.6060 TOTAL GENERATION COST = TK 115223.6

STUDY FOR PEAK LOAD PERIOD, DURATION = 3 HR

DEMAND = 1153.50003 COST OF UNIT GENERATING STN GENERATION GEN MEGA WATTS TAKA/HR NO NAME 7368.4800 01 S IKG 60.00 70.79 10424.6.20 02 S IDG 3348.7700 03  $\mathbf{S}$ Н A G 18.00 32078.160 04  $\mathbf{S}$ НG 300.0 Α 13034.420 05 ASMG 72.00 GHMG 110.0 14046.040 06 210.0 20166.000 07 GHHG BHEG 18.00 8277.2050 08 24.00 11768.520 09 BOGG 10 GOAG 40.00 15422.200  $11^{-1}$ KAPG 230.7 INCREMENTAL COST OF RECEIVED POWER = 152.30450 ACRE-FT PER HOUR WATER USED = 1727.0 CONVERSION FACTOR FOR HYDRO UNIT = 18.7470 TOTAL GENERATION COST = TK 135934.4

GRAND TOTAL OF GENERATION COST = TK 359013.4

STUDY FOR BASE LOAD PERIOD, DURATION = 9 HOUR

CL

1	DEMAND = 670	0.0000	
UNIT	GENERATING S	<b>FN GENERATION</b>	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	38.62	5060.3220
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348,7700
04	· ASHG	132.7	14915.550
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	<u> С Н Н С</u>	191.2	18358.010
08	BHEG	18.00	8277.2050
. 09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	78.49	
INCE	EMENTAL COST O	F RECEIVED POWER	= 94.941680
L	ATER USED -	571-87 ACRE_F1	DED HOUD

WATER USED = 571.87 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 13.4620 TOTAL GENERATION COST = TK 100183.3

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 12 HR

2	DEMAND = 837.10	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01.	SIKG	47.42	5943.7570
02	SIDG	30.86	5274.0980
03	SHAG	18.00	3348.7700
04	ASHG	249.7	26653.740
05	ASMG	72.00	13034.420
06	G H M G	48.30	7005.0790
07	бннс	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG ·	78.77	· .

INCREMENTAL COST OF RECEIVED POWER = 105.64910 WATER USED = 573.86 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 14.9760 TOTAL GENERATION COST = TK 116893.8

STUDY FOR PEAK LOAD PERIOD, DURATION = 3 HR

. 3	DEMAND = 1153.50	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME .	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	· 80.00	11877.020
03	SHAG	60,00	10532.020
-04	ASHG	300.0	32078.160
05	ASNG	173.2	38839.760
06	<u> G H M G</u>	110.0	14046.040
07	<b>G H H G</b>	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	78.35	,
INCRE	MENTAL COST OF RE	CEIVED POWER	= 321.74850
WA	TER USED = $570$ .	85 ACRE-F	FPER HOUR
CONVE	RSION FACTOR FOR	HYDRO UNIT =	45.6280
τοτα	L GENERATION COST	= TK 1703'	75.4

GRAND TOTAL OF GENERATION COST = TK 387452.4

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMANI	) = 7	705.4	000					
UNIT	GENERA	TING	STN	GENERA	TION	C	OST	OF	GEN
NO	NA	<b>ME</b>		MEGA W	ATTS		TAI	KA/H	R
01	S I	KG		33.	27		4570	D.16	10
02	S I	DG		24.	00		457	7.27	60
03	S H	AG		18.	00		3348	3.77	00
04	A S	ΗG		90.	00		1094	43.7	30
05	AS	MG		72.	00		1303	34,4	20
06	GΗ	MG		33.	00		5420	0.96	70
07	GΗ	HG		137	7.0		1339	92.6	80
08	ΒH	ΕG		18.	00		827	7.20	50
09	ΒO	GG		24.	00		117	58.5	20
10	GΟ	AG		40.	00		154	22.2	00
11	ΚA	ΡG		216	5.1			•	
INCRE	MENTAL	COST	OF R	ECEIVED	POWER	=	88.	4434	50

WATER USED = 1609.0ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 11.0260 TOTAL GENERATION COST = TK 90755.94

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 1015.00	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01 ·	SIKG	60.00	7368.4800
02	SIDG	80,00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	110.1	21178,250
06	<b>G H M G</b>	110.0	14046.040
07	<b>G H H G</b>	210.0	20166.000 ·
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	2.871	
			· · · · · · · · · · · · · · · · · · ·

INCREMENTAL COST OF RECEIVED POWER = 238.70590 WATER USED = 58.691 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 36.6100 TOTAL GENERATION COST = TK 152713.9

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

													•
	3	DEMA	١ND	=	13	70.0	000						
ι	NIT	GENI	ERA	TI	NG	STN	GE	INER	ATIO	N I	COST	OF	GEN
N	0		NA	ME			ME	GA	WATT	S	TAI	KA/I	HR
	01	S	Ι	K	G			60	.00		736	3.41	300
	02	S	Ι	D	G			80	.00		118	77.0	020
	03	S	Н	A	G			60	.00		105	32.0	020
	04	Α	$\mathbf{S}$	Н	Gι			30	0.0		320	78.3	160
	05	Α	S	M	G			23	0.0 .		592	58.	520
	06	G	Н	M	G			11	0.0		1404	16.0	040
1	07	G	Н	Н	G			21	0.0		2010	56.0	000
	08	В	Н	E	G			60	.00 '		3731	75.9	960
	09	В	0	G	G			56	.17		360′	77.	520
	10	G	0	A	G			20	0.0		789	11.0	000
	11	K	Α	P	G			3.	830				
	INCRE	EMENT/	۱L	CO	ST	OF R	ECEI	VED	POW	ER =	921	95	250
	WA	TER	US	ED	=	64.	944		ACRE	-FT	PER I	IOUI	5
	CONVE	RSIO	۱F	AC	TOR	FOR	HYD	ORO	UNIT	Ξ	141	25	3
	TOTA	L GE	<b>VER</b>	AT	ION	COS	г =	ТK	30	7690	. 7		

GRAND TOTAL OF GENERATION COST = TK 551160.5

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAND =	705.4000	
UNIT	GENERATING	STN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	41.65	5354.3710
02	SIDG	24.85	4660.8610
03	SHAG	18.00	3348.7700
04	ASHG	173.1	18822.580
05	ASMG	72.00	13034.420
06	GHMG	33.00	5420.9670
07	<b>СННС</b>	210.0	20166.000
08	- BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	50.81	
INCR	EMENTAL COST	OF RECEIVED POWER	₹ = 98.634750

WATER USED = 379.38 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 14.3830 TOTAL GENERATION COST = TK 106275.9

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 1015.00	00	
UNİT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	48.85	6095.3590
02	SIDG	32.34	5431.8360
03	SHAG	18.00	3348.7700
04	ASHG	268.7	28668.080
05	ASMG	72.00	13034.420
06	GHMG	54.61	7676.8770
07	сннс	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	228.5	

INCREMENTAL COST OF RECEIVED POWER = 107.37930 WATER USED = 1709.4 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 13.2420 TOTAL GENERATION COST = TK 119889.3

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3 DEMAND = 1370.	.0000
------------------	-------

UNIT	GENERATING S	TN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	80.00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	230.0	59258.520 ·
06	GHMG	110.0	14046.040
07	GHHG	210.0	20166.000
08	BHEG	35.26	18088.010
09	BOGG	30.37	15734.140
10	GOAG	200.0	78911.000
11	KAPG	54.36	
INCRE	EMENTAL COST O	F RECEIVED POWER	= 655,20630

WATER USED = 403.76 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 95.1960 TOTAL GENERATION COST = TK 268059.4

GRAND TOTAL OF GENERATION COST = TK 494224.5

PL

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAN	D =	705.	4000	·		
UNIT	GENER	ATING	STN	GENERATION	C	OST OF	GEN
NO	Ν	AME		MEGA WATTS		TAKA/H	IR
01	S I	ΚG		39.63		5156.74	30
02	S I	DG		24.00		4577.27	60
03	SH	ΑĠ		18.00		3348.77	100
04	· AS	ΗG		<b>146.</b> 1		16196.7	710
05	AS	MG		72.00		13034.4	20
06	GH	ΜG		33.00	•	5420.96	570
07	GH	НG		201.4		19334.7	760
08	ВН	EG		18.00		8277.20	)50
09	ВО	GG		24.00		11768.5	520
10	GΟ	AG		40.00		15422.2	200
11	ΚA	PG		89.25			
INCRE	MENTAL	COST	OF	RECEIVED POWER	=	96.1683	300

WATER USED = 648.17 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 13.4910 TOTAL GENERATION COST = TK 102537.6

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 1015.00	000	*
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	71.53	10537350
03	SHAG	18.00	3348.7700
04	ASHG	300.0	32078.160
05	ASMG	72.00	13034.420
06	GHMG	110.0	14046.040
07	<b>СННС</b>	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	91.47	

INCREMENTAL COST OF RECEIVED POWER = 153.16680 WATER USED = 664.03 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 21.4400 TOTAL GENERATION COST = TK 136047.1

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

, <b>3</b>	DEMAN	D = 13	370.	0000			•
UNIT	GENER	ATING	STN	GENERATION	0	COST OF C	<b>JEN</b>
NO	Í Na	AME		MEGA WATTS		TAKA/HR	
01	ຣ່ I	KG		60.00		7368.4800	)
02	S I	DG		80.00		11877.020	)
03	S H	AG		60.00		10532.020	).
04	AS	ΗG		300.0		32078.160	)
05	AS	MG		203.0		49016.460	)
06	GH	MG		110.0		14046.040	)
07	GH	НG		210.0		20166.000	)
08	вн	ΕG	•	18.00		8277.2050	)
· 09	ВО	GG		24.00		11768.520	)
10	GΟ	AG.		75.28		27660.080	)
11	ĶΑ	ΡG		229.8		· ·	
INCE	EMENTAL	COST	OF	RECEIVED POWER	Ξ	361.02600	)

INCREMENTAL COST OF RECEIVED POWER = 361.02600 WATER USED = 1719.3 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 44.4750 TOTAL GENERATION COST = TK 192790.0

GRAND TOTAL OF GENERATION COST = TK 431374.7

CL.

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

· 1	DEMAND =	705.4000	
UNIT	GENERATING	STN GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	38.61	5059.4120
02	SID'G	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	132.6	14903.460
05	A S M G	72.00	13034.420
06	GHMG	33.00	5420.9670
07	GHHG	191.1	18348.790
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	114.1	•
INCRE	MENTAL COST	OF RECEIVED POWER	= 94.930020

WATER USED = 827.65 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 12.9980 TOTAL GENERATION COST = TK 100161.0

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 1015.00	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	46.90	7119.6310
03	SHAG	18.00	3348.7700
04	ASHG	300.0	32078.160
05	ASMG	72.00	13034.420
06	<b>G H M `G</b>	110.0	14046.040
07	<b>G H H G</b>	210.0	20166.000
08	BHEG	18.00	8277.2050
09	- B O G G	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	116.1	

INCREMENTAL COST OF RECEIVED POWER = 124.39480 WATER USED = 842.09 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 17.0000 TOTAL GENERATION COST = TK 132629.4

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	DEMAND = $1370$ .	0000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	80,00	11877.020
03	SHAG.	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	230.0	59258.520
06	<b>G H M G</b>	110.0	14046.040
07	<b>GННG</b> ·	210.0	20166.000
08	BHEG ·	18.00	8277.2050
09	BOGG	24.00	11768.520
. 10	GOAG	165.0	63291.850
11	KAPG	113.0	
INCR	EMENTAL COST OF	RECEIVED POWER	= 432.84010
W,	ATER USED = $81$	9.13 ACRE-FT	PER HOUR
CONV	ERSION FACTOR FO	R HYDRO UNIT =	59.3320
TOT	AL GENERATION CO	ST = TK 23866	3.8

GRAND TOTAL OF GENERATION COST = TK 471454.3

Consequently, the recent increase in hydro generation capacity of BPDB power system is justified. Moreover the hydro plant should be run at its maximum capacity at the peak load period for more economic operation of the system.

#### 6.2.3 Case study - Set C.

#### Introduction:

From the above two studies it is obvious that maximum hydro loading should be at the system peak load period. And hydro generation capacity has to be increased. So the consequence of extra generation capacity is to be evaluated. Again care must be taken about the annual inflow to the reservoir and the reservoir capacity. If the annual water inflow is too low in that case it is uneconomic to increase the capacity. But the hydrological study in the recent years giving the information of a quite impressive amount of water inflow which justifies the planned increase in the hydro capacity to 230 MW (description of the Kaptai hydro electric power plant along with the recent hydrological data have been given in section 6.1.2). It is important to find out whether or not there is scope for further increase in hydro generation capacity. The following studies were carried out with the object in view, using increased loading at BL, IL, and PL periods, because of increasing system demand from year to year.

Here two studies have been carried out considering the following:

- i) Hydro plant can generate upto 300 MW.
- ii) Hydro plant can generate upto 350 MW.

Base load (BL) = 705.4 MW Intermediate load (IL) = 1015.0 MW Peak load (PL) = 1370.0 MW

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAND = 705.4	40Ô0	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	33.29	4571.8640
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	90.00	10943.730
05	ASMG	72.00	13034.420
06	<b>G H M G</b>	33.00	5420.9670
07	_ СННС –	137.2	13409.940
08	BHEG	18.00	8277,2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	кард –	215.9	
INCRE	MENTAL COST OF	RECEIVED POWER	= 88.466860
WA	TER USED = $160$	07.3 ACRE-FI	PER HOUR
CONVE	RSION FACTOR FO	R HYDRO UNIT =	11.0310
TOTA	L GENERATION CO	ST = TK 90774	.89

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 1015.00	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	80.00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	110.1	21178.080
06	<u> </u>	110.0	14046.040
07	<b>G H H G</b> .	210.0	20166.000
08	внед	18.00	8277.2050
09	8 O G G	24.00	11768.520
10	GOAG	40.00	15422.200
11	КАРБ	2.872	

INCREMENTAL COST OF RECEIVED POWER = 238.70490 WATER USED = 58.696 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 36.6100 TOTAL GENERATION COST = TK 152713.7

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	DEMAND = 1370.0	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG -	60.00	7368.4800
02	SIDG '	80.00	11877.020
03	SHAG	60.00	10532.020
[·] 04	ASHG	300.0	32078.160
05	ASMG	230.0	59258.520
06	GHMG	110.0	14046.040
07	<u> </u>	210.0	20166.000
08	BHEG	60.00	37375.960
09	8 O G G	56.38	36273.730
10	GOAG	200.0	78911.000
11	КАРБ	3.617	
INCRE	MENTAL COST OF F	ECEIVED POWER	= 924.15050
WA	TER USED = 63.	556 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FOR	R HYDRO UNIT =	141.622
тота	L GENERATION COS	ST = TK 30788	6.9

GRAND TOTAL OF GENERATION COST = TK 551375.6

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

-			
· 1	DEMAND = 705.4	400 <b>0</b>	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	44.26	5615.3700
02	SIDG	27.56	4932.4220
03	SHAG	18.00	3348.7700
04	ASHG	207.7	<b>22290.46</b> 0
05	ASMG	72.00	13034.420
06	GHMG ·	34.27	5549.8890
07	бннб	210.0	20166.000
08	BHEG	18.00	8277.2050
09	80GG	24.00	11768.520
10,	GOAG	40.00	15422.200
11	KAPG	9.628	
INCRE	MENTAL COST OF F	RECEIVED POWER	= 101.80060
WA	TER USED = 102	2.91 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FOR	R HYDRO UNIT =	15.5000
тота	L GENERATION COS	ST = TK 11040	5.3

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2.	DEMAND = 1015.0000		
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	45.32	5723.8930
02	SIDG	28.66	5045.3370
03	SHAG	18.00	3348.7700
04	ASHG	221.8	237 <b>3</b> 2.410
-05	ASMG	72.00	13034.420
. 06	GHMG	38,96	6030.7920
07	ĠННĠ	210.0	20166.000
08	BHEG	18.00	8277.2050
09	80GG	24.00	11768.520
10 -	GOAG	40.00	15422.200
11	KAPG	298.3	
TNOOR	VENTAL AGAT OF A		

INCREMENTAL COST OF RECEIVED POWER = 103.08830 WATER USED = 2292.1 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 11.9870 TOTAL GENERATION COST = TK 112549.5

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3 DEMAND = 1370.0000 UNIT GENERATING STN GENERATION COST OF GEN NO - -NAME MEGA WATTS TAKA/HR 01 SIKG , 60.00 7368.4800 02 SIDG 80.00 11877.020 · 03 SHA.G 60.00 10532.020 ASHG 04 300.0 . 32078.160 ASMG 05 230.0 59258.520 06 GHMG 110.0 14046.040 07 GHHG 210.0 20166.000 08 B, H E G 57.52 35160.500 09 • B O G G 52.04 32359.170 10 GOAG 200.0 78911.000 11 KAPG 10.44 INCREMENTAL COST OF RECEIVED POWER = 879.26160 WATER USED = 108.26ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 133.758 TOTAL GENERATION COST = TK 301756.9

GRAND TOTAL OF GENERATION COST = TK 524711.7

ΙL

#### SET C : Cause study

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAND = 705.4	4000	• • •
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	39.94	5187.4050
02	SIDG	24.00	4577,2760
03	'SHAG	18.00	-3348.7700
04 .	ASHG	150.3	16604.110
05	ASMG	72.00	13034.420
06	GНМG	33.00	5420.9670
07	бннб	204.6	19645.370
08	BHEG	18.00	8277.2050
09	BOGG	24,00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	81.48	
INCRE	MENTAL COST OF I	RECEIVED POWER	<b>= 96.555100</b>
WA.	TER USED = 590	3.01 ACRE-FT	PER HOUR
CONVERSION FACTOR FOR HYDRO UNIT = 13.6500			
TOTAL GENERATION COST = TK 103286.2			

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 1015.00	00 -	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	52.78	6526.6530
02	SIDG	36.42	5880.5830
03	SHAG	18,00	3348.7700
04	ASHG	300.0	32078.160
05	ASMG	72.00	13034.420
06	д <b>н м д</b>	72.02	9588.0800
07	<b>G H H G</b> _	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	КАРĠ	171.8	
TNODE	MENTAL COST OF DE	CETVED DOWED	- 110 IEEEO

INCREMENTAL COST OF RECEIVED POWER = 112.15550 WATER USED = 1260.5 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 14.5480 TOTAL GENERATION COST = TK 126090.6

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

-			•
3	DEMAND = 1370.00	000	•
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIPG	80.00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	167.3	36973.630
06	GHMG	110.0	14046.040
07	бннб	210.0	20166.000
08	8 H E G	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	300.7	
INCRE	MENTAL COST OF RE	ECEIVED POWER	= 314.01350
WA	TER USED = 231	3.0 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FOR	HYDRO UNIT =	36.4410
TOTA	L GENERATION COS	r = TK 16850	9.3
	•		

GRAND TOTAL OF GENERATION COST = TK 397886.1

## SET D: Case Study

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAND = 705.40	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01 .	SIKG	33.29	4571.8640
02	SIDG	24.00	4577.2760
· 03	SHAG .	18.00	
04	ASHG		10943.730
05	ASMG	72.00	13034.420
06	GHMG .	33.00	5420.9670
07	<b>G H H G</b>		13409.940
0 <b>8</b>	внед	18,00	8277.2050
09	80GG	24.00	11768.520
10	GOAG	40.00	15422.200
11	·KAPG	215.9	
INCRE	MENTAL COST OF R	ECEIVED POWER	= 88.466860
		7.3 ACRE-FT	
	RSION FACTOR FOR		
TOTAI	_ GENERATION COS	T = TK 90774	.89
STUDY	FOR INTERMEDIAT	E LOAD PERIOD,	DURATION= 8 H
2	DEMAND = 1015.00		
UNIT	GENERATING STN		
NO '	NAME	MEGA WATTS	
01	SIKG	60.00	7368.4800
02	SIDG	80.00	11877.020
03	SHAG	60.00	
04	ASHG	300.0	32078.160
05	ASMG	110.1	21178.080
06	GHMG		14046.040
07	<u> G H H G</u>	210.0	20166.000

2	DEMAND = 1015.0	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO 1	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368,4800
02	SIDG	80.00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	110.1	21178.080
06	GHMG	110.0	14046.040
07	бннб	210.0	20166.000
08	<b>8</b> H E G	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	2.872	
INCRE	MENTAL COST OF R	ECEIVED POWER	= 238.70490

WATER USED = 58.696 ACRE-FT PER HOUR • CONVERSION FACTOR FOR HYDRO UNIT = 36.6100 TOTAL GENERATION COST = TK 152713.7

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	DEMAND = 1370.0	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368,4800
02	SIDG	80.00	11877.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	230.0	59258.520
06	<b>G H M G</b>	110.0	14046.040
07	<u> G H H G</u>	210.0	20166.000
08	BHEG	60.00	37375.960
. 09	BOGG	56.38	36273.730
10	GOAG	200.0	78911.000
11	KAPG .	3.617	
INCRE	MENTAL COST OF R	ECEIVED POWER	= 924.15050
` ₩A	TER USED = $63$ .	556 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FOR	HYDRO UNIT =	141.622
тота	L GENERATION COS	T = TK 30788	6.9

GRAND TOTAL OF GENERATION COST = TK 551375.6

## SET D: Case study

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAND = 705.4	1000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	44.75	5665.3610
· 02	S I D G	28.07	4984.4370
03	SHAG	18.00	3348.7700
04	ASHG	214.2	22954.710
05	ASMG	72.00	13034.420
06	GHMG	36.44	5771.4200
07	GHHG	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	KAPG	+.4691E-01	
INCRE	MENTAL COST OF P	RECEIVED POWER	= 102.39580
WA	TER USED = 39.	.695 ACRE-FT	PER HOUR
CONVE	RSION FACTOR FOR	R HYDRO UNIT =	15.7540
тота	L GENERATION COS	ST = TK 11139	3.0

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION: 8 HR

2	DEMAND = 1015.00	00	•
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	44.73	. 5663.2560
02	SIDG	28.05	4982.2470
03	SHAG	18.00	3348.7700
04	ASHG	213.9	22926.740
05	ASMG	72.00	13034.420
06	GHMG	36.35	5762.0920
07	GННG	210.0	20166.000
08	BHEG	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	КАРБ	310.0	
TNORE	MENTAL COST OF PE	CEIVED DOWER	- 102 37080 '

INCREMENTAL COST OF RECEIVED POWER = 102.37080 WATER USED = 2392.9 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 11.7910 TOTAL GENERATION COST = TK 111351.4

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	DEMAND = 1370.00	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	60.00	7368.4800
02	SIDG	80.00	11877`.020
03	SHAG	60.00	10532.020
04	ASHG	300.0	32078.160
05	ASMG	230.0	59258.520
06	GHMG	110.0	14046.040
07	GННG	210.0	20166.000
08	BHEG	60.00	37375.960
09	BOGG	56.38	36273.740
10	GOAG	200.0	78911.000
11	КАРБ	3.617	
INCRE	EMENTAL COST OF R	ECEIVED POWER	= 924.15060
	ATER USED = 63.		PER HOUR
CONVE	ERSION FACTOR FOR	HYDRO UNIT ≍	141.622
TOTA	AL GENERATION COS	T = TK _30788	.6.9

GRAND TOTAL OF GENERATION COST = TK 530631.4

# SET B: Case Study

STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR

1	DEMAND = 705.4	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKĠ	39.94	5187.4050
02	SIDG	24.00	4577.2760
03	SHAG	18.00	3348.7700
04	ASHG	150.3	16604.110
05 [°]	ASMG	· 72.00	13034.420
06	GHMG	33.00	5420.9670
07	<u> </u>	204.6	19645.370
08	BHEG	18.00	8277.2050
09	8 O G G	24.00	11768.520
10	GOAG	40.00	15422.200
11	КАРБ	81.48	
INCREN	1ENTAL COST OF R	ECEIVED POWER	= 96.555100
WAI	FER USED ≈ 593	.01 ACRE-FT	PER HOUR
CONVER	RSION FACTOR FOR	≀ HYDRO UNIT =	13.6500
TOTAL	_ GENERATION COS	ST = TK 10328	36.2

STUDY FOR INTERMEDIATE LOAD PERIOD, DURATION= 8 HR

2	DEMAND = 1015.00	00	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	SIKG	57.21	7036.1540
02	SIDG	41.04	6410.7040
03	SHAG	18.00	<b>3348.770</b> 0
04	ASHG	300.0	32078.160
05	ASMG	72.00	13034.420
. 06	G H M.,G	91.67	11845.840
07	GННG	210.0	20166.000
08	BHEG	18.00	8277,2050
09	8 O G G	24.00	11768.520
10	GOAG	40.00	15422.200
11	КАРБ	143.1	

INCREMENTAL COST OF RECEIVED POWER = 117.54810 WATER USED = 1042.0 ACRE-FT PER HOUR CONVERSION FACTOR FOR HYDRO UNIT = 15.6580 TOTAL GENERATION COST = TK 129388.0

STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR

3	DEMAND = 1370.00	000	
UNIT	GENERATING STN	GENERATION	COST OF GEN
NO	NAME	MEGA WATTS	TAKA/HR
01	.SIKG	60.00	7368.4800
02	SIDG	80.00	11877.020
03	SHAG	60.00	10532.020
-04	ASHG.	. 300.0	32078.160
05`	ASMG	116.9	22814.720
06	GHMG.	110.0	14046.040
07	GHHG	210.0	20166.000
08	8 H E G	18.00	8277.2050
09	BOGG	24.00	11768.520
10	GOAG	40.00	15422.200
11	· K A P G	351.1	
INCRE	MENTAL COST OF RE	ECEIVED POWER	= 247.57410
WA	ATER USED = 2756	5.4 ACRE <del>~</del> FT	PER HOUR
CONVE	RSION FACTOR FOR	HYÐRO UNIT =	27.5940
τοτρ	AL GENERATION COST	T = TK 15435	0.4

GRAND TOTAL OF GENERATION COST = TK 387024.6

	Maximum Hydro loading	Cost of Ge	neration	
	at	i) Р _{ямех} = 300 MW	ii) Pemar = 350 MW	
Typical weekday	BL	551375.60	551375.60	
(predicted)	$\mathbf{IL}$	524711.70	530631.40	
,	$\mathbf{PL}$	397886.10	387024.60	
	CL	471454.30	471454.30	

Discussion:

The above study reveals the following facts:

When the loading of the hydro plant capacity is increased from 300 MW to 350 MW it is found that

i) CL and BL costs remain unchanged.

ii) IL cost increases.

iii) PL cost decreases ( i.e, maximum cost benefit ).

Therefore the suggestions for BPDB power network utility service is to

i) load the hydro plant at peak load period with the maximum capacity of hydro generation.

ii) increase the hydro generation capacity.

6.3 Concluding remark on the results:

The inferences from the three sets of studies are given below:

1) When hydro capacity is 130 MW, to achieve the maximum cost benefit of generation, hydro maximum generation should have been at the peak load period. And whatever the case may be the hydro unit should always be in the running condition that is for the whole day to avoid spillage. From the table 6.1 and table 6.2 it is clear that for the low value of hydro capacity utility service has to spend more generation expenditure every year even when they run their hydro plant at its maximum capacity.

2) When the hydro capacity is 230 MW. There is a significant amount of savings, although the energy to be used as water to produce hydroelectric power is constant for all the cases.

3) If the hydro capacity could be increased from the 230 MW to 300 MW or 350 MW there is a further savings results which is detailed in the table 6.2.

Details of the scheduling pattern are given in the computer printout set-A, set-B and set-C. Some (details of weekend study) of them are not included because of the large number.

Table 6.1
-----------

	For maximum	n Cost of gene	ration	comment
Season/	hydro	when	when	on result
day	generation			(cost benifit)
	at	Taka/Hr.	Taka/Hr.	Taka/Hr.
Winter	BL	318740.90	321677.90	2937.0(loss)
weekend	IL	306425.60	301966.90	4458.7(gain)
	$\mathbf{PL}$	304084.50	289	432.30 14652.2(gain)
	CL	307390.00	307390.00	000.0
Winter/	BL	343076.30	344205.00	1128.70(loss)
weekday	IL	336449.60	332356.80	4092.80(gain)
	PL	323912.60	313967.90	9944.70( <b>g</b> ain) .
	CL	326503.50	326503.50	0.00
Summer/	BL	318079.70	320736.00	2656.3(loss)
weekend	$\mathbf{IL}$	310472.10	313740.60	3268.50(loss)
	PL į	305269.80	298301.80	6968.00(gain)
	CL	309923.70	309923.70	0.00
Summer/	BL	362852.10	362945.50	0093.40(loss)
weekday	IL	349559.90	365662.60	16102.70(loss)
	$\mathbf{PL}$	339048.60	330875.00	8173.60 <u>(g</u> ain)
	CL	343571.81	343571.80	0.00
Rainy/	BL	338526.40	337087.20	1439.20(gain)
weekend	IL .	337647.40	343723.80	6076.40(loss)
•	$\mathbf{PL}$	326919.40	319847.20	7072 <b>.2</b> 0(gain)
	CL	328685.70	328685.70	0.00
Rainy/	BL	410911.90	411789.60	10877.70(loss)
weekday	$\mathbf{IL}$	382933.90	413385.00	30451.10(loss)
	$\mathbf{PL}$	376169.80	359013.40	17156.40(gain)
	CL	387452.40	387452.40	0.00
Typical	BL	509375.30	<b>551160.50</b>	41785.20(loss)
predicted	I IL	472617.90	494224.50	21606.60(loss)
future	PL	464926.90	431374.70	33552.20(gain)
weekday	CL	471454.30	471454.30	0.00

. 6.52 Assuming more possible generation of hydro units : Another study is carried out for the following data;

i) Hydro maximum generation of 300 MW and 350.0 MW

Conside where For the study:	IL =1015.0 MW PL =1370.0 MW	; Duration = ; Duration =	12 Hours, 8 Hours,	
 Maximum ;	Cost of	generation (	in Taka/Hr.)	
hydro ¦	When			
generation at ;	$P_{Hmax} = (130MW)$	(230MW)	( 300MW )	(350MW)
Base load	509375.30	551160.	50 551375.6	0 551375.60
Int. load	472617.90	494224.50	524711.70	530631.40
Peak load	464926.90	431374.70	397886.10	387024.60
Const load	471454.30	471454.30	471454.30	471454.30

6 5 3

# Table 3 Unit commitment

Case 2 (set A) Ref. figure 6.2 (Winter weekday) Base load (BL) = 550.00 MW Intermediate load(IL) = 750.00 MW Peak load (PL) = 1025.00 MW

			<u>Merit order</u>	<u>unit commit</u>	nent	
<b>Priority</b>	Bus name	Рих	PMN	Capacity	Hour	Loading period
	KAPG(1)	130.	0.0	130.0	24	BL, IL, PL
1	GHHG(8)	340.	63.0	210.0	24	BL, IL, PL
2	ASHG(5)	640.	153.0	300.0	24	BL, IL, PL
3	SIKG(2)	700.	171.0	60.0	24	BL, IL, PL
4	GHMG (7)	810.	204.0	110.0	24	BL, IL, PL
5 [`]	SIDG(3)	890.	<b>228.0</b>	80.0	12	IL, PL
· 6	SHAG(4)	950.	242.0	60.0	12	IL, PL
7	ASMG(6)	1180.	318.0	230.0	12	IL, PL
8	GOAG(11)	1380.	358.0	200.0	4	PL
9	BOGG(10)	1460.	382.0	80.0		
. 10	BHEG(9)	1520.	400.0	60.0		

### Table 4

Unit commitment

Case 4 (set A) Ref. figure 6.4 (Summer weekday) Base load (BL) = 575.00 MW Intermediate load(IL) = 690.00 MW Peak load (PL) = 1090.00 MW

			<u>Merit orde</u>	<u>r unit commit</u>	ment	
<u>Priority</u>	Bus name	Pmx	PMN	Capacity	Hour	Loading period
	KAPG(1)	130.	0.0	130.0	24	BL, IL, PL
1	GHHG(8)	340.	63.0	210.0	24	BL, IL, PL
2	ASHG(5)	640.	153.0	300.0	24	BL, IL, PL
3	SIKG( 2)	700.	171.0	60.0	24	BL, IL, PL
4	GHMG (7)	810.	204.0	110.0	24	BL, IL, PL
5	SIDG(3)	890.	228.0	80.0	16 [°]	IL, PL
6	SHAG(4)	950.	242.0	60.0	16	IL, PL
7	ASMG(6)	1180.	318.0	230.0	6	PL
8	GOAG(11)	1380.	358.0	200.0	6	PL
9	BOGG(10)	1460.	382.0	80.0		· ·
10	BHEG(9)	1520.	400.0	60.0		

# Table 5 Unit commitment

Case 6 (set A)

Ref. figure 6.6 (Rainy season weekday).

Base load (BL) = 670.00 MW

Intermediate load(IL) = 837.1 MW

Peak load (PL) = 1153.00 MW

			<u>Merit order</u>	<u>unit commit</u>	ment	
Priority	Bus name	Рмх	Pmn	Capacity	Hour	Loading period
	KAPG(1)	130.	0.0	130.0	24	BL, IL, PL
1	GHHG(8)	340.	63.0	210.0	24	BL, IL, PL
2	ASHG(5)	640.	153.0	300.0	24	BL, IL, PL
3	SIKG( 2)	700.	171.0	60.0	24	BL, IL, PL
4	GHMG(7)	810.	204.0	110.0	24	BL, IL, PL
5	SIDG(3)	890.	228.0	80.0	24	BL, IL, PL
6	SHAG(4)	950.	242.0	60.0	15	IL, PL
7	ASMG(6)	1180.	318.0	230.0	15	IL, PL
<b>8</b> ·	GOAG(11)	1380.	358.0	200.0	. 3	$\mathbf{PL}$
9	BOGG(10)	1460.	382.0	80.0		• ·
10 ·	BHEG(9)	1520.	400.0	60.0		

# Table 6 Unit commitment

Case 7 (set A)

(Typical predicted future weekday)

Base load (BL) = 705.4 MW

Intermediate load(IL) = 1015.0 MW

Peak load (PL) = 1370.0 MW

			<u>Merit order</u>	<u>unit commitm</u>	ent	
Priority	Bus name	Рмх	Pmn	Capacity	Hour	Loading period
,	KAPG(1)	130.	0.0	130.0	24	BL, IL, PL
1	GHHG(8)	340.	63.0	210.0	24	BL, IL, PL
2	ASHG(5)	640.	153.0	300.0	24	BL, IL, PL
3	SIKG(2)	700.	171.0	60.0	24	BL, IL, PL
4	CHMG(7)	810.	204.0	110.0	24	BL, IL, PL
5	SIDG(3)	890.	228.0	80.0	24	BL, IL, PL
6	SHAG(4)	950.	242.0	60.0	24	BL, IL, PL
7	ASMG(6)	1180.	318.0	230.0	12	IL, PL
8	GOAG(11)	1380.	358.0	200.0	12	IL, PL
9	BOGG(10)	1460.	382.0	80.0	4	PL
10	BHEG(9)	1520.	400.0	60.0	.4	PL

### CONCLUSIONS AND RECOMMENDATIONS

#### CHAPTER 7

#### 7.1 INTRODUCTION:

In Bangladesh the only public utility service for Electrical power supply is (Bangladesh Power Development Board). They have hydro thermal power system. BPDB Within a very short time, it will start generating hydro power upto 230 MW. Now its maximum hydro generation is 130 MW. The hydro reserve is not enough to supply 230 MW or 130 MW throughout the day (Energy limited). But it is quiet possible to run the plant at its maximum capability for few hours. The cost of generation of a hydro plant is always assumed to be zero. So normally one may think of running the hydro plant throughout the day with a maximum possible constant generation. In that case the generation will definitely be well below the maximum generation So it is necessary for the utility system to know the situation for capacity. which the maximum fuel economy may be achieved. The most interesting thing is although the amount of water energy utilized to produce effective that. hydroelectric power is constant, yet it has been found that there is a difference cost economy depending upon the period of loading of the hydro plant in the in system.

In the economic evaluation  $Z_{BUS}$  matrix along with the load flow solution have been used for determining the effect of transmission loss coefficients. All the generator power limit constraints have been utilized. For the hydro plant the energy limitation and generation constraints have been taken into account. Hydro plant characteristics and amount of hydro energy that can be used in terms of acre-feet is obtained from the BPDB rule curve data and from daily discharge data.

#### 7.2 CONCLUSION:

From the analysis of the results obtained, it is clear that to get the best cost benefit, hydro units have to be run in such a way that during the period of study it would confine its maximum generation mainly within the peak load period. From the results it is obvious that for energy limited hydro units like those in Bangladesh have to be run during peak load. Again it has been found that if it is possible to generate more power from the same energy limited hydro plants, more economy results. The hydro plants must supply power to the grid during the peak load and float on bus during base load to supply the reactive vars also acts as a spining reserve.

The theoretical basis for the economic solution of hydro thermal power system have been developed in the previous chapters. And the flow diagram is used for computer program. A number of study have been carried out for base load, intermediate load and peak load period. A significant fact is that, for thermal systems hour by hour study can be made, but for a hydro thermal power system each study must span over a longer period (few hours or a day or a week) because of available water energy constraints associated with a reservoir.

It is also important to note that usual practice are to fix the generators at the power limits when they cross the limit. But it is shown in this work that the minimum/ maximum incremental cost of generation multiplied by the penalty factor of the plant must be compared with the global incremental cost of received power during that instant as detailed in sections 4.4-4.6 before fixing the unit at the power limit. Because constraints are always present in any system, their effects should not be neglected.

### 7.3 Recommendation for further research:

This is the first time any work on a hydrothermal power system has been carried out in BUET. Most of the previous works on economic operation of BPDB power network neglected the influence of the hydro plant or considered the hydro plant to be a constant source of power. Almost in all cases it has been assumed that hydro generation is a very small fraction of the total demand. But the study carried out here reveals its importance. Further work on this field may be of the following category:

i) Long range scheduling of hydro thermal power system.

ii) Solution of the economic scheduling problem of BPDB hydro thermal power network with complete data.

iii) Development of the exact characteristics of the hydro power plants using the instantaneous data.

iv) Using another method of unit commitment to get highest cost benefit.

v) Work on the on-line control of the economic power dispatch.

#### REFERENCES

1. Kirchmayer, L. K. : "Economic Operation of Power Systems," John Wiley & Sons, Inc., New York, 1958

2. Kirchmayer, L. K. : "Economic Control of Interconnected Systems," John Wiley & Sons, Inc., New York, 1959.

3. Stevenson, W. D. Jr. : "Elements of Power System Analysis," McGraw-Hill Book International Book Company, New York, 1982.

4. Venikov, V., Zhuravlev, V., Filippova, T. : "Optimal Operation of Power Plants and Electrical Systems," Mir Publishers. Moscow, 1984.

5. Heydt, G. T. : "Computer Analysis methods for Power Systems," Macmillan Publishing Company. New York. 1986.

6. El-Hawary, M. E. : "Electric Power Systems," Reston Publishing Company, Inc. A printice-Hall Company Reston, Virginia, 1983.

7. Miller, R. H. : "Power System Operation," McGraw-Hill Book Company, New York, 1970.

8. Neuenswander, J. R. : "Modern Power Systems," International Text Book Company, New York, 1971.

9. Elgard, O. I. : "Electrical Energy Systems Theory: An Introduction," Tata McGraw-Hill Publishing Company Limited., New Delhi, T M H Ed, 1973.

10. Nagrath, I. J. Kothari, D. : "Modern Power System Analysis," Tata Mc-Graw-Hill Publishing Company Limited, New Delhi. 1982.

11. George, E. E. : "Intrasystem Transmission Losses," AIEE Trans., Vol 62, March 1943.

12. Loane, E. S. and Watchorn, C. W. : "Probability methods applied to generating capacity problems of a combined hydro and steam system," AIEE Trans, Vol 66, October 1947.

13. Kirchmayer, L. K. and Stagg, G. W. : "Analysis of total and incremental losses in transmission systems," AIEE Trans. Vol 70, 1951.

14. Glimn, A. F et.al. : "Loss formula made easy," AIEE Trans. Vol 72, Part III', 1953.

15. Chandler, W. G et. al. : Short range economic operation of a combined thermal and hydroelectric power system," AIEE Trans, Part III (power apparatus and systems), Vol 72, October, 1953.

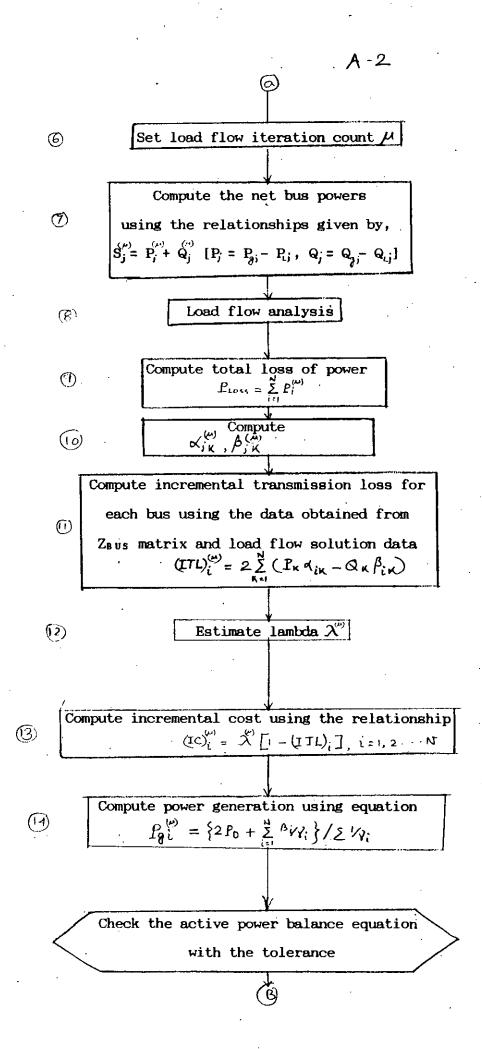
16. Cypser, R. J. : "Computer search for economical operation of a hydro thermal electric system." AIEE Trans. May 1954.

17. Glimn, A. F. , Habermann, Jr. R. et.al. : "Automatic Digital computer applied to generation scheduling." AIEE Trans. October 1954.


18. Dandeno, P.L. : "Hydro thermal economic scheduling - Computational experiance with co-ordination equations." AIEE Trans. February 1961.

19. Dhalin, E. B. and Shen, D. W. : "Optimal solution to the hydro steam dispatch problem for certain practical systems,' IEEE Transaction on power apparatus and systems. Vol. Pas-85, No. 5 May 1966.

20. Luo, J.S et. al.: "Bus incremental costs and economic dispatch." IEEE Transaction on power systems, Vol. PWRS-1, No. 1, February 1986.


21. Habibullahzadeh, H. and Bubenko, J. A: "Application of decomposition techniques to short term operation planning of hydro thermal power system," IEEE Transaction on power systems. Vol. PWRS-1. No. 1 February 1986.

22. El- Hawary, M.E and Kumar, M. : "Optimal parameter eastimation for hydro plant performance models in economic operation studies." IEEE Transactions on power systems. Vol. PWRS-1, No. 4. November 1986. Flow diagram for hydro-thermal economic dispatch.



1

· A-1



If no then update lambda and repeat from step 12. If yes go to the next step Check the generation value with the previous value If their differences are not within tolerance then advance iteration count of load flow and repeat from step 7 Otherwise next step Compute all line powers and generated powers for the respective interval loading including hydro power If all intervals are complete Go for the next step otherwise repeat from step 6 with the data for the next interval Compute total hydro discharge If total hydro use is within the tolerance

A-3

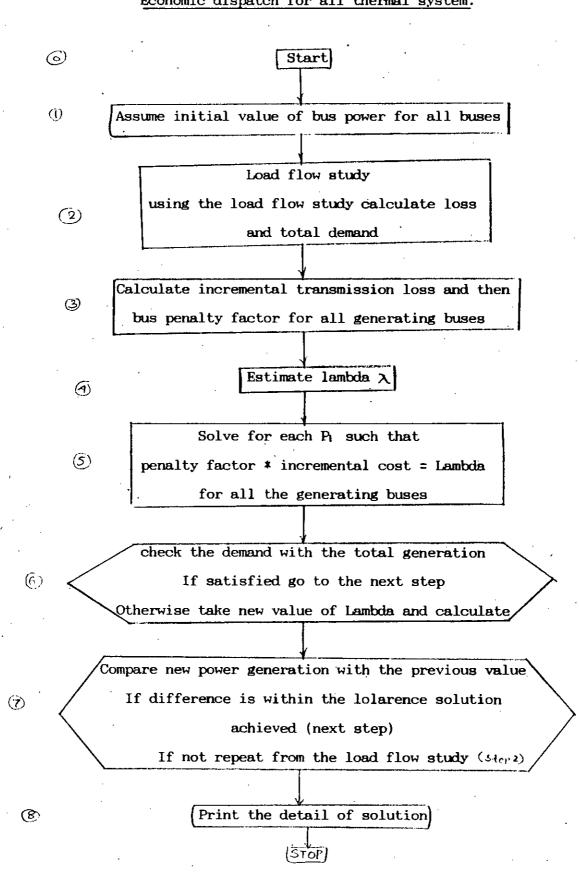
go to the next step

Otherwise if hydro use is less than the allowable

discharge decreament Gama and repeat from step 6

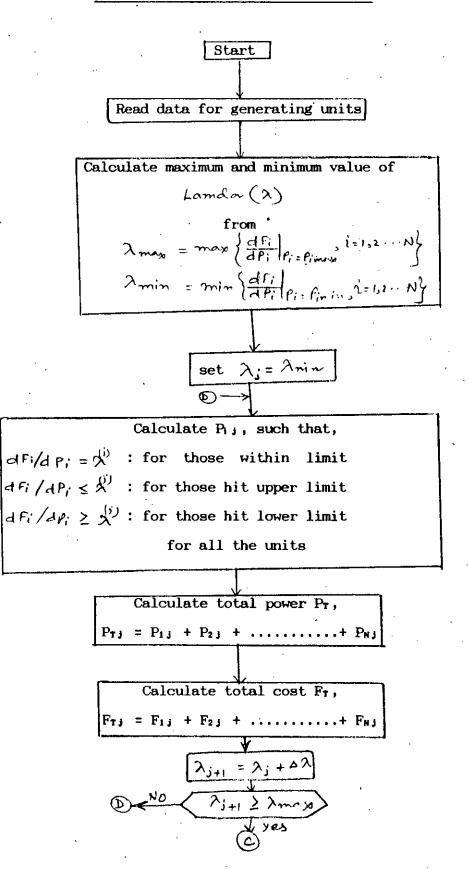
with the first interval data

Otherwise if greater than the allowable water volume.


inrease Gama and repeat from step 6

with the first interval data

Calculate the detail of loading of the generating units for each interval and also calculate the incremental cost of received power water conversion factor water use for each interval.


A-4





Economic dispatch for all thermal system:

A.5



### Flow chart for composit cost curve:

A-6

1

Least square curve fit using the data points,  $P_{Tj}$ ,  $F_{Tj}$ , : for j = 1,2,3,...

A-7

Prog	ram for Z _{BUS} fromation B-1
	COMPLEX A(20,20),P(50),DIVSR, AMULPR OPEN(5,FILE='ZB.DAT',STATUS='OLD') OPEN(6,FILE='ZB.OUT',STATUS='NEW') READ (5,1) N1,((A(I,J),J=1,N1),I=1,N1)
1	FORMAT(13/(8F8.3))
2	WRITE(6,2) ((A(I,J),J=1,N1),I=1,N1) FORMAT(///2X,'THE ORIGINAL MATRIX IS'//////(4(F8.3,'+J(',F8.3,'
	+)')//))
	N11=N1+1
	N2=2*N1
	DO 21 I = $1, N1$
21	DO 21 J = N11,N2 A(I,J)= $(0.0,0.0)$
61	JJ=N1
	DO 22 I=1,N1
	JJ=JJ+1
.22	A(I, JJ) = A(I, JJ) + (1.0, 0.0)
	N=N2 M=N1
	K=1
	DO 11 II=1,M
~	CHR = CABS(A(II,II))
С	IF(CHR) 7, 3, 7
3	11=11+1
Ũ	DO 4 12=11,M
	J1=II
	CHRJ=CABS(A(12,J1))
5	DO 6 J2=1,N
· ·	P(J2) = A(II, J2)
	A(II, J2) = A(I2, J2)
	A(12, J2) = P(J2)
6	CONTINUE
1	DIVSR=(1.0,0.0)*A(K,K) DO 8 J=1,N
	A(K,J) = A(K,J) / DIVSR
8	CONTINUE
	DO 10 I=1,M
	IF(I.EQ.K)GO TO 10 AMULPR=(1.0,0.0)*A(I,K)
	DO 9 $J=1,N$
	A(I,J) = A(I,J) - A(K,J) * AMULPR
9	CONTINUE
10	CONTINUE
11	K=K+1 CONTINUE
11	CONTINUE
	WRITE(*,*) ((A(I,J),J=N11,N),I=1,M)
	WRITE(6,12) ((A(I,J),J=N11,N),I=1,M)
12	FORMAT(////20X,'THE INVERSE MATRIX IS '//(4(1X,F7.5,'+J(',F7.5,')'
	+)//)) END
	DAD .

B-1

```
B-2
```

```
LEAST SQUARE CURVE FITTING
C .
      DIMENSION X(20),Y(20),F(20,6),FT(6,20),A(6,7),B(6),C(6)
      OPEN(3,FILE='A:FT.DAT')
      OPEN(5,FILE='A:FT.OUT')
      WRITE (5,*) 'DILDER'
С
      READ IN THE NUMBER OF C'S AND NUMBER OF DATA POINTS
      READ(3, *) M, N
      DO 60 I=1.N
      READ X-Y VALUES OF DATA POINTS
С
 60
      READ (3, *) X(I), Y(I)
С
      GENERATE THE F MATRIX
С
      DO 4 I=1,N
      F(I,1)=1.
      F(I, 2) = X(I)
 4
      F(I,3) = X(I) * X(I)
С
      WRITE(.5,*) ((F(I,J),J=1,M),I=1,N)
С
Ċ
С
      GENERATE THE TRANSPOSE OF THE F MATRIX
      DO 5 I=1,N
      DO 5 J=1,M
      FT(J,I)=F(I,J)
  5
      CONTINUE
С
      WRITE(5,*) 'TRANPOSE OF A MATRIX'
С
      WRITE(5,*) ((FT(J,I),J=1,M),I=1,N)
С
С
      DETERMINE COEFFICIENT MATRIX OF SIMULTANEOUS BQUATION SYSTEM
      CALL MATMPY(FT,F,A,M,N,M)
\mathbf{C}
      WRITE(5,*) 'MATRIX MULTIPLICATION A'
С
      WRITE(5,*) ((A(I,J),J=1,M),I=1,M)
      CALL MATMPY(FT,Y,B,M,N,1)
С
      WRITE(5,*) (B(I),I=1,M)
      DO 6 I=1,M
 6
      A(I, M+1) = B(I)
      MP1=M+1
      CALL CHLSKY(A,M,MP1,C)
      WRITE(5,*) (C(I),I=1,M)
      WRITE(5,73) (C(I),I=1,M)
73
      FORMAT('THE REQUIRED EQUATION IS'// ' PG = (', E12.5, ') + (', E12.5, ')
     +5,') * (IC)','+ ( ',E12.5,' ) * (IC)**2.0'/)
      STOP
      END
      SUBROUTINE MATMPY(A, B, C, M, N, L)
      DIMENSION A(6, 20), B(20, 6), C(6, 7)
С
      WRITE(5,*) 'SUBROUTINE MATMPY'
      DO 12 I=1.M
      DO 12 J=1,L
      C(I, J) = 0.
      DO 12 K=1,N
12
      C(I,J)=C(I,J)+A(I,K)*B(K,J)
      RETURN
      END
      SUBROUTINE CHLSKY (A,N,M,X)
      DIMENSION A(6,7), X(6)
      DO 13 J=2,M
13
      A(1,J) = A(1,J) / A(1,1)
      DO 18 I=2,N
      J = I
      DO 15 II=J,N
```

	SUM=0.
	JM1=J-1
	DO 14 K=1,JM1
14	SUM=SUM+A(II,K)*A(K,J)
15	A(II,J)=A(II,J)-SUM
	IP1=I+1
1	DO 17 JJ=IP1,M
	SUM=0.
	IM1=I-1
	DO 16 K=1,IM1
16	SUM=SUM+A(I,K)*A(K,JJ)
17	A(I,JJ) = (A(I,JJ) - SUM) / A(I,I)
18	CONTINUE
C	LL=N+1
	X(N)=A(N,N+1) L=N-1
	DO 110 NN=1,L
	SUM=0.
	I=N-NN
	IP1=I+1
	DO 19 $J=IP1,N$
19	SUM=SUM+A(I,J)*X(J)
110	X(I)=A(I,M)-SUM
	RETURN
	END

B-3

	hydr	ram for economic dispatch of B-4 o-thermal power system: PARAMETER (NN=11,MM=24*NN,NH=11) COMMON WAT,PGH, X, Y, Z, RS
	+ +	CHARACTER NAME (11)*9 DIMENSION PD(24),PL(24,NN),PG(24,NN),A(NN),PGMX(NN),PGMN(NN), WALOT(3), ALP(NN),BET(NN),GAM(NN),LAMX(NN),LAMN(NN),R(3,NN) , DEMAND(3),TC(3),GC(NN) REAL LAMDA,LAMX,LAMN
		DATA PD/24*0.0/,PG/MM*0.0/,A/NN*1.0/
• •	÷	DATA NAME / 'SIKG','SIDG','SHAG','ASHG', 'ASMG','GHMG','GHHG','BHEG','BOGG', 'GOAG', 'KAPG'/
		DATA PGMX/60.,80.,60.,300.,200.,110.,210.,60.,35.,230.,3000. / DATA PGMN/15.,20.,25.,80.,70.,35.,55.,23.,15.,55.,0.0 /
		DATA R(1,1),R(1,2),R(1,3),R(1,4),R(1,5),R(1,6),R(1,7),R(1,8), R(1,9),R(1,10),R(1,11)/12.0E3 ,12.0E3 ,12.0E3 ,12.0E3 ,12.0E3, 12.0E3 , 12.0E3, 5.0,5.0,5.0, 2.1 /
		DATA R(2,1),R(2,2),R(2,3),R(2,4),R(2,5),R(2,6),R(2,7),R(2,8), R(2,9),R(2,10),R(2,11)/12.0E3 ,12.0E3 ,12.0E3 ,12.0E3 ,12.0E3 , 12.0E3 , 12.0E3, 5.0,5.0,5.0, 2.6 /
	• +	DATA R(3,1),R(3,2),R(3,3),R(3,4),R(3,5),R(3,6),R(3,7),R(3,8), R(3,9),R(3,10),R(3,11)/12.0E3 ,12.0E3 ,12.0E3 ,12.0E3 ,12.0E3 , 12.0E3 , 12.0E3, 5.0,5.0,5.0, 2.3 /
		DATA EPS2/30.0/
		DATA DEMAND/3*0.0/
		OPEN (9,FILE='OP.OUT',STATUS='NEW') OPEN (9,FILE='OP1.DAT',STATUS='NEW')
		GT=0.0
C C C C		READ LOAD DATA FOR EACH PERIOD AND COEFFICIENTS OF GENERATOR CHARACTERISTICS READ LINE DATA AND LIMIT OF REACTIVE VAR INFORMATION OF VOLTAGES AT DIFFERENT BUSES
1		DO 1 I=1,NN-1 ALP(I)=R(1,I)*ALP(I) BET(I)=R(1,I)*BET(I) GAM(I)=R(1,I)*GAM(I) CONTINUE
_ 10	01	DO 101 I=1,NN WRITE(*,*)ALP(I),BET(I),GAM(I) CONTINUE
		NB=NN
С		WRITE(*,'(A)') ' 2;1H UNIT1 UNIT2 UNIT3 '

.

·

DO 200 IH = 1,3ALP(NH)=ALP(NH)*R(IH,NH) BET(NH)=BET(NH)*R(IH,NH) GAM(NH) = GAM(NH) * R(IH, NH)X = ALP(NH)Y = BET(NH)Z = GAM(NH)RS=R(IH, NH)DO 4 I=1,NB LAMX(I) = BET(I) + 2.0 * GAM(I) * PGMX(I)LAMN(I) = BET(I)+2.0*GAM(I)*PGMN(I) CONTINUE DO 2 I =1,NNDEMAND(IH)=DEMAND(IH)+PL(IH,I) CONTINUE WRITE(*,*) ' DEMAND = ',DEMAND(IH)

RT1=RS

DO 21 I=1.NN A(I) = 1.0PG(IH, I) = 0.021 CONTINUE

> ALP(NH) = ALP(NH) * RS/RT1BET(NH)=BET(NH)*RS/RT1 GAM(NH) = GAM(NH) * RS/RT1LAMX(NH)=LAMX(NH)*RS/RT1 LAMN(NH)=LAMN(NH)*RS/RT1

X = ALP(NH)Y = BET(NH)Z=GAM(NH)

18 -

5

С

6

CONTINUE PD(IH) = 0.0DO 5 K=1,NBIF(A(K).EQ.0.0) WRITE(*,'(A12,I2,A)')'20HUNIT:',K,'EXCLUDED' PD(IH) = PD(IH) + PL(IH, K) + PG(IH, K) * (A(K) - 1.0)CONTINUE WRITE(*,'(A\)')' 18;20HPD(1)'

WRITE(*,*) PD(IH)

SUM=0.0 DSUM=0.0 DO 6 I=1,NBSUM + (BET(I)/GAM(I)) * A(I)SUM= DSUM = DSUM + A(I)/GAM(I)CONTINUE

2

4

20

•	
	IF(DSUM.EQ.0.0) THEN WRITE(*,*) ' ALL STATIONS CROSS THE LIMIT' STOP 1
	ENDIF LAMDA= (2.0*PD(IH)+SUM)/DSUM
	DO 7 I=1,NB IF (A(I) .EQ. 1.0) THEN PG(IH,I)=((LAMDA-BET(I))/(2.0*GAM(I))) ENDIF
7	CONTINUE
С	WRITE (*,*) PG(1H,I)
	COUNT=0.0 DO 8 I=1,NB IF(PG(IH,I).GT.PGMX(I)) THEN PG(IH,I)=PGMX(I) A(I)=0.0 COUNT=COUNT+1.0
	ENDIF IF(PG(IH,I).LT.PGMN(I)) THEN
	PG(IH,I) = PGMN(I) $A(I) = 0.0$ $COUNT = COUNT + 1.0$
_	ENDIF
8	CONTINUE
11	WRITE(*,'(A19,F2.0,A8)') ' CNT=',COUNT IF(COUNT.EQ. 0.0)GO TO 19
16	TEMP=0.0 DO 16 K=1,NB TEMP=TEMP+PG(IH,K)*(A(K)-1.0)+PL(IH,K) CONTINUE
10	SUM=0.0 DSUM=0.0 DO 17 I=1,NB SUM= SUM + (BET(I)/GAM(I))*A(I)
17 -	DSUM= DSUM + A(I)/GAM(I) CONTINUE
	IF(DSUM.EQ.0.0) THEN WRITE(*,*) ' ALL STATIONS CROSSED THE LIMIT' STOP 2
	ENDIF LAMDA= (2.0*TEMP +SUM)/DSUM
	DO 14 I=1,NB IF(A(I).LT. 1.0) THEN IF(ABS(PG(IH,I)-PGMN(I)).LE. 0.0001.AND.LAMN(I).LT.LAMDA)A(I)=1.0 IF(ABS(PG(IH,I)-PGMX(I)).LE. 0.0001.AND.LAMX(I).GT.LAMDA)A(I)=1.0 ENDIF
14	CONTINUE WRITE(*,'(A7,6F10.2)')(PG(1,I),I=1,11)

С

8

1

	.5 1
19	GO TO 18 PGH=PG(IH,NH) WRITE(*,*)'HYDRO GENERATION= ',PGH
	CALL WATER
<b>,</b> 	IF (ABS(WAT-WALOT(IH)).LE. EPS2)GO TO 13 IF (WAT .GT. WALOT(IH)) THEN RT1=RS RS=RS+.35 R(IH,NH)=RS GO TO 20 ENDIF
	ENDIF IF (WAT .LT. WALOT(IH)) THEN RT1=RS RS=RS029
	R(IH,NH)=RS GO TO 20 ENDIF
13	COST=0.0 WRITE (*,*) (PG(IH,I),I=1,NB),LAMDA WRITE(*,*)'WATER USED=',WAT, 'CONV FACTOR=',R(IH,NH) WRITE(*,*) (ALP(I),BET(I),GAM(I),I=1,NN) DO 201 K=1,NN-1
201	COST=COST+ALP(K)+BET(K)*PG(IH,K)+GAM(K)*PG(IH,K)*PG(IH,K) CONTINUE WRITE (*,*) 'GEN COST= TK ', COST , ' FOR HOUR ', IH
	ALP(NH)=ALP(NH)/R(IH,NH) BET(NH)=BET(NH)/R(IH,NH) GAM(NH)=GAM(NH)/R(IH,NH)
	IF (IH .EQ. 1)THEN
203	WRITE(9,203) FORMAT(2X,'STUDY FOR BASE LOAD PERIOD, DURATION = 12 HOUR'/) ELSEIF (IH .EQ. 2)THEN WRITE(9,204)
204	
205	FORMAT(2X,'STUDY FOR PEAK LOAD PERIOD, DURATION = 4 HR'/) ENDIF WRITE(9,206) IH, DEMAND(IH)
206	FORMAT(3X, 12, ' DEMAND = ', $F10.4/$ )
202	<pre>WRITE(9,202) FORMAT(1X,'UNIT',' GENERATING STN',' GENERATION',' COST OF + GEN') UDITE(0,010)</pre>
·213	WRITE(9,213) FORMAT(1X,'NO',6X,' NAME ',5X,' MEGA WATTS',4X,' TAKA/HR'/)
208	DO 207 L=1,NH-1 GC(L)=ALP(L)+BET(L)*PG(IH,L)+GAM(L)*PG(IH,L)*PG(IH,L) TC(IH)=TC(IH)+GC(L) WRITE(9,208)L,NAME(L),PG(IH,L),GC(L) FORMAT(3X,12.2,4X,A9,7X,G12.4,1X,G14.8)
207	CONTINUE

209.	WRITE(9,209)NH,NAME(NH),PG(IH,NH) FORMAT(3X,I2.2,4X,A9,7X,G12.4/) WRITE(9,210)LAMDA, WAT, R(IH,NH)
210	FORMAT(2X,'INCREMENTAL COST OF RECEIVED POWER =',G14.8/5X,'WATER + USED =',G12.5,'ACRE-FT PER HOUR'/2X,'CONVERSION FACTOR FOR HYDRO +UNIT =',G14.6/)
211	WRITE(9,211)TC(IH) FORMAT(3X,'TOTAL GENERATION COST = TK ',G14.7/)
	GT = GT + TC(IH)
200	CONTINUE WRITE (9,212)GT
212	FORMAT(2X, 'GRAND TOTAL OF GENERATION COST = TK',G14.7/)
	STOP END
	SUBROUTINE WATER PARAMETER(NH=11) COMMON WAT,PGH, X, Y, Z, RS
	QW=( X+ Y*PGH + Z*PGH*PGH )/RS WAT = QW
	RETURN END

B-9 Program for economic dispatch (all thermal) PROGRAM PARAMETER(NN=41, MM=33)COMPLEX YSHT.YSER.SERY,SHTY,Y,VI,VII,SUM,S,R,DX,ZSER,SERZ, +VN,CMP,A,B,V,X,ZBUS INTEGER SB,EB REAL LENGTH, MAGV, ITL, LPA, IC, LAMDA COMMON/XX/NB,X(66,66), ZBUS(33,33) COMMON/YY/VA, P, Q, QMAX, QMIN, V, VSPEC, VN, DELTA, VI, VII, EPS1, EPS2, MB, Y COMMON WAT, PGH, X, Y, Z, RS DIMENSION LINE(NN), SB(NN), EB(NN), LENGTH(NN), YSHT(NN), YSER(NN), +SERY(NN),SHTY(NN),A(NN),B(NN,NN),V(NN),P(NN),Q(NN),QMAX(NN), +QMIN(NN), VSPEC(NN), ZSER(NN), SERZ(NN), VN(MM), Y(MM, MM), ALPHA(NN, NN), +BETA(NN,NN),ITL(NN),DELTA(NN),PG(MM),PL(MM),IC(MM),LPA(MM), +BTA(MM), GAM(MM), LAMDA(50), PLS(30), SUM2(24), ALPHP(NN, NN), BETAP(NN +, NN), TPG(MM), YABS(NN, NN), PSI(NN, NN); RZ(NN, NN), TG(NN), VA(MM) +, PGT(50)OPEN (5,FILE='SL.DAT',STATUS='OLD') OPEN (6, FILE='SL.OUT', STATUS='NEW') READ(5,31) NB,NL,MB,EPS1 ,EPS2 DO 32 I=1,NB 32 PG(I) = 0.0NB,NL,MB,EPS1,EPS2 WRITE(*,*) DO 67 I=2,1167 READ(5,77) PG(I)77 FORMAT(F8.3) DO 69 I = 1.11READ(5,'(3F9.4)') LPA(I), BTA(I), GAM(I) 69 DO 1 I=1,NBDO 1 J=1,NBY(I, J) = CMPLX(0.0, 0.0)1 DO 2 I=1.NL READ(5,31) LINE(I),SB(I),EB(I),LENGTH(I),YSHT(I),ZSER(I) 31 FORMAT(315, F5.1, 4F10.3) SHTY(I)=YSHT(I)*LENGTH(I) SERZ(I)=ZSER(I)*LENGTH(I) SERY(I) = 1.0 / SERZ(I)L=SB(I)M = EB(I)Y(L,L)=Y(L,L)+SERY(I)+SHTY(I)/2.Y(M,M) = Y(M,M) + SERY(I) + SHTY(I)/2. Y(L,M) = Y(L,M) - SERY(I)2 Y(M,L)=Y(M,L)-SERY(I)

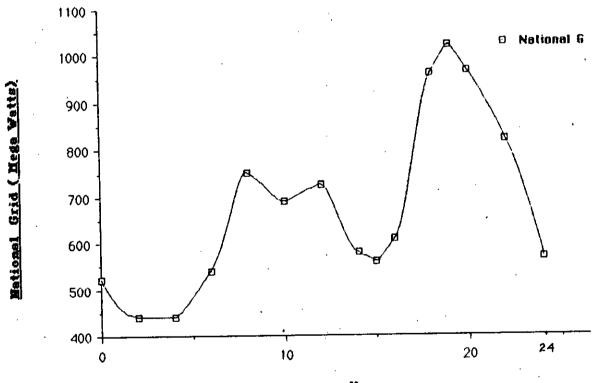
```
WRITE(6, 34)
      FORMAT('1',T38,'LINE DATA'//T8,'LINE',T15,'SB',T19,'EB',T24,
34
     +'LENGTH', T36, 'SHUNT ADMITTANCE', T58, 'SERIES IMPEDANCE'/)
      DO 3 I = 1, NL
      WRITE(6,35) LINE(I), SB(I), EB(I), LENGTH(I), SHTY(I), SERZ(I)
3
      FORMAT(' ', T6, 315, F8.1, 4X, 2F9.4, 4X, 2F9.4)
35
      WRITE(6,36)
      FORMAT(////T10,'BUS ADMITTANCE MATRIX'//)
36
      DO 4 I=1,NB
4
      WRITE(6, 37) (Y(I,J), J=1, NB)
37
      FORMAT (4(F9.4,1X,F9.4,1X)/)
      DO 38 I=1,NB
      DO 38 J=1,NB
38
      X(I,J) = Y(I,J)
      CALL ZBUSM
      WRITE(6,39)
39
      FORMAT(///T10,'BUS IMPEDANCE MATRIX '//)
      WRITE (6,40)((ZBUS(I,J),J=1,NB),I =1,NB)
      FORMAT(2(2X,E14.6,'+j (',E14.6,')',4X))
40
      K=MB+1
      . .
      READ (5, 41) (PL(I), I=1, NB)
      WRITE(*,*) (PL(I),I=1,NB)
      DO 42 I=1,NB
      P(I) = PG(I) - PL(I)
42
      CONTINUE
      READ (5, 41) (Q(I), I=K, NB)
      WRITE(*,*) (Q(I),I=K,NB)
      READ (5,41) V(1), (VSPEC(I), I=2, MB)
      WRITE(*,*) V(1), (VSPEC(1), I=2, MB)
      READ (5,41) (QMIN(I),QMAX(I),I=2,MB)
      WRITE(*,*) (QMIN(I),QMAX(I),I=2,MB)
41
      FORMAT(8F8.3)
      GO TO 600
111
      DO 43 I=1,NB
43
      P(I) = PG(I) - PL(I)
      DO 62 I=1,NB
600
      TG(I) = PG(I)
62
      CONTINUE
```

B-10

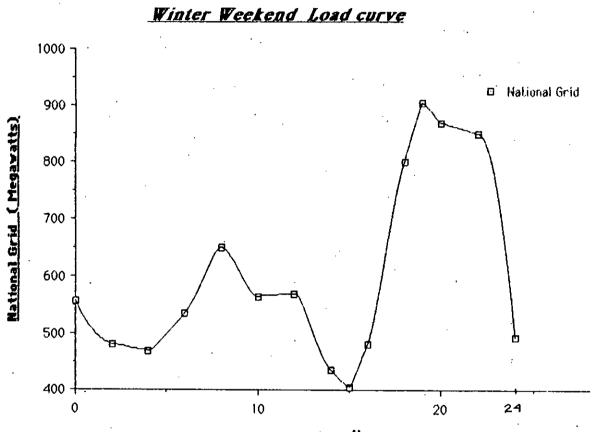
		13-11
		CALL SLF WRITE(*,'(A,I2)') ' RETURN FROM SLF',MB DO 63 I=1,NB PG(I)=P(I)+PL(I)
	63	WRITE(*,*)'PG(',I,')',PG(I) CONTINUE
	64	DO 64 I=1,NB IF(ABS(PG(I)-TG(I)).GT. 0.1)GO TO 65 CONTINUE
		GO TO 23
	65	DO 44 I=1,NB DO 44 NU=1,NB IF (ABS(AIMAG(Y(1,NU))).LE.1.E-07)THEN PSI(I,NU)=0.0 GOTO 68
		END1F IF (ABS(REAL(Y(I,NU))).LE.1.E-07)THEN PSI(I,NU)=3.141593/2 GOTO 68 ENDIE
•	6 <b>8</b>	ENDIF PSI(I,NU)=ATAN2(AIMAG(Y(I,NU)),REAL(Y(I,NU))) YABS(I,NU)=CABS(Y(I,NU)) RZ(I,NU) = REAL(ZBUS(I,NU))
	44	CONTINUE
	4 5	DO 45 J=1,NB DO 45 K=1,NB ALPHA(J,K)=(RZ(J,K)/(VA(J)*VA(K)))*COS(DELTA(J)-DELTA(K)) BETA(J,K)=(RZ(J,K)/(VA(J)*VA(K)))*SIN(DELTA(J)-DELTA(K)) CONTINUE
	. 46	DO 46 I=1,NB DO 46 J=1,NB DO 46 K=1,NB FX= 1.0/(YABS(I,J)*VA(J)*SIN(DELTA(J)-DELTA(I)+PSI(I,J))) FY= 1.0/(YABS(I,K)*VA(K)*SIN(DELTA(K)-DELTA(I)+PSI(I,J))) ALPHP(J,K)=(BETA(J,K)/VA(I))*(FX-FY) BETAP(J,K)=(ALPHA(J,K)/VA(I))*(FY-FX) CONTINUE
		SUM1=0.0
-	47	DO 47 J=1,NB DO 47 K=1,NB SUM1 = SUM1+ ((P(J)*P(K)+Q(J)*Q(K))*ALPHP(J,K)-(P(J)*Q(K)-Q(J)* +P(K))*BETAP(J,K)) CONTINUE
	•	DO 48 I=1,NB
	48	ITL(I)=0.0 SUM2(I)=0.0 CONTINUE
		·

•			
49	DO 49 I=1,NB DO 49 K=1,NB SUM2(I)= SUM2(I)+2.0*(P(K)*ALPHA(I,K CONTINUE	)-Q(K)*BETA(I,K))	
50.	DO 50 I=1,NB ITL(I)=ITL(I)+SUM1+SUM2(I) CONTINUE		
51	PLS(K1)=0.0 DO 51 I=1,NB DO 51 J=1,NB PLS(K1)=PLS(K1)+(ALPHA(I,J)*(P(I)*P( +P(J)-P(I)*Q(J))) CONTINUE	J)+Q(I)*Q(J))+BETA(I,J)*(Q(	(I)*
5 <b>2</b>	WRITE(6,52)K1, PLS(K1) FORMAT(5X,12, 'LINE LOSS=',F10.7)		•
53	WRITE(6,53)(I,ITL(I),I=1,NB) FORMAT(5X,'ITL(',I2,') =',E12.5/)		,
С	NEW BLOCK		·.
61	PLT =0.0 DO 186 I=1,NB PGT(K1) = PGT(K1) +PG(I) PLT = PLT + PL(I)		
186	CONTINUE PTD=PLT+PLS(K1) K1=K1+1 IL=IL+1 IF (IL.GT.1) GO TO 599 LAMDA(1)=2.5		T
599	GO TO 602 IF (IL.GT.2) GO TO 601 LAMDA(2)=2.7 GO TO 602		
601	LAMDA(IL)=LAMDA(IL-1)+(PTD-PGT(IL-1) +(PGT(IL-1)-PGT(IL-2)))	) * ( (LAMDA (IL-1) - LAMDA (IL-2	))/
602 54	DO 54 I=1,11 IC(I)=LAMDA(I)*(1.0-ITL(I))	. ·	
60	DO 60 $I=1,11$ TPG(I)=PG(I)	· · · · · · · · · · · · · · · · · · ·	
55	DO 55 I=1,11 PG(I)=(IC(I)-BTA(I))/(2.0*GAM(I)) DO 56 I=1,11 IF (ABS(PG(I)-TPG(I)).GT.0.1)GO TO 6	51	· .
56 23	CONTINUE WRITE(6,66)(I,PG(I),I=1,11)	•	
23 66	FORMAT( $5x$ , 'PG(', 12, ') = ', F8.4)		
	•		

202 213	<pre>WRITE(6,202) FORMAT(1X,'UNIT',' GENERATING STN',' GENERATION',' COST OF + GEN') WRITE(6,213) FORMAT(1X,'NO',6X,' NAME ',5X,' MEGA WATTS',4X,' TAKA/HR'/)</pre>		
208	DO 207 L=1,NH-1 GC(L)=ALP(L)+BET(L)*PG(IH,L)+GAM(L)*PG(IH,L)*PG(IH,L) TC(IH)=TC(IH)+GC(L) WRITE(6,208)L,NAME(L),PG(IH,L),GC(L) FORMAT(3X,I2.2,4X,A9,7X,G12.4,1X,G14.8)		
207	CONTINUE		
209	WRITE(6,209)NH,NAME(NH),PG(IH,NH) FORMAT(3X,I2.2,4X,A9,7X,G12.4/)		
210	WRITE(6,210)LAMDA, WAT, R(IH,NH) FORMAT(2X,'INCREMENTAL COST OF RECEIVED POWER =',G14.8/5X,'WATER + USED =',G12.5,'ACRE-FT PER HOUR'/2X,'CONVERSION FACTOR FOR HYDRO +UNIT =',G14.6/)		
211	WRITE(6,211)TC(IH) FORMAT(3X,'TOTAL GENERATION COST = TK ',G14.7/)		
	GT = GT + TC(IH)		
200	CONTINUE		
212	WRITE (6,212)GT FORMAT(2X, 'GRAND TOTAL OF GENERATION COST = TK',G14.7/)		
	STOP END		
	SUBROUTINE ZBUSM COMPLEX A,P(50),DIVSR, AMULPR,ZBUS COMMON/XX/ N1,A(16,16),ZBUS(8,8)		
2	<pre>WRITE(*,'(A)') ' ENTERING ZBUSM' WRITE(6,2) ((A(I,J),J=1,N1),I=1,N1) FORMAT(///2X,'THE ORIGINAL MATRIX IS'//////(4(F8.3,'+j(',F8.3,' +)')//)) N11=N1+1 N2=2*N1 DO 31 I = 1,N1</pre>		
31	DO $31 J = N11, N2$ A(I,J)=(0.0,0.0)		
	JJ=N1 DO 22 I=1,N1 JJ=JJ+1		
22	A(I,JJ)=A(I,JJ)+(1.0,0.0) N=N2 M=N1 K=1 DO 11 II=1,M CHR = CABS(A(II,II))		
3	IF(CHR) 7, 3, 7 I1=II+1		


```
DO 4 12=11,M
      J1=II
      CHRJ=CABS(A(12, J1))
      IF(CHR)5, 4, 5
4
      CONTINUE
5
      DO 6 J2=1, N
      P(J2) = A(II, J2)
      A(II, J2) = A(I2, J2)
6
      A(12, J2) = P(J2)
7
      DIVSR = (1.0, 0.0) * A(K, K)
      DO 8 J=1,N
      A(K,J) = A(K,J) / DIVSR
8
      CONTINUE
      DO 10 I=1,M
      IF(I.EQ.K)GO TO 10
      AMULPR = (1.0, 0.0) * A(I, K)
      DO 9 J=1,N
      A(I,J)=A(I,J)-A(K,J)*AMULPR
9
      CONTINUE
10
      CONTINUE
      K=K+1
11
      CONTINUE
      DO 74 I=1,N1
      DO 73 JD=1,N1
      J = N1 + JD
      ZBUS(I,JD) = A(I,J)
73
      CONTINUE
74
      CONTINUE
                    ((A(I,J),J=N11,N),I=1,M)
      WRITE(*,*)
      WRITE(6, 12)
                    ((A(I,J), J=N11, N), I=1, M)
      FORMAT(////20X,'THE INVERSE MATRIX IS '//(4(1X,F8.5,'+j(',F8.5,')'
12
     +)//))
      RETURN
      END
      SUBROUTINE SLF
      PARAMETER(NN=14,MM=8)
      COMPLEX Y, VI, VII, SUM, S, R, DX, VN, CMP, A, B, V, X, ZBUS
      DIMENSION A(NN), B(NN, NN), V(NN), P(NN), Q(NN), QMAX(NN),
     +QMIN(NN),VSPEC(NN),VN(MM),Y(MM,MM),DELTA(NN),VA(MM)
      COMMON/YY/VA, P, Q, QMAX, QMIN, V, VSPEC, VN, DELTA, VI, VII, EPS1, EPS2, MB, Y
      COMMON/XX/NB, X(16, 16), ZBUS(8, 8)
      WRITE(*,'(A)') ' ENTERING SLF...
      NB=MM
      K=MB+1
      DO 5 I=2,NB
       IF(I.LT.K)Q(I)=0.0
      V(I) = CMPLX(1.0, 0.0)
      IF(I.GT.MB)A(I) = (CMPLX(P(I), (-Q(I))))/Y(I,I)
      DO 51 J=1,NB
      IF (I.NE.J)B(I,J)=Y(I,J)/Y(I,I)
51
      CONTINUE
5
      CONTINUE
      N=0
      DVMAX=0.0
6
       I = 2
7
       VII= V(I)
```

B-15


IF(I-MB)8,8,15 V(I) = (V(I) / CABS(V(I))) * VSPEC(I)8 SUM=CMPLX(0.0,0.0)DO 9 L=1,NB 9 SUM=SUM+Y(I,L)*V(L)Q(I) = -AIMAG(SUM * CONJG(V(I)))IF (Q(I)-QMAX(I)) 10,14,11 IF (Q(I)-QMIN(I)) 12,14,14 10 11 Q(I) = QMAX(I)GO TO 13 12 Q(I) = QMIN(I)13 V(I) = VII14 A(I) = (CMPLX(P(I), (-Q(I))))/Y(I,I)15 SUM=CMPLX(0.0,0.0)VI=V(I)DO 16 L=1,NB 16 IF(L.NE.I)SUM=SUM+B(I,L)*V(L) VN(I) = A(I) / CONJG(V(I)) - SUMDX=VN(I)-VI VN(I)=VI+EPS1*DX DELV=CABS(VN(I)-VII) IF (DELV.GE.DVMAX)DVMAX=DELV I = I + 1IF(I.LE.NB)GO TO 7 DO 17 I=2,NB 17 V(I) = VN(I)N=N+1IF (DVMAX.LE.1.E-04)GO TO 19 IF(N.LT.100)GO TO 6 WRITE(6,106)N 106 FORMAT(///,T10,'CONVERGENCE NOT OBTAINED IN', 13, 'ITERATIONS') 19 SUM = CMPLX(0.0,0.0)DO 20 I=1,NB 20 SUM = SUM + Y(1, I) * V(I)P(1) = REAL(SUM * CONJG(V(1)))Q(1) = -AIMAG(SUM * CONJG(V(1)))DO 27 I=1,NB DELTA(I) = ATAN2(AIMAG(V(I)), REAL(V(I)))27 VA(M) = CABS(V(M))RETURN END SUBROUTINE WATER PARAMETER (NH=11) COMMON WAT, PGH, X,Y,Z,RS QW = (X+Y*PGH+Z*PGH*PGH)/RSWAT=QW RETURN END

Winter Weekday Load curve

C · I



<u>Hour</u>



Hour .

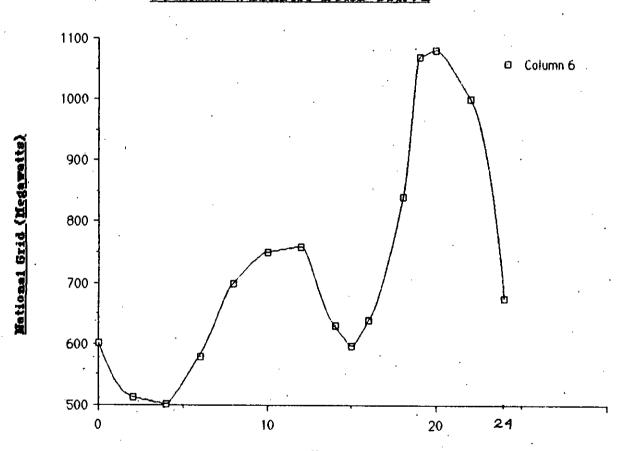
C. 2

National Grid 2

10

400 -

0

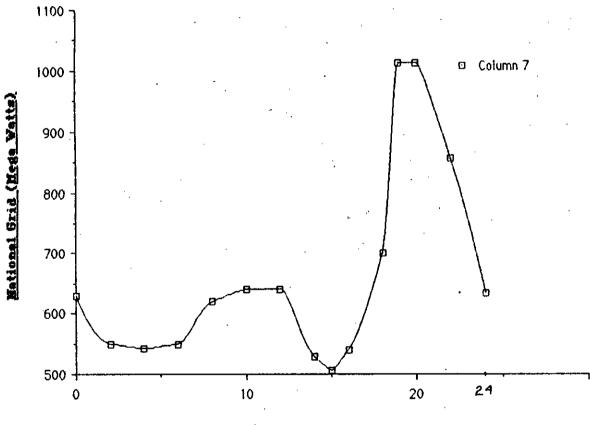

SUMMER WEEKEND LOAD CURVE

C.3 .

Hour

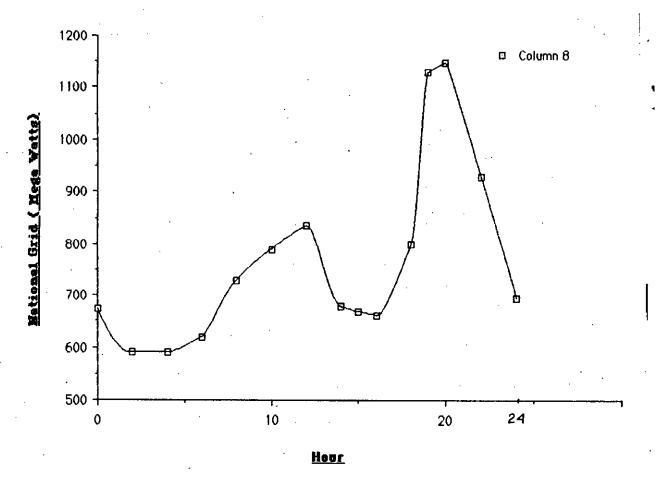
20

24

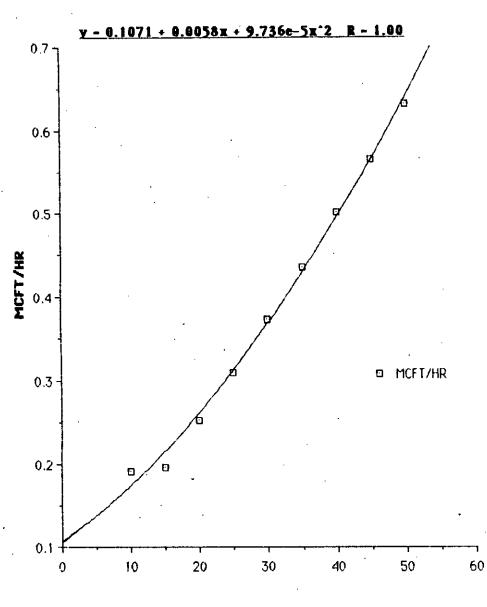



SUMMER WEEKDAY LOAD CURVE

c.4


. <u>Hour</u>

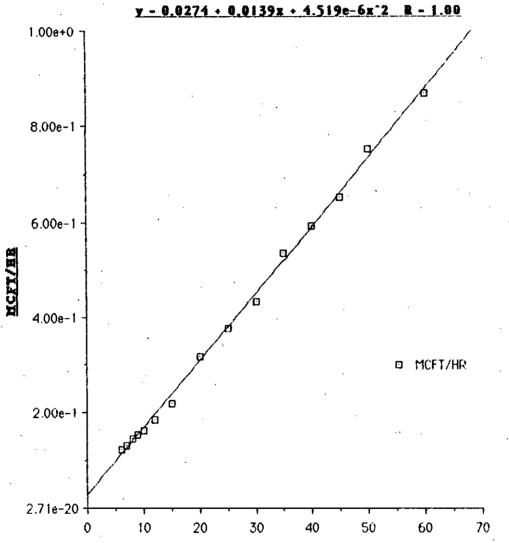
RAINY SEASON WEEKEND LOAD CURVE




<u>Hour</u>

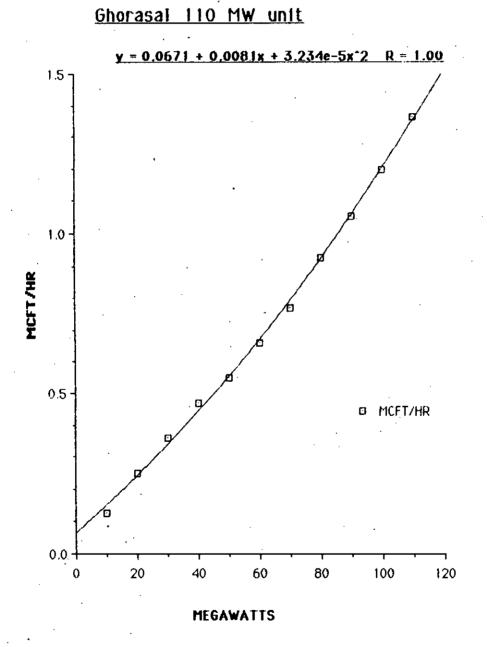





C - 6

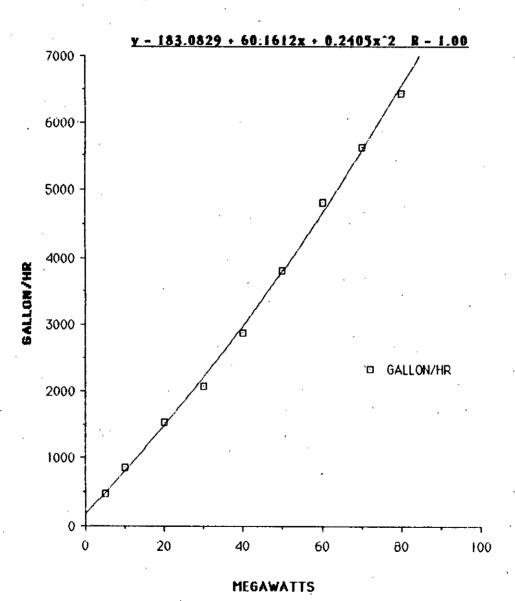


MEGAWATTS

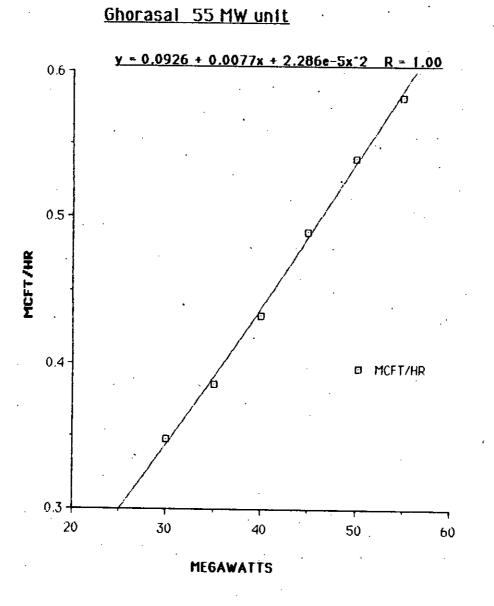

ר 2000 <mark>ר</mark> <u>y - 60.2923 + 68.2226x + 2.0698x-2</u> <u>R - 1.00</u> **BH/HO** 1000 -GALLON/HR 0 10 0 20 MEGAWATTS

Saidpur Thakurgaon 20 MW unit

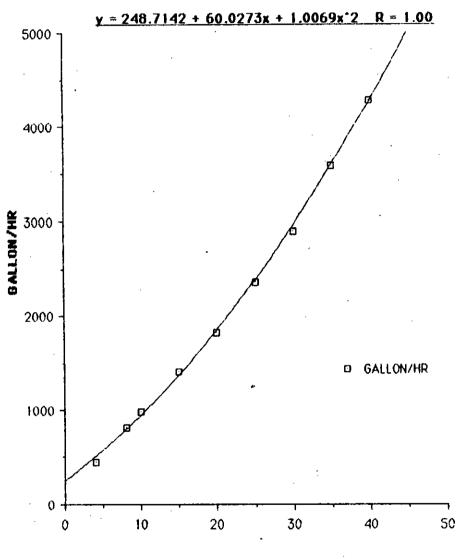



Shahjibazar 60 MW unit

MEGAWATTS

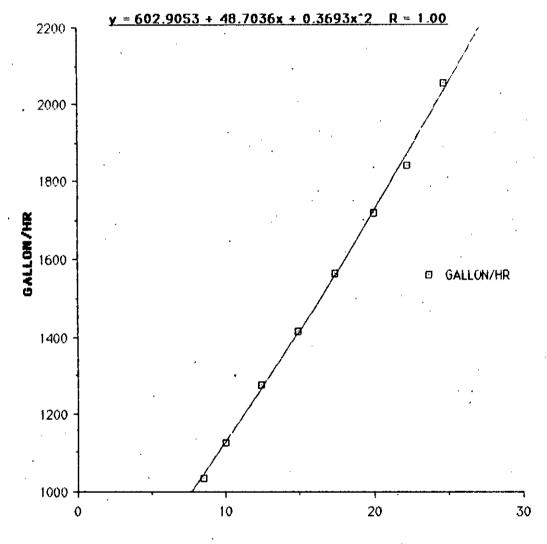



D-4

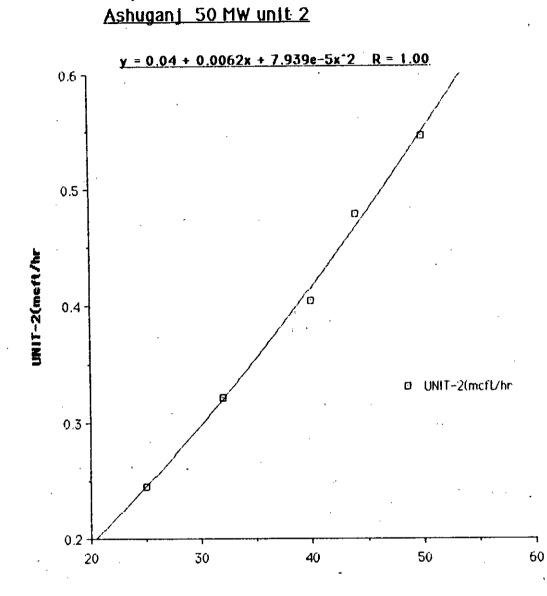

.



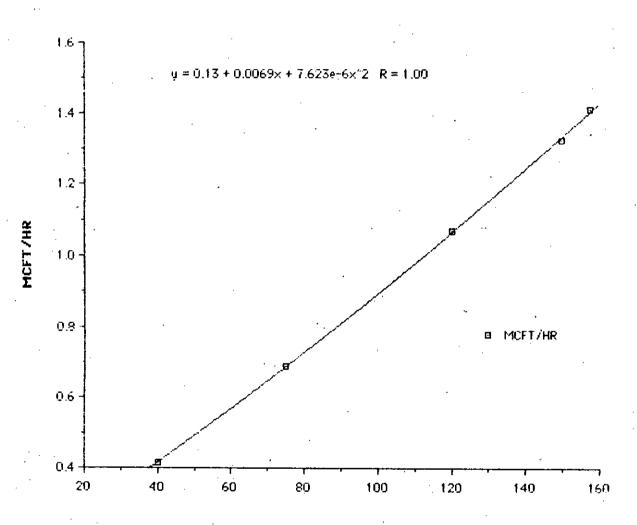
Goalpara 80 MW unit




Bheramara 40 MW unit



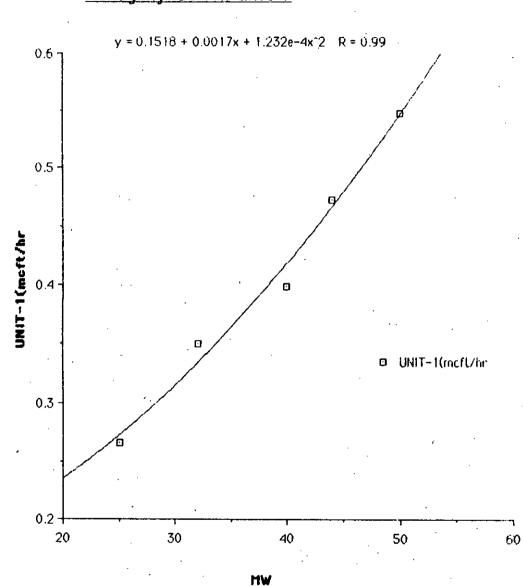

MEGAWATTS


## Barisal 25 MW unit

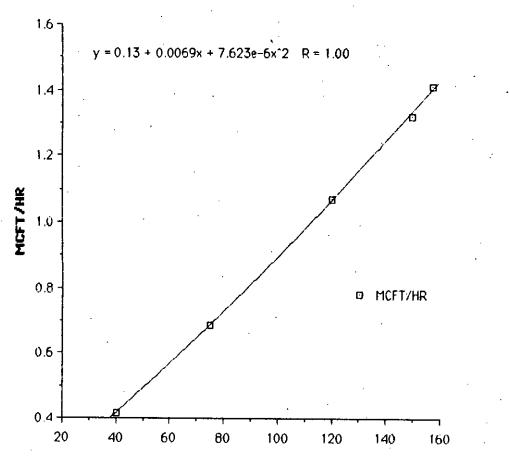


MEGA WATTS




MEGA WATTS

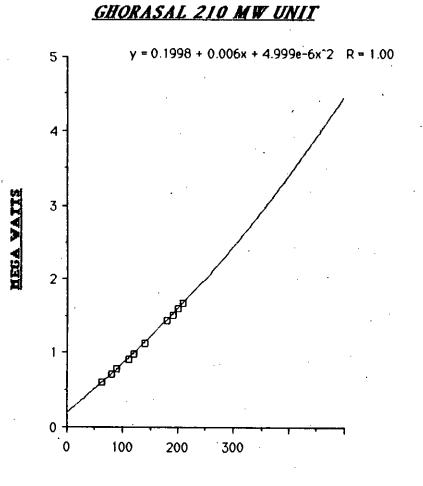



Ashuganj 150 MW unit

D-12






<u>Ashuganj 50 MW unit 1</u>



Ashuganj 150 MW unit

MEGA WATTS

Ď-11



Mega Watts

🗆 Column 7'

Parameters for 11 - Machine System

Line Data

	LINE			-		IMPEDAI	٩CE		
From		То		R (P.u)		X(p.u)		Y-shunt	(p.u)
KAPG	· .	CHAN		0.0046		0.0177		0.0021	
CHAN		MADA		0.0178		0.0677		0.079	
KAPG	•	MADA		0.0224		0.0855		0.01	
MADA		FENI		0.0564		0.2153		0.0253	
MADA		FENI		0.0564		0.2153		0.0253	
SIKG		MADA		0.0093		0.0355		0.0042	•
SIKG		мара		0.0093		0.0355		0.0042	
MADA		KULS	-	0.0070		0.0266		0.0031	
SIKG		HALI		0.0088	•	0.0337		0.004	
HALI		KULS		0.0112		0.0426		0.005	
KULS	·.	BARU		0.0065		0.0248		0.0029	
KULS		BARU		0.0065		0.0248		0.0029	•
KAPG		BARU		0.0288		0.110		0.0129	
KAPG		BARU		0.0288		0.110		0.0129	
FENI		COMI		0.0281		0.1071		0.0126	
FENI	. :	COMI		0.0281		0.1071		0.0126	
COMI	;	ASMG		0.0333		0.1653		0.018	
COMI	· · · .	ASMG	-	0.0333		0.1653 ·		0.018	
ÅSMG	4	GHMG		0.0251	- 1	0.0958		0.0112	•.

E-1 .

ASMG	GHMG	0.0251	0.0958	0.0112
ASHG	GHHG	0.0066	0.0327	0.0328
ASHG	GHHG	0.0066	0.0327	0.0328
ASMG	SHAG	0.0299	0.1142	0.0134
ASMG	SHAG	0.0299	0.1142	0.0134
SIDG	GHMG	0.0255	0.0972	0.0114
SIDG	GHMG	0.0255	0.0972	0.0114
GHHG	TONH	0.004	0.02	0.02
GHHG	TONH	0.004	0.02	0.02
GHHG	TONH	0.004	0.02	0.02
GHHG	TONH	0.004	0.02	0.02
MIRP	TONM	0.0084	0.0342	0.0035
MIRP	TONM	0.0084	0.0342	0.0035
POST	MIRP	0.0167	0.0684	0.0069
POST	MIRP	0.0167	0.0684	0.0069
SIDG	POST	0.0135	0.0551	0.0056
SIDG	POST	0.0135	0.0551	0.0056
SIDG	ULLO	0.0088	0.0361	0.0037
SIDG	ULLO	0.0088	0.0361	0.0037
TONH	ISUH	0.021	0.1042	0.1045
TONH	ISUH	0.021	0.1042	0.1045
BHEG	FARI	0.0806	0.238	0.0262
FARI	MPUR	0.0496	0.1465	0.0161
MPUR	BARI	0.0434	0.1282	0.0141
BARI	BAGE	0.0512	0.1512	0.0168
BAGE	GOAG	0.0333	0.0985	0.0099
GOAG	BHEG	0.1252	0.3698	0.0406
			•	

GOAG	ΝΟΑΡ	0.0174	0.0513	0.0056
NOAP	JESS	0.0198	0.0586	0.0064
JESS	JHEN	0.0347	0.1025	0.0113
JHEN	BATT	0.0355	0.0989	0.0109
BATT	BHEG	0.0174	0.0513	0.0056
BHEG	ISUM	0.0074	0.022	0.0022
BHEG	ISUM	0.0074	0.022	0.0022
BOGG	ISUM	0.0788	0.2329	0.0235
BOGG	ISUM	0.0788	0.2329	0.0235
ULLO	TONM	0.0112	0.0456	0.0048
ULLO	TONM	0.0112	0.0456	0.0048
SIDG	COMI	0.0508	0.1912	0.0334
	COMI	0.0508	0,1912	0.0334
SIDG	ASHG	0.0	0.06	0.0
ASMG	•	0.0	0.05	0.0
TONM	TONH		0.06	0.0
GHMG	GHHG	0.0		0.0
ISUM	ISUH	0.0	0.03	v.v ,



E-3