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ABSTRACT 

 

This study is concerned with the brittle fracture characteristics of a thick-walled cylinder 

with a functionally graded material (FGM) coating at the inner surface having two 

diametrically opposed edge cracks. First, the uncracked cylinder with the FGM coating is 

homogenized by simulating the nonhomogenous material properties with an equivalent 

eigenstrain. The homogenized cylinder is then considered to have two diametrically-

opposed edge cracks for the analysis. Second, the cracks in the homogenized cylinder are 

represented by continuous distribution of edge dislocations. Representing the cracks by 

continuous distribution of edge dislocations, a method is then formulated to calculate the 

stress intensity factor (SIF), which is used to evaluate apparent fracture toughness of the 

cylinder. Also, the method is applied to the inverse problem of evaluating optimum 

material distribution intending to realize prescribed apparent fracture toughness in the 

cylinder with an FGM coating. For numerical results, a thick-walled cylinder with 

TiC/Al2O3 (Titanium carbide and Aluminium oxide) FGM coating at its inner surface is 

considered. The effects of material distribution profile, cylinder wall thickness, 

application temperature, coating thickness (CT) and number of cracks on both the 

apparent fracture toughness and stress intensity factor are investigated in details. It is 

found that all of these factors play an important role in the fracture characteristics of the 

thick walled cylinder with FGM coating. The numerical results of inverse problem 

reveals that the apparent  fracture toughness in a thick-walled cylinder with an FGM 

coating depends significantly on the material distributions, and can be controlled within 

possible limits by choosing an optimum material distribution profile. 



 

 

 

 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

Functionally graded materials (FGMs) are a new generation of engineered materials 

which are a nonhomogeneous mixture of two or more distinct material phases, such as 

different ceramics or ceramics and metals. The key distinguishing feature of these 

materials is that the composition, or in other words, the material distribution of each 

constituent material, continuously varies with space variables. This continuously varying 

material distribution induces chemical, material, and microstructural gradients, and 

makes functionally graded materials different in behavior from homogeneous materials 

and traditional composite materials [1, 2]. It is noted that a traditional composite is 

homogeneous from the view point of macroscopic study and does not have gradient in 

microstructure. The concept of a typical FGM body consisting of two different materials 

A and B is illustrated in Fig. 1.1. The left surface of the FGM plate shown in Fig. 1.1(a) 

has 100% material A while the right surface of the plate has 100% material B. In between 

these two surfaces, the material distribution (composition) denoted by the volume 

fractions VA and VB of the constituents A and B, respectively, continuously changes as 

shown in Fig. 1.1(b). The material distribution shown in Fig. 1.1(b) may vary linearly, 

exponentially, or following any power function depending on the desired properties and 

application of FGMs. 

 

The functionally graded materials are tailorable in their properties via the design of the 

gradients in chemistry and microstructure, which again depend on the material 

distribution. Therefore, they allow control over their mechanical, thermal, and chemical 

properties to meet varying demands of applications. A specific property of FGMs can be 

optimized by properly selecting their material distribution profiles. 

 

As mentioned earlier, traditional composites are homogeneous mixtures of two or more 

ingredients, and they, therefore, involve a compromise between the desirable properties 

of the component materials. On the other hand, as a significant proportion of an FGM 
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may contain the pure form of each component, the need for compromise is eliminated. 

The properties of both components can, therefore, be fully utilized. For example, the 

toughness of a metal can be mated with the refractoriness of a ceramic, without any 

compromise in the toughness of the metal side or the refractoriness of the ceramic side. 

From a mechanics viewpoint, the main advantages of material property grading appear to 

be improved bonding strength, toughness, wear and corrosion resistance, and reduced 

residual and thermal stresses. Usually, an FGM is made of a ceramic and a metal to resist 

severe environmental effects, such as wear, corrosion, and large temperature field at the 

ceramic side and ensure toughness and thermal conductivity on the metal side. 

 

Initially, the purpose of these materials was to develop superheat resistant material for 

propulsion systems and airframes of spacecraft. Now they are also used as high 

temperature, wear- and corrosion-resistant materials. Apart from these, their applications 

have been extended from structural to five other functional areas: electronics, chemical, 

optical, nuclear, and biological. From a mechanics point of view the prime advantages of 

the composition gradation are improved bonding strength, toughness, and wear and 

corrosion resistance, and reduced residual and thermal stresses. Some other specific 

applications of FGMs are listed below. 

Aeronautics: outer wall of spaceplane, parts of rocket engine, etc. 

Industrial materials: forming tools, wear resistant linings for handling large heavy 

abrasive ore particles, heat exchanger tubes, etc. 

Optoelectronics: optical fibers. 

Energy materials: thermoelectric materials for optoelectric conversion and sun energy-

laser conversion, etc. 

Biomaterials: artificial bones, joints, and teeth. 

 

As FGMs have wide applications in many branches of engineering, it is necessary to 

identify their probable failure modes and design them against those failures. It is 

recognized that the fracture failure is one of the most common failure modes for FGMs. 

Although the absence of sharp interfaces in FGMs largely reduces material property 

mismatch, crack may occur when they are subjected to external loadings [1, 2]. In most 

of the cases, the failure process starts with the formation of microcracks at locations of 

corrosion pits, surface flaws, or stress concentration. These microcracks are coalesced 
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into a local dominant crack, which would then propagate under cyclic or sustained 

loading. Even very small mechanical imperfection has adverse effect on the fracture 

strength. Therefore, fracture analysis of these materials is important in order to 

understand, quantify, and improve their toughness. 

 

The study of fracture of solids is carried out from one of the three points of view, namely 

microscopic or atomic, microstructural, and macroscopic or continuum mechanics. From 

the viewpoint of engineering applications, macroscopic theories of fracture are important 

which classify fracture as brittle and ductile. Brittle fracture is associated with low 

energy, and for unstable loading conditions, it usually takes place under high fracture 

velocities. Ductile fracture is associated with large deformations, high energy dissipation 

rates, and slow fracture velocities. Again loading of cracked body is usually 

accompanied by inelastic deformation and other nonlinear effect in the neighborhood of 

the crack tip, except for the case of ideally brittle materials [3]. But in the situations 

where inelastic deformation and nonlinear effects are very small compared to the crack 

size and any other characteristic length of the body, the linear theory is adequately 

justified to address the problem of stress distribution in the cracked body. The 

microstructure is also a factor that affects the fracture characteristics of solids. However, 

in the idealized case of FGMs, the effect of microstructure is neglected and materials are 

assumed to be simple nonhomogeneous with continuous change of material properties. 

 

Another important factor in the fracture study of FGMs is the eigenstrain, which is a 

generic name of such nonelastic strains as thermal expansion, phase transformation, 

initial strains, plastic strains and misfit strains [4]. The incompatibility of this eigenstrain 

produces eigenstress, which affect the fracture strength of FGMs. In FGMs, eigenstrain 

is induced due to nonuniform coefficient of thermal expansion (CTE) when FGMs are 

cooled from sintering temperature. 

 

1.2 Manufacturing Processes of FGMs 

At the beginning, the manufacturing of an FGM was challenging and costlier. Now-a-

days, a good number of manufacturing techniques have been developed by various 

researchers, some of which are industrially used for mass production. Some common 

manufacturing techniques of FGMs are: electrophoretic deposition, chemical vapor 
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deposition (CVD), physical vapor deposition (PVD), plasma spraying, electrochemical 

gradation, centrifugal casting, powder metallurgy, etc. Among the available coating 

methods listed above, plasma spraying is the most potential technique for FGM coating 

with high-melting-point materials and accurate control of material distribution. The basic 

features of a plasma spray method are shown in Fig. 1.2.  

 

The powder-form coating material to be deposited on the substrate mixes with high 

temperature plasma gas and melts. The mixture of molten coating material and plasma 

gas then strikes the substrate and deposits on it. 

Now, to develop an FGM coating using this technique, two materials, instead of one, 

should be mixed with varying proportions with plasma gas. However, there should be a 

suitable mechanism to control the flow rate of two coating materials. A schematic view 

of FGM coating technique using plasma spray method is shown in Fig. 1.3. Here, two 

different materials (materials A and B) are supplied through two different ports. The 

volume fractions of each material can be controlled in the FGM coating being deposited 

on the substrate. Alternatively, two separate plasma torches can be used to deposit two 

materials from two torches. Controlling the volume supplied from each torch, the 

material distribution in the FGM coating can be controlled. 

 

1.3 Motivation of the Present Work 

 

It is pointed out earlier that the original purpose of FGMs was to develop a thermal 

barrier coating for a high temperature gradient field. However, their outstanding 

advantages have now stimulated the interest of researchers towards the development of 

new potential structural applications. Consequently, enormous studies have already been 

carried out to analyze various aspects of FGM beams [5, 6], plates [7-11], cylinders [12-

15], and spheres [16]. For instance, Loghman et al. [16] investigated the 

magnetothermoelastic creep behavior of thick-walled spheres made of functionally 

graded materials (FGM) placed in uniform magnetic and distributed temperature fields 

and subjected to an internal pressure using method of successive elastic solution. Xiang 

and Yang [17] considered thermal load for the analysis of free and forced vibration of a 

laminated functionally graded Timoshenko beam of variable thickness. A Timoshenko 

beam of FGMs was also considered to investigate the post-buckling behavior in response 
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to the thermal load [18]. Nonlinear transient analysis was carried out for functionally 

graded ceramic-metal plates under thermal loading by Praveen and Reddy [19] using 

finite element method (FEM). Transient waves in FGM plates and cylinders were studied 

by Han et al. [20, 21].  

 

FGM circular cylinders were considered by Obata and Noda [13] and Liew et al. [14] to 

analyze the thermal stresses. FGM circular cylinders were also considered by Afsar and 

his co-workers [22] for the analysis of brittle fracture characteristics by taking into 

account the effect of incompatibility of eigenstrain developed in the cylinder due to 

nonuniform CTE as a result of temperature change. 

 

Over the past few years FGM cylinders have been considered to study and analyze, both 

theoretically and experimentally, their responses to mechanical and thermal loadings for 

various geometries in various fracture mechanisms. Most of these studies are concerned 

with the direct problems in which the fracture characteristics of FGM cylinders are 

analyzed only for certain assumed functional forms of material properties e.g. 

exponential and power functions. Also, the eigenstrain induced in the materials due to 

nonuniform CTE after cooling from sintering temperature was not taken into account in 

most of the above-mentioned analyses. In fact, the assumed functional forms of material 

properties are not justified for designing with FGMs to exhibit a desired characteristic 

suitable for a particular application, as the assumed properties may not be physically 

realizable to introduce the desired characteristic. Moreover all these studies were 

concerned with a cylinder wholly made of FGM. But in practice, it is not feasible to 

manufacture a thick- walled cylinder with gradation of material throughout the entire 

wall thickness because of manufacturing limitation as well as huge cost involvement. On 

the other hand, from engineering points of view, the entire cylinder wall with graded 

material is not important in order to meet the requirements of an application. Only a thin 

coating can satisfy the requirements of an application and is more feasible from technical 

points of view. This motivated the author to consider the problem of a thick-walled 

cylinder with only an FGM coating at the inner surface for the analysis of brittle fracture 

characteristics. The incompatible eigenstrain developed due to nonuniform co-efficient 

of thermal expansion, is also taken into account in this study. 
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1.3 Objectives 

The specific objectives of the study are 

a) To develop a method for the analysis of stress intensity factor (SIF) and apparent 

fracture toughness (AFT) for two diametrically opposed edge cracks in a thick-

walled cylinder with an FGM coating at the inner surface. 

 

b) To verify the validity of the developed method by comparing the results of stress 

intensity factors calculated for a homogenous cylinder with those available in the 

literature. 

 

c) To investigate the effect of material distributions, cylinder wall thickness, 

application temperature, FGM coating thickness (CT) and number of cracks on 

both SIF and AFT. 

 

d) To apply the developed method in evaluating optimum material distribution in 

the FGM coating corresponding to prescribed apparent fracture toughness in the 

cylinder by using inverse method. 

 

The study is carried out from a macroscopic viewpoint of fracture theories for the 

idealized case in which the microstructure of the material is neglected and the material is 

assumed to be isotropic. Further, the material is assumed to be perfectly brittle or with 

small scale plastic deformation. 
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CHAPTER 2 

LITERATURE REVIEW 

 

A series of papers on the crack problems of FGMs have appeared in the literature in 

which the material properties have been assumed to vary following an exponential 

function [23-27] or power functions [28-30]. Gu and Asaro [24] considered a semi-

infinite crack in a strip of an isotropic, functionally graded material under edge loading 

and in-plane deformation conditions. Their results showed that the fracture modes of the 

cracks in FGMs are inherently mixed when they are not parallel to the direction of 

material property variation, i.e. there are typically both normal and shear tractions ahead 

of the crack tips because of the non-symmetry in the material properties. The crack 

problems of FGMs with the exponential variation of material properties and involving 

various geometries discussed above were solved for mechanical loadings. Numerous 

researchers have also carried out a number of studies for cracked FGM bodies subjected 

to thermal loadings assuming the same exponential function for the material properties. 

Jin and Noda [31], Noda and Jin [32] have studied crack problems of FGMs under steady 

thermal loading in order to reduce the thermal stresses and the thermal stress intensity 

factors. All of these authors, in their research work, conclude that the appropriate 

selection of the mechanical and the thermal nonhomogeneous parameters of the material 

reduces the thermal stresses and, hence, the thermal stress intensity factors. Bao and 

Wang [28] studied multiple cracking in functionally graded ceramic/metal coatings and 

considered both mechanical and thermal loads. The gradation in the FGM coating was 

taken to be of a power function, both linear and nonlinear. It was found that the gradation 

of the coating could significantly reduce the crack driving force. It was also found that 

under mechanical loading the effect of different gradations on the crack driving force 

was relatively small. However, under thermal loading, the influence of coating gradation 

could be significant. 

 

From the above reviews discussed so far, it can be summarized that the various aspects 

of crack problems of functionally graded materials have been studied, both analytically 

and experimentally, under various mechanical and thermal loading conditions, and for 

various geometries. However, these studies are concerned with the direct problems in 

which the fracture characteristics of FGM bodies can be analyzed only for certain 
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assumed functions of the material properties e.g. exponential and power functions. 

An important aspect of FGM bodies still remaining to be dealt with is the inverse 

problems in which the improved characteristics of FGM bodies under mechanical and 

thermal loadings can be prescribed and the corresponding material composition profiles 

via the material properties can be obtained by inverse calculation. A general inverse 

design procedure for FGMs was addressed by Hirano and Wakashima [33] to determine 

both the basic material combination and optimum material distribution profile with 

respect to the objective structural shape and the thermomechanical boundary conditions. 

Markworth and Saunders [34] considered the inverse problem of optimizing an assumed 

functional form for the spatially dependent material distributions subject to certain 

constraints such as maximizing or minimizing the heat flux across the material. Further 

references of the inverse problems to design FGMs with various geometries subject to 

various constraints can be found in Refs. [35-40]. In all the references mentioned above, 

the inverse problems were considered in order to design FGMs optimally from the 

viewpoint of thermal characteristics. The analytical solution to the inverse problems of 

designing FGMs from the viewpoint of fracture characteristics turns out to be very 

complicated due to their nonhomogenous material properties. Obviously, the inverse 

problems cannot be restricted to certain assumed functions for the material property 

distributions as Zuiker [41] pointed out that these assumed property distributions are not 

physically realizable for certain material composition profiles which may be obtained by 

the inverse problems. Afsar and Sekine [42] dealt with the inverse problem of calculating 

material distribution for prescribed apparent fracture toughness in FGM coatings around 

a circular hole in infinite elastic media. They also considered semi-infinite FGM media 

with a single [43] and periodic [44] edge cracks and computed material distribution 

profiles for improved fracture characteristics. In another work [45], they calculated the 

optimum material distribution in a thick-walled FGM circular pipe with a single edge 

crack for desired apparent fracture toughness. However, Shannon [46] found that two 

diametrically-opposed radial edge cracks represent the worst geometry of multiple 

cracking which can occur in vessels of large diameter ratio. 

 

It is found that all the above mentioned studies were concerned with the thick-walled 

FGM cylinder, i.e., the entire cylinder wall was composed of FGM, having the material 

gradation of throughout the entire cylinder wall which is not feasible in practice due to 

manufacturing limitation and huge cost involvements. From engineering perspective, the 
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entire cylinder wall with graded material is not essential to meet the requirements of an 

application. An FGM coating on the cylinder can satisfy the requirements of the 

application and is more feasible from technical point of view. So the present study 

focuses on a thin FGM coating at the inner surface of a thick-walled cylinder. The 

approximation method [45] developed for the FGM cylinder has been extended in the 

present study for the FGM coating at the inner surface of a thick-walled cylinder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 3 

APPROXIMATION METHOD OF STRESS INTENSITY FACTOR 

FOR CYLINDER WITH FGM COATING 

 

3.1 Method of Homogenization 

 

The presence of nonhomogeneity in FGMs complicates the analytical study of fracture 

characteristics of these materials due to some mathematical difficulties. Because of this 

complexity, it has been a trend of analyzing the fracture characteristics of these materials 

by assuming the material properties as certain functional forms e.g. exponential or power 

functions of space variables to simplify the problem. However, in designing FGMs i.e. in 

the inverse problems where material distributions have to be determined to achieve 

desired fracture characteristics, special functional forms of the properties cannot be 

assumed. This is due to the fact that the material distributions obtained by inverse 

calculation may not conform to the assumed functional forms of the material properties. 

Therefore, the inverse problem of determining material distributions requires an alternate 

method by which the problem can be treated for any arbitrary variation of material 

properties in FGMs. In this study, an approximation method of calculating stress 

intensity factor (SIF) developed by Afsar [43] is adopted for a thick-walled cylinder with 

FGM coating. A brief outline of the method is given in the following paragraph. 

 

According to the approximation method, the cylinder with FGM coating is first 

homogenized by simulating the material nonhomogeneities by a distribution of 

equivalent eigenstrain. The distribution of equivalent eigenstrain is such that the elastic 

fields in both the cylinder with FGM coating and homogenized cylinder for the same 

loading condition are identical. Then a method is formulated to calculate the stress 

intensity factor for the cracks in the homogenized cylinder. Since the equivalent 

eigenstrain is determined from the condition of identical elastic fields in the uncracked 

cylinder with FGM coating and homogenized cylinder, the elastic field in the cracked 

homogenized cylinder cannot exactly represent the elastic field in the cracked cylinder 

with FGM coating. So, the stress intensity factors calculated for the cracks in the 

homogenized cylinder with the equivalent eigenstrain represent the approximate values 

of stress intensity factors for the same cracks in the corresponding cylinder with FGM 

coating and that is why it is referred to as an approximation method. 
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The principle of superposition is used to determine the resultant stress field in the 

cracked homogenized cylinder. Initially, the stress field in the uncracked homogenized 

cylinder is determined for external loading, and incompatible and equivalent 

eigenstrains. This stress field is disturbed by the presence of two diametrically opposed 

edge cracks. The disturbed stress field is then determined. Finally, the resultant stress 

field in the cracked homogenized cylinder is obtained by the principle of superposition. 

The disturbed stress field is such that the following boundary condition along the crack 

surface is satisfied, 

s

h

s

d

s
T  (3.1) 

where 𝜎𝑠
𝑕
 
the stress component along the prospective crack line is in the uncracked 

homogenized cylinder, 𝜎𝑠
𝑑  is the stress component of the disturbed field due to the 

presence of the cracks, and Ts is the traction applied to the crack surface. The disturbed 

stress field can be determined by representing the crack by a continuous distribution of 

edge dislocations. 

 

3.2 Apparent Fracture Toughness of FGMs 

 

Three independent kinematic movements of the crack surfaces with respect of each other 

are possible [3] as shown in Fig.3.1. According to these relative movements of the crack 

surfaces, crack propagation is classified as mode I (Fig.3.1 (a)), mode II (Fig.3.1 (b)), 

and mode III (Fig.3.1 (c)). In this study, only mode I will be considered which is most 

prone to occur in the cylinder under internal pressure. 

 

The stress intensity factors for a crack in homogeneous cylinders in absence of any initial 

stresses or eigenstrains can be expressed, in general, for mode I as [48]. 

lFpK I                                                                                                                  (3.2) 

where F is a geometric factor that depends on the geometry of the crack and the cracked 

body and the loading configuration, l is the crack length, and p is the applied internal 

pressure. The factor F is given by Bowie et al. [49] and for convenience it is reproduced 

here in Fig. 3.2 and Table 3.1. 

 

The intrinsic fracture toughness of a homogeneous cylinder for a specific crack length l 

can be determined from the above expression when the applied pressure 𝑝 approaches its 
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critical value 𝑝𝐶 , since 𝑝𝐶  alone contributes to the crack driving force. 

 

On the other hand, in cylinder with FGM coating, the effective crack driving force is 

obtained due to the resultant effects of the critical pressure 𝑝𝐶  and the induced 

incompatible eigenstrain resulting from nonuniform coefficient of thermal expansion 

when the cylinders with FGM coating are cooled from sintering temperature. However, 

apparently it seems that the crack extension in FGM coated cylinders occurs due to the 

applied critical pressure 𝑝𝐶  alone. Therefore, the above expression gives the apparent 

fracture toughness in the case of cylinder coated with FGM, when p is substituted by 𝑝𝐶 . 

Thus the apparent fracture toughness 𝑘𝐼𝐶
𝑎  of the cylinder having an FGM coating can be 

defined by 

lFpK c

a

IC    (3.3) 

 

3.3 Intrinsic Fracture Toughness 

 

The intrinsic fracture toughness of FGMs represents the fracture resistance that an FGM 

actually possesses. It is related to the effective critical stress acting at the crack tip. 

Therefore, in determining the intrinsic fracture toughness of FGM coated cylinders, the 

stress arising from the incompatible eigenstrain will also have to be considered along 

with the applied critical pressure. 

 

Again, the intrinsic fracture toughness of this type of cylinders can be determined from 

their effective properties. If a material A is dispersed in a matrix material B and forms an 

A/B FGM coating of the cylinder, the intrinsic fracture toughness can be determined from 

the following equation [50]. 

B

CC K
E

E
K

0

   (3.4) 

where 𝐾𝐶
𝐵 is the intrinsic fracture toughness of material B, E0 is the Young’s modulus of 

material B, and E is the effective Young’s modulus of A/B FGM, which can be obtained 

by using an appropriate model of mixture rule. 
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3.4 Effective Properties of FGMs 

 

To calculate the effective properties of FGMs, an appropriate and reliable model of 

mixture rule is required. In the case of FGMs, conventional mixture rules for composites 

cannot be used as the microstructure in FGMs varies with the volume fraction of the 

constituents. Also, a dispersive phase at one side of FGMs transforms to matrix phase on 

the other side. So, special attention is needed to derive a mixture rule for FGMs. Among 

various models of mixture rule, the model introduced by Nan et al. [51] is adopted in this 

study to calculate the effective properties of the cylinder with FGM coating, as it appears 

to be more accurate for the entire range of volume fractions of the constituents. For an 

FGM whose constituents are A and B, this mixture rule is given by 

0
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


Y  (3.5d) 

)3(

9






E  (3.5e) 

where V is the volume fraction,   is the bulk modulus, E is the Young’s modulus and   

is the shear modulus of elasticity, α is the coefficient of thermal expansion. The 

subscripts A and B denote the respective properties of the constituent materials, and the 

non-subscripted variables are used to denote the effective properties of the FGM. 
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CHAPTER 4 

THEORETICAL FORMULATION OF THE CRACK PROBLEM 

 

Cylinders with an FGM coating have potential applications because of their outstanding 

advantages over their counterparts of homogeneous materials. They can withstand 

adverse condition of temperature, pressure, and environment. However, due to some 

inherent imperfections introduced during manufacturing, cracks can initiate and 

ultimately cause failure. Most common is the initiation of edge cracks that may 

propagate in the material gradient direction under internal pressure 

 

4.1 Modeling of the Problem 

 

In the present study, a model of thick-walled cylinder with an FGM coating at the inner 

surface is considered. The analytical model of the problem is shown in Fig. 4.1.  The 

Cartesian coordinate system x-y and the polar coordinate system r-  have the same 

origin at the center of the cylinder. Ri, Ro and CT denote the inner, outer radii and coating 

thickness of the cylinder, respectively. The FGM coating is assumed to be composed of 

two materials A and B, the volume fractions of which are denoted by VA and VB, 

respectively. The homogenous part of the cylinder consists of material B only.  The 

material distribution varies in radial direction only. Therefore, all the material properties 

are the functions of r only. Due to nonuniform co-efficient of thermal expansion, an 

incompatible eigenstrain *(r) [4] is developed in the cylinder when it is cooled from 

sintering temperature. This incompatible eigenstrain causes an eigenstress [4] which 

plays an important role to the characterize the fracture behavior of the cylinder. Thus, 

this incompatible eigenstrain is taken into account and is given by 

T  *

 

In the present study, two diametrically-opposed edge cracks emanating from the inner 

surface of the cylinder are considered. The crack surfaces and the inner surface of the 

cylinder are assumed to be under uniform applied pressure, 𝑝. The problem is treated 

under plain strain condition. 
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4.2 Development of the Method of Stress Intensity Factors and Apparent Fracture 

Toughness 

As stated earlier, the nonhomogenous material properties of FGMs complicate the 

analytical study of fracture characteristics of these materials due to some mathematical 

difficulties. Therefore, an approximation method developed by Sekine and Afsar [43] is 

adopted to calculate stress intensity factors for cracks in the thick-walled cylinder with 

an FGM coating. According to the approximation method, the cylinder with FGM 

coating is first homogenized by simulating the material nonhomogenities by a 

distribution of equivalent eigenstrain. The distribution of equivalent eigenstrain is such 

that the elastic fields in both the uncracked FGM and homogenized cylinders are 

identical for same loading condition. Then a method is formulated to calculate the stress 

intensity factor and apparent fracture toughness for the cracks in the homogenized 

cylinder with the induced thermal and equivalent eigenstrains. 

 

The present study focuses on a thin FGM coating at the inner surface of a thick -walled 

cylinder for the analysis of AFT and SIF against two diametrically- opposed edge cracks. 

Taking into account the incompatible eigenstrain and based on the approximation 

method [43] developed by Sekine and Afsar, an approach of evaluating AFT and SIF is 

introduced. The effects of material distribution, cylinder wall thickness, application 

temperature, FGM coating thickness and number of cracks on both AFT and SIF are 

investigated in details using the developed approach. 

 

4.2.1 Equivalent eigenstrain for homogenization 

 

The cylinder is subjected to an internal pressure 𝑝. Thus the effective crack driving force 

is produced due to the combined effect of internal pressure 𝑝 and the eigenstress 

associated with the incompatible eigenstrain. By considering an additional eigenstrain, 

called equivalent eigenstrain [22], the cylinder with the FGM coating is replaced by a 

homogenous cylinder of material B only. The distribution of equivalent eigenstrain is 

such that the elastic fields in both the uncracked cylinder with FGM coating and 

homogenized cylinders are identical. For homogenization therefore, an alternate 

approach [43] is adopted here in order to determine the elastic field in the cylinder with 

FGM coating. According to this approach, the FGM region of the cylinder is radially 
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divided into n number of layers of infinitesimal thicknesses (Fig. 4.2 shows one half of 

the cylinder). The homogenous outer portion of the cylinder is represented as (n +1)th 

layer, consisting of material B only, in which the properties are constant. Each layer, 

which is the part of FGM coating, is assumed to have constant volume fractions and 

material properties but differs from the other FGM layers. The inner and outer radii of 

the ith layer are, respectively, denoted by ri-1 and ri, where ro= Ri and rn+1= Ro. The 

pressures at the inner and outer surfaces of the ith layer are, respectively, 𝑃𝑖−1
𝑓

 and 

 𝑃𝑖
𝑓
which are the resultant of pressures due to the applied internal pressure 𝑝 and the 

incompatible eigenstrain i* in the ith layer. Thus the resultant stress field in the ith layer 

can be readily derived for axisymmetric and plain strain condition given by Bieniek et al. 

[52]  
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𝑓
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𝑓

+ 𝑝𝑖
∗𝑓

  (4.2c) 

 

The first term at the right hand side of Eq. (4.2c) appears due to the applied internal 

pressure 𝑝 while the second term appears due to the incompatible eigenstrain. The strain 

and the displacement components in the ith layer are obtained as [45] 
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The unknown pressures 𝑃𝑖
𝑓
 and 𝑃𝑖

∗𝑓
 are determined by solving the following systems of 
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Now we consider a homogeneous cylinder with the same geometry and determine the 

elastic field due to the same applied internal pressure 𝑝 and the same incompatible 

eigenstrain following the same technique as the layered cylinder. Here it should be noted 

that the material properties for all the layers are same. The stress field in the ith layer of 

the layered homogeneous cylinder determined in this way is given by Bieniek et al. [52] 
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As before, the first term at the right hand side of Eq. (4.9) appears due to the applied 

internal pressure 𝑝 while the second term appears due to the incompatible eigenstrain. 

The strain and displacement components are obtained as [45] 
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Now we consider a distribution of equivalent eigenstrain 
i

ej ,  in the ith layer of the 

homogeneous cylinder, where j = r,  and z. This equivalent eigenstrain induces an 

elastic field in the homogeneous cylinder. Superposition of this elastic field with that 

given by Eqs. (4.8) and (4.10) yields equivalence between the elastic fields in the FGM 

and the homogeneous cylinders. From the equivalence of the stress fields, we can write 

i
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where 

i

ej ,  is the stress component in the ith layer of the homogeneous cylinder due to the 

equivalent eigenstrain 
i

ej ,  

From the equivalence of the total strains, we obtain 
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i

eje ,  is the component of the elastic strain in the ith layer of the homogeneous cylinder 

associated with the equivalent eigenstrain 
i

ej ,  

The elastic strain 
i

eje ,  is related to the stress 
i

ej ,  by Hooke’s law as follows 
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By setting the strain components 
i

fz ,
  and 

i

hz 0,
  to zero for plane strain and making use 

of Eqs. (4.1), (4.3), (4.8), (4.10) and (4.15)-(4.17) the expression for the equivalent 

eigenstrain in the ith layer of the homogeneous cylinder can be derived as [45] 
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For the next of the analysis, the cylinder with FGM coating can be replaced by the 

homogeneous cylinder (referred to as homogenized cylinder) of the same geometry if the 

equivalent eigenstrain of Eq. (4.18) is considered along with the other loadings. The 

equivalent eigenstrain derived above and the incompatible eigenstrain 
*

i
  are piecewise 

continuous. The distributions of the equivalent and the incompatible eigenstrains 

continuous for the entire wall thickness of the non-layered homogenized cylinder as 

shown in Fig. 4.3 can be obtained by spline interpolation of the piecewise continuous 

eigenstrains. The resultant stress field in this non-layered homogenized cylinder is then 

derived as [45] 
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and *  and 
e

j
  are the incompatible and equivalent eigenstrains, respectively, which are 

continuous throughout the wall thickness of the cylinder. When cylinder’s FGM coating 

is air-cooled from the sintering temperature to the room temperature, the incompatible 

eigenstrain is given by,                    

T  *                                                                                                                (4.21) 

The other two stress components are not shown as they are not relevant in the calculation 

of mode I stress intensity factor. 

 

4.2.2 Stress intensity factor 

 

Now, two diametrically-opposed edge cracks of equal length l each emanating from the 

inner surface of the homogenized cylinder with distributed incompatible and equivalent 

eigenstrains are considered as shown in Fig. 4.4. The crack surfaces and the inner surface 

of the cylinder are subjected to the internal pressure 𝑝. The boundary condition given by 

Eq. (3.1) reduces to 

o

ii

hd lRrRp 0,;                    (4.22) 

The stress component 𝜎𝜃
𝑕  in the uncracked homogenized cylinder has been determined in 

the previous article. The disturbed stress component 𝜎𝜃
𝑑  can be determined by 

(4.19b) 
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representing the cracks by a continuous distribution of edge dislocations. The potential 

functions for a discrete edge dislocation making an angle  with the positive x-axis and 

passing through a point at z=h of a cylinder as shown in Fig. 4.5 are given by 

Muskhelishvili [53] 
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where b1 and b2 are the components of Burgers vector, 𝜇𝑜 is the shear modulus of 

rigidity, 0  is the Kolosov’s constant(3-4𝜈𝜊  for plane strain; (3-𝜈𝜊)/(1+𝜈𝜊) for plane 

stress) and z=x+iy = re
iθ 

and 
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𝐵𝑘 = 𝐴𝑘
′′ 𝑅𝑜

−𝑘+2 − 𝐴𝑘
′ 𝑅𝑖

−𝑘+2
                                                                               (4.24j) 
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𝑎𝑘
′ = − 1 + 𝑘 𝑅𝑜

2𝑎𝑘+2 + 𝑎 − 𝑘+2 𝑅𝑜
−2 𝑘+1 

− 𝑅𝑜
−𝑘𝐴𝑘+2

′′  ;      k > 0                         (4.24o) 

𝑎−𝑘
′ = − 1 − 𝑘 𝑅𝑖

2𝑎−(𝑘+2) + 𝑎 𝑘−2𝑅𝑖
2 𝑘−1 

− 𝑅𝑖
𝑘𝐴−(𝑘−2)

′′ ;     k > 4   (4.24p) 

The coefficients 𝐴𝑘
′   and 𝐴𝑘

′′  are given in Table 4.1. 

In the present study, there are two diametrically-opposed edge cracks, crack I and crack 

II, emanating from the inner surface. First, crack I is considered and the disturbed stress 

component for this crack is determined. For this crack, the discrete edge dislocation at 

h =Ri+s is shown in Fig. 4.6. For this configuration of the dislocation, 

 = -90
0
 so e 

i
= cos 90

0 
– i sin 90

0 
= -i 

Also, for the orientation shown, the crack tip experiences mode I deformation only. So, 

b2= 0. Thus the potential functions of Eqs. (4.23a) and (4.23b) reduce to 
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The coefficients 𝐴𝐾
′  and 𝐴𝐾

′′   are rearranged in Table 4.2. 

If the crack is represented by a continuous distribution of edge dislocation, the potential 

functions are rewritten as [45] 
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where b1(s) is the dislocation density function. 
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The stresses can be expressed in terms of the complex potentials (z) and (z) and their 

complex conjugates as below [53] 

 

 𝜎𝜃
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𝑑  
I

= 𝛷 𝑧 + 𝛷  𝑧 +  z Φ′ z + 𝛹 𝑧  e2i𝜃                                  (4.27) 

 

where the over bar and the prime represent conjugate and differentiation with respect to 

z, respectively. Thus, 
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For the stresses along the crack line of crack I,  =0° and   z = 𝑧 = r. Also, 𝑏1
 =b1 and for 

horizontal orientation of cracks 𝑕 = 𝑕  =Ri + s and 𝑎𝑘=𝑎𝑘    

Combination of Eqs. (4.26) through (4.28) along with the above substitutions yields the 

stress field along the crack line as 
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Now, for brevity, one can define the following functions 
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Finally, for crack I, the stresses along the crack line can be given by 
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Now, crack II is considered and the discrete edge dislocation for this crack is shown in 

Fig. 4.6. For the configuration of the dislocation shown,  = +90
0 
 

So, e 
i

= cos 90
0 

+ i sin 90
0 

= +i 

This crack is also represented by a continuous distribution of edge dislocations. 

Following the similar procedure as crack I, the stresses along the crack line of crack I 

due to crack II is determined by setting  = -180
0
 and considering b1 as negative in Eq. 

(4.23). Finally, one obtains 
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Now, superposition of Eqs. (4.31) and (4.32) gives the resultant circumferential stress 

component of the disturbed stress field along the crack line of crack I as: 
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The boundary condition along the crack line of crack I given by Eq. (4.22) reduce to 
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where, Sf  is the strength factor defined by the ratio of the ultimate strength u of the base 

material B to the applied internal pressure 𝑝. Equation (4.36) is the singular integral 

equation for two diametrically-opposed edge cracks in a homogenized cylinder. The 

stress intensity factors determined by using this equation represent the approximate 

values of stress intensity factors for the thick-walled cylinder with FGM coating of the 

same geometry. 

 

4.2.2.1 Normalization and solution of the integral equation 

 

The close form solution of the singular integral equation given by Eq. (4.36) is not 

possible. Therefore, a numerical method is adopted for its solution. In order to obtain the 

numerical solution of Eq. (4.36), it is first necessary to normalize the equation over the 

interval [-1, +1]. This is performed by following substitutions, 

𝑟 = 𝑅𝑖 + 𝑡           𝑕 = 𝑅𝑖 + 𝑠              (4.37a) 
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Substitution of Eq. (4.37) into Eq. (4.36) yields 
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The density function )(TB  can be expressed as the product of a fundamental function 

)(Tw  which characterizes the bounded-singular behavior of )(TB  and a bounded 

continuous function )(T  in the closed interval 11  T . Thus we can formulate as 

[55] 
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In the present case, the fundamental function is given by 
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Using the Gauss-Jacobi integral formula corresponding to the weight function in Eq. 

(4.41) in the manner developed by Erdogan et al. [55], Eq. (4.38) is converted to a 

system of linear algebraic equations to determine the unknowns 𝜑 𝑇𝑗   as follows 
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Here, the collocation and integration points are given by 
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The solution of Eq. (4.42) gives the discrete values of where 𝜑 𝑇𝑗   behind the crack tip. 

However, the determination of stress intensity factor requires the value of 𝜑 𝑇𝑗    at the 

crack tip which is determined using the values of 𝜑 𝑇𝑗    behind the crack tip in Krenk’s 

interpolation formula [56] given by 
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Now the stress intensity factor [54] 
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4.2.3 Approach of evaluating apparent fracture toughness 

In this article, an approach is introduced to evaluate AFT using the formulations of SIFs 

discussed in the articles 4.2.1and 4.2.2. Equations (4.42) to (4.45) determine the SIF due 

to combined effect of the eigenstrain and applied internal pressure. Therefore, the critical 

value of SIF at the crack tip determined from Eqs (4.42) to (4.45) must be equal to the 

intrinsic fracture toughness, determined form the Eq (3.4) of the point of crack tip 

position. It is noted that the right hand side of Eq. (4.42) is the function of eigenstrains 

and applied internal pressure. The eigenstrain, on the otherhand, is a function of material 

distribution in the cylinder. Therefore, for a prescribed material distribution and crack 

length, this equation can be solved in terms of unknown internal pressure 𝑝 in the form 

of 

KI = ke + kpp                                                                                                                (4.46) 

Where ke is the SIF associated with the eigenstrain and kp is the factor associated with the 

coefficient of p in Eq. (4.42). Then, Eqs. (3.4) and (4.46) are equated to determine the 

critical value of internal pressure 𝑃𝐶  corresponding to given crack length. Note that the 

right hand side of Eq. (3.4) is known as the material distribution is already prescribed 

from which E  can be determined by using the mixture rule formula given by Nan et al. 

[51]. The critical value of internal pressure 𝑝𝐶  is then used in Eq. (3.3) to determine the 

AFT of the point of the crack tip position. Eqs. (4.42) to (4.45) are repeatedly solved by 
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varying the crack length and the AFT is determined at the position of crack tip following 

the above procedure. 

 

4.3 Direct Problem 

 

In direct problems, the fracture characteristics of cylinders with an FGM coating are 

analyzed for assumed functions of the material distribution. To calculate the stress 

intensity factors, first, the effective properties of the FGM coated cylinder are 

determined for an assumed material distribution in the cylinder by using the mixture rule 

given by Eqs. (3.5a) to (3.5e). Then we can calculate the equivalent eigenstrain by using 

Eq. (4.18) and the resultant stress 𝜎𝜃
𝑕  from Eq. (4.19b). From Eqs. (4.42) to (4.45), we 

can then determine the stress intensity factor for the FGM coated cylinder. To calculate 

apparent fracture toughness for a given material distribution, first, we calculate the 

critical pressure 𝑝𝐶  from the condition, 

KI=KC                                                                                                                      (4.47) 

where the SIF, KI, is determined by using Eqs. (4.42) to (4.45) and the intrinsic fracture 

toughness KC is found from Eq. (3.4). 

Then the apparent fracture toughness can be calculated from Eq. (3.3). The geometric 

factor F is taken from Fig. 3.2 or Table 3.1. 

 

4.4 Inverse Problem 

 

The inverse problem of evaluating material distributions intending to realize prescribed 

apparent fracture toughness in the cylinder with FGM coating is solved by using the 

formulations developed for the approximation method of finding stress intensity factors. 

Suppose that a profile of apparent fracture toughness 𝐾𝐼𝐶
𝑎  is prescribed over a region of 

radial length L measured from the inner surface of the cylinder. The FGM coating 

portion of the cylinder is divided into n number of layers of infinitesimal thickness. Note 

that the infinitesimal thickness of the layers can be given by l= (RCT-Ri)/n. Now assume 

two diametrically opposed radial edge cracks of equal length emanating from the inner 

surface of the cylinder. The crack length li is varied by taking the crack length as li 

=l/2+ (i-1) l until li approaches L% of the cylinder wall thickness. The volume 

fraction of material A varies only in FGM coating portion. Considering the volume 
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fractions 𝑉𝐴
𝑖
 ( i=1,2,.....,n) of the constituent A in each FGM coating layer of the 

infinitesimal thickness as design variables and V
i
A ( i= n+1) =0.0, the optimum material 

distribution i.e. the optimum values of V
i
A ( i=1,2,.....,n) can be evaluated by solving the 

optimization problem set up as 

Minimize:   𝐹𝑜𝑏𝑗  𝑉𝐴
1, 𝑉𝐴

2 , ……… . , 𝑉𝐴
𝑛 =   𝐾𝐼

𝑖 − 𝐾𝐶
𝑖  

2𝑁
𝑖=1  

Subject to:    0 ≤ 𝑉𝐴
𝑖 ≤ 1;         i =1,2,…, n                                                                (4.48) 

where N= 
l

L


and 𝐾𝐼

𝑖  is the stress intensity factor at the tip of crack of length li and  𝐾𝑐
𝑖  is 

the intrinsic fracture toughness of the ith layer of the  cylinder. In determining  𝐾𝐼
𝑖  by 

using Eqs.(4.42) to (4.45), 𝑃 is replaced by 𝑃𝐶  obtained from Eq. (3.3). The intrinsic 

fracture toughness 𝐾𝐶
𝑖  is determined from Eq. (3.4). 

 

The optimization problem in Eq. (4.48) is solved by using a numerical optimization 

program ADS [57] in which the Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable 

metric method is used for the unconstrained minimization sub-problem, and the one-

dimensional search is used for minimizing the unconstrained function by first finding 

bounds and then using polynomial interpolation. The minimum value of the objective 

function 𝐹𝑜𝑏𝑗  𝑉𝐴
1, 𝑉𝐴

2, ……… . , 𝑉𝐴
𝑛  obtained by the ADS program is compared with a 

small positive quantity k to satisfy the condition 

 

𝐹𝑜𝑏𝑗  𝑉𝐴
1, 𝑉𝐴

2, ……… . , 𝑉𝐴
𝑛 ≤ 𝜀𝑘                                                                                   (4.49) 

and the corresponding set of the design variables 𝑉𝐴
𝑖 𝑖 = 1,2, … . 𝑛  is taken as the 

solution of the optimization problem. 

 

The solution of the optimization problem gives the values of material distribution at 

discrete points i ( i=1, 2, ...., n).Then the continuous profile of the material distribution is 

obtained by spline interpolation. In order to solve the optimization problem in Eq. (4.48), 

it is necessary to determine the material properties of the cylinder. These properties are 

determined by using the mixture rule given by Eq. (3.5) according to which the shear 

modulus of elasticity  and the bulk modulus    are first determined from Eqs. (3.5a), 

(3.5b), and (3.5d). 

Then the Young’s modulus E is calculated by using Eq. (3.5e), and the Poisson’s ratio is 

determined from, 
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1
2





E

                                                                                                                  (4.50) 

The coefficient of thermal expansion  is determined by using the relation given in Eq. 

(3.5c). 



 

 

 

 

CHAPTER 5 

NUMERICAL RESULTS AND DISCUSSIONS 

 

It is mentioned earlier that for any specific requirement, thick-walled cylinder with entire 

wall thickness made of FGM (referred as FGM cylinder from this point forward) is not 

necessary, only a thin FGM coating can serve the purpose adequately. So, to obtain the 

results for cylinder with FGM coating, simulation codes developed in earlier studies [45] 

are modified. The previous codes were developed for cylinder with gradation of material 

throughout the entire wall. In this study, those codes are modified for the cylinder with 

FGM coating at the inner surface. The modified codes can deal any arbitrary material 

distributions in FGM coating portion including the cylinder with gradation of material 

throughout the entire wall thickness. These can also consider the FGM coating of any 

thickness. The modified codes are thus more general than the earlier codes. The codes 

are still applicable for both single and double radial edge cracks. The effect of various 

parameters like cylinder wall thickness, strength factor, number of cracks, coating 

thickness etc can be evaluated by using the code for direct problem. In the code for 

inverse problem any arbitrary apparent fracture toughness over any thickness of cylinder 

can be prescribed. And it gives the corresponding material distribution for FGM coating 

of any thickness. Another code is developed to evaluate the stress intensity factor as a 

function of difference between sintering temperature and application temperature. 

 

The flow diagrams for determination of SIF by using direct method for an FGM cylinder 

and a cylinder with FGM coating are presented in Figs. 5.1 and 5.2, respectively. On the 

other hand, Figs. 5.3 and 5.4 respectively, show the flow diagrams for inverse problem of 

material distribution to realize prescribe apparent fracture toughness for an FGM and a 

cylinder with FGM coating. FGM cylinder means that the entire wall of the cylinder is 

made of FGM. The modifications of the original codes (Figs.5.1 and 5.3) required for the 

cylinder with FGM coating are shown by the shaded blocks in Figs. 5.2 and 5.4. 

 

In the present study, some numerical results are obtained for a cylinder with TiC/Al2O3 

FGM coating at the inner surface.  The material A and B correspond to TiC and Al2O3 

respectively, whose mechanical and thermal properties are shown in Table 5.1[58-63]. It 

is worthwhile to mention that although the method developed can be applied to any 
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materials, TiC and Al2O3 have been chosen here merely as an example. In case of solving 

direct problems the difference between sintering and room temperature, T is taken as 

1000 C and FGM coating thickness (CT) is taken as 20% of the whole cylinder 

thickness..The code of the main program to evaluate SIF and AFT by applying direct 

method is provided in Appendix I. 

 

5.1 Verification of the Method 

The approximation method of calculating stress intensity factors for two diametrically-

opposed edge cracks at the inner surface of cylinder with FGM coating is first verified by 

applying the method for a homogeneous cylinder. By setting VA = 0 or uniform 

distribution of VA throughout the wall thickness of the cylinder, one obtains a 

homogeneous cylinder. The normalized stress intensity factors FI (=KI(1-Ri
2
/Ro

2
)/2p     )  

are calculated for such a homogeneous cylinder for Ro/Ri = 2.5 and compared with those 

available in literatures as shown in Fig. 5.5. The black line represents the results obtained 

by the present method while the red line represents the results obtained by Wu and Janne 

[48]. It is observed that the results obtained by the present method agree well with those 

obtained by Wu and Janne [48] for the entire range of normalized crack length l/(Ro-Ri). 

 

5.2   Stress Intensity Factors for Prescribed Material Distributions 

In this study, the stress intensity factors are calculated for two diametrically-opposed 

edge cracks in a cylinder with FGM coating for four different prescribed material 

distributions as shown by the curves in Fig.5.6. The volume fraction of material A varies 

only in FGM coating portion. Although any material distribution can be considered, 

these four distributions are considered here merely as examples. For these prescribed 

material distributions and Ro/Ri= 2.5, strength factor Sf=1.0, normalized stress intensity 

factor FI versus normalized crack length l/(Ro-Ri)  is plotted in Fig.5.7. For all these cases 

of material distributions, the SIF is less at inner region of the cylinder, and then it 

increases over rest of the wall thickness. The lowest value of SIF is obtained for the 

uniform material distribution. However, the uniform distribution is not recommended as 

it has a sharp interface that causes the problem of delamination. Further, among rest of 

the three distributions, the stress intensity factor for parabolic upward distribution is the 

minimum for the lower range of crack length. This is due to the fact that this material 

l
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distribution has the higher gradient near surface of the cylinder which produces more 

incompatibility in the eigenstrain giving higher magnitude of compressive eigenstress. 

This compressive eigenstress attributes to the reduction in the stress intensity factor. 

Thus, it can be said that the FGM coating having the higher gradient would have the 

lower stress intensity factor. 

 

The effect of thickness of the cylinder is shown in Fig. 5.8. Here, the stress intensity 

factors are plotted for different values of Ro/Ri for linear material distribution in Fig. 5.6 

and 20% FGM coating thickness. It is observed that for higher thickness of the cylinder, 

the stress intensity factor is less, thus has more toughness against crack propagation. 

 

The effects of strength factor Sf on the stress intensity factor are also examined and 

shown in Fig. 5.9. The results corresponds to the linear material distribution in Fig. 5.6 

and Ro/Ri= 2.5 and CT=20%. The stress intensity factor decreases as the strength factor 

increases. This is because the higher value of strength factor represents the lower value 

of applied load p . 

 

A comparison between the stress intensity factors for a single radial edge crack and two 

diametrically opposed edge cracks is depicted in Fig.5.10. The stress intensity factors for 

a single radial edge crack can be calculated by setting G2 (Hi,Tj)= 0 in Eq. (4.42). The 

results are obtained for Sf=1.0, Ro /Ri = 2.5 and CT=20%. Note that the stress intensity 

factor is higher in the case of two diametrically-opposed cracks for any of the material 

distributions especially over the outer region of the cylinder. The comparison of stress 

intensity factors for a single and two diametrically-opposed edge cracks in cylinder with 

FGM coating of linear material distribution  are shown in Fig.5.11. The stress intensity 

factors calculated for Ro/Ri= 2.5 and Sf=1.0 for single and double edge cracks are the 

same over the inner region of the cylinder wall. It shows that the stress intensity factors 

of the cylinder with two diametrically-opposed edge cracks are much higher than those 

with a single radial edge crack over the outer region of the cylinder. So, the cylinder with 

two diametrically-opposed edge cracks is more critical than that with a single radial edge 

crack. 
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The effect of T that represents the difference between sintering and application 

temperatures of the cylinder with 20% FGM coating on the stress intensity factor can 

also be examined by the present method. If the FGM coated cylinder is used in an 

application of elevated temperature (higher than the room temperature), the value of T 

will be smaller. Its effect is shown in Fig. 5.12 which is plotted for the linear material 

distribution in the coating portion of the cylinder shown in Fig 5.6. It is observed that the 

stress intensity factor rises as the value of T decreases, i.e. at higher application 

temperature of the FGM coated cylinder. This conforms to the physical phenomenon that 

at lower value of T, the eigenstrain developed in the cylinder becomes lower. A 

comparison between the stress intensity factors for a single radial edge crack and two 

diametrically opposed edge cracks as a function of T is shown in Fig. 5.13. The stress 

intensity factor for the two diametrically opposed cracks is more critical than that for the 

single crack. The code of the main program to express the SIF as a function of T is 

attached in Appendix II.   

 

Figure 5.15 shows the effect of the FGM coating thickness on the stress intensity factor. 

To investigate this effect, FGM coatings of various thicknesses are considered as shown 

in Fig. 5.14. The coating thicknesses are expressed in terms of the percent of the cylinder 

wall thickness. In all cases, linear material distribution in FGM coating portion is 

considered. Outside the FGM coating, the cylinder wall is composed of Al2O3 only. For 

each coating thickness, the corresponding stress intensity factor is shown in Fig. 5.15. 

The results correspond to Ro/Ri=2.5, T = 1000
°
C. From the graph it is noted that at the 

inner portion of the cylinder stress intensity factor decreases with the increase of the 

coating thickness up to 60% of the cylinder wall thickness. After this value of the coating 

thickness, the stress intensity factor starts to increase as the coating thickness further 

increases. 

 

5.3   Apparent Fracture Toughness for Prescribed Material Distribution 

The apparent fracture toughness for prescribed material distributions of Fig. 5.6 is also 

evaluated numerically. The apparent fracture toughness 𝐾𝐼𝐶
𝑎  is normalized by the intrinsic 

fracture toughness 𝐾𝐶
𝐵 of Al2O3. This normalized apparent fracture toughness 𝐾𝐼𝐶

𝑎 / 𝐾𝐶
𝐵 is 

plotted in Fig. 5.16 for Ro/Ri=2.5, T = 1000
°
C and CT= 20%. For all the cases of 
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material distributions, the AFT initially increases over certain inner region of the 

cylinder wall. Then it decreases over the rest of the wall thickness. The incompatible 

eigenstrain induces an eigenstress, which is a self-equilibrated internal stress. The 

compressive eigenstress reduces the crack driving force that eventually increases the 

apparent fracture toughness. On the other hand, the tensile eigenstress has the reverse 

effects on the apparent fracture toughness. The composition profiles shown in Fig. 5.6 

induce compressive eigenstress over certain portion of the wall thickness at the inner side 

of the cylinder and a balancing tensile eigenstress over the remaining portion of the wall 

thickness at the outer side. And that is why the apparent fracture toughness increases 

from the inner surface up to a certain length and then it decreases as seen from Fig. 5.12. 

This type of fracture characteristic is desirable as it ensures the protection of catastrophic 

failure. Once the crack starts to propagate under a certain pressure, it immediately stops 

propagating as the region ahead of the crack tip has a higher toughness. For its further 

propagation, the internal pressure should be increased. The maximum peak value of AFT 

is obtained for the uniform material distribution. However, the uniform material 

distribution is not recommended as it has sharp interface causes delimitation. Among 

other three material distributions, it is noted that parabolic upward distribution in Fig. 5.6 

gives the maximum peak value of apparent fracture toughness. This is due to the fact that 

parabolic upward material distribution is steeper near the inner surface that induces 

compressive eigenstress with a higher absolute magnitude than those obtained for the 

other two profiles. Because, the material distributions whose steepness is less, induce 

eigenstress with smaller absolute magnitude. It is also noted that apparent fracture 

toughness for all material distributions has the value, which is significantly higher than 

the intrinsic fracture toughness 𝐾𝐶
𝐵of the base material of Al2O3 over most of the cylinder 

wall except those at and near the outer surfaces of the cylinder. 

 

The effect of cylinder wall thickness on the AFT is exhibited in Fig. 5.17. The results are 

obtained for the linear material distribution of Fig. 5.6 and T = 1000
°
C and CT= 20%. It 

is found that, for the same type of material distribution, AFT improves with the increase 

of wall thickness. 

 

Figure 5.18 shows AFT as a function of application temperature. The parameter T 

refers to the difference between the sintering and the application temperature. Thus, a 
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lower value of T indicates the higher application temperature. It is evident from Fig. 

5.18 that the cylinder has better fracture resistance at low application temperature. It is 

also noted that the AFT is worse than the intrinsic fracture toughness of the base material 

Al2O3 if the value of parameter T falls below 400°C. 

 

To investigate the effect of the FGM coating thickness on the AFT, FGM coatings of 

various thicknesses are considered as shown in Fig. 5.19. The coating thickness (CT) is 

expressed in terms of the percent of the cylinder wall thickness. In all the cases, the 

volume fraction of TiC varies linearly from 1.0 to 0 over the coating. For each CT, the 

corresponding AFT is shown in Fig. 5.20. For any CT, the AFT rises to a peak value with 

radial distance over the inner region of the cylinder wall. Then it starts decreasing over 

rest of the region of the wall. The position of the peak value of the AFT shifts toward the 

outer surface as the CT increases. Further the peak value of AFT increases with the 

increase of CT until the CT is 60% of the cylinder wall thickness. After this value of CT, 

the AFT start degrading as the CT further increases. 

 

Shown in Fig. 5.21 is the comparison of AFT for a single and two diametrically-opposed 

edge cracks. The results correspond to the linear material distribution of Fig. 5.6, 

Ro/Ri=2.5, T = 1000
°
C and CT= 20%. For both the cases of single and double cracks, 

the AFT is same over the inner region of the cylinder wall. However, it only differs 

significantly over the outer region of the cylinder wall. 

 

5.4 Material Distribution for Prescribed Apparent Fracture Toughness 

The inverse problem of evaluating optimum material distributions is solved to realize 

prescribed apparent fracture toughness in the thick-walled cylinder with FGM coating, 

which is higher than the intrinsic toughness of the constituent materials shown in Table 

5.1. Although it is possible to control the higher apparent fracture toughness of various 

profiles in order to meet the requirement of an application, in this study, we consider 

only two examples as shown by the solid portions of curves I and II in Fig. 5.22. The 

normalized apparent fracture toughness in example I is controlled such that it increases 

linearly from 2.0 to 2.85 over the normalized crack length 0.75. In example II, the 

normalized value of the apparent fracture toughness is 2.0, that does not vary over the 

same crack length. The difference between the sintering and room temperature T is 
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taken as 1000C. The value of k is taken as 0.1 in Eq. (4.49). The code of the main 

program to solve the inverse problem is provided in Appendix III. 

 

For the prescribed apparent fracture toughness of Fig. 5.22, the corresponding optimal 

material distribution profiles evaluated by the inverse calculations are shown in Fig. 

5.23. It exhibits the volume fraction VA of TiC versus the normalized radial distance for 

the parameter Ro/Ri=1.5. In order to know the characteristics of the cylinder after the 

controlled region, the apparent fracture toughness in that region is calculated for the 

material distribution profiles of Fig. 5.23 and shown by the dotted portions of the curves 

I and II in Fig. 5.22. It is noted that apparent fracture toughness in both cases reduces 

drastically after the controlled region. 

 

The prescribed apparent fracture toughness shown in Fig. 5.22 is realized by designing 

the thick-walled cylinder with FGM coating having the material distribution profiles as 

shown in Fig. 5.23. Thus it can be concluded that the apparent fracture toughness of a 

thick-walled cylinder with FGM coating can be controlled within possible limits by 

choosing an optimal material distribution profile in FGM coating portion of the cylinder. 

 

Material distribution profile corresponding to the prescribed apparent fracture shown in 

Fig. 5.24 is presented in Fig. 5.25 for two different types of cylinders, namely (i) a 

cylinder with gradation throughout the entire wall (ii) a cylinder with FGM CT of 20% 

of the cylinder wall at the inner surface. It establishes the fact that to achieve any 

desirable fracture behavior in a thick-walled cylinder, material gradation throughout the 

wall thickness of the cylinder is not necessary. Only a thin FGM coating can satisfy the 

requirements.  

 

Figure 5.26 shows the effects of the wall thickness of the cylinder on the material 

distribution. The results are obtained for the example I of the prescribed apparent 

fracture toughness shown in Fig. 5.22 and CT=20%. It is noted that up to a certain 

thickness at the inner side of the cylinder the value of VA increases as the parameter Ro/Ri 

decreases for the same type of prescribed apparent fracture toughness. Although there is 

a significant difference between the results corresponding to Ro/Ri=1.5 and 2.0, the 

difference between the results for Ro/Ri=2.0 and 2.5 is not significant. 
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Figure 5.27 shows the effects of FGM coating thickness on the material distributions. 

These results correspond to the prescribed fracture toughness I shown in Fig. 5.22 and 

Ro/Ri=2.5. 

 

The inverse method developed in this study can also be applied to evaluate material 

distribution corresponding to a prescribed profile of apparent fracture toughness against a 

single radial edge crack by setting the function G2 ( Hi,Tj ) in Eq. (4.42) to zero. For the 

example II of prescribed apparent fracture toughness in Fig. 5.22 against a single and 

two diametrically- opposed cracks, the evaluated material distributions are compared in 

Fig. 5.28. From the graph it is found that the material distributions differ only in the 

region of (r-Ri)/(Ro-Ri)=0.05 to 0.18. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATION 

 

6.1 Concluding Remarks 

A method is developed to analyze brittle fracture characteristics of a thick-walled 

cylinder having an FGM coating at its inner surface. The method is valid for any 

arbitrary variation of material properties instead of some presumed functional forms of 

material properties. The effect of eigenstrain developed in the cylinder as a result of 

cooling from sintering temperature due to nonuniform coefficient of thermal expansion is 

taken into account. The procedures of evaluating material distributions for prescribed 

apparent fracture toughness and vice versa by using this method have been outlined. This 

method is equally suitable for a single edge crack. Further, it can also be applied to a 

homogenous cylinder with a single as well as two diametrically opposed edge cracks. To 

demonstrate the method, some numerical results are obtained for a thick-walled cylinder 

with TiC/Al2O3 FGM coating. From the numerical results the following salient points 

can be noted: 

 

i. The stress intensity factors of a thick-walled cylinder with an FGM coating 

depend on the material distribution. The SIF is less for material distribution with 

higher gradient. 

 

ii. The wall thickness of the cylinder has also significant influence on the SIF and 

AFT. 

 

iii. The strength factor Sf has reverse effect on the SIF, i.e. the SIF decreases as Sf 

increases. 

 

iv. Like a homogeneous cylinder, two diametrically-opposed edge cracks are more 

critical than a single edge crack in an FGM coated cylinder. 

 

v. Cylinder with FGM coating has better fracture resistance at low application 

temperature. 
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vi. To achieve any desirable fracture behavior in a thick-walled cylinder, material 

gradation throughout the wall thickness is not necessary. Only a thin FGM 

coating can satisfy the requirements. 

 

vii. The apparent fracture toughness of an FGM coated cylinder is a function of 

material distribution. Thus the desired apparent fracture toughness can be 

introduced in a cylinder with FGM coating by choosing the material distribution 

appropriately. 

 

viii. The coating thickness has a significant effect on the fracture characteristics of a 

cylinder with FGM coating. Fracture resistance improves upto a certain amount 

of coating thickness. After that it starts to degrade. 

 

6.2 Recommendations for Future Work 

 

Some recommendations for further work are given below. 

 

 

i. Investigation of the effect of unequal crack size of two diametrically opposed 

edge cracks can be carried out. 

 

ii. Investigation of the effect of relative crack position of two radial edge cracks on 

the fracture characteristics of cylinders with FGM coating can be carried out. 

 

iii. Investigation of the effect of multiple radial edge cracks (more than two cracks) 

on the fracture characteristics of cylinders with FGM coating can be carried out. 
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Fig.1. 1 Concept of FGM: (a) an FGM plate, (b) material distribution in the FGM plate 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig.1. 2 Basic features of plasma spray method. 
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Fig.1. 3 Plasma spray method for developing FGM coating. 

 

 

 

 

 

 

 

 

 

 

 

 

                                    Fig. 3. 1 The three fracture modes. 
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Fig. 3. 2 The normalized geometric factor. 
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Fig. 4. 1 Analytical model of a thick-walled cylinder with FGM coating. 
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Fig. 4. 2 Model of layered cylinder with FGM coating. 
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Fig. 4. 3 Thick-walled homogenized cylinder with distributed incompatible and 

equivalent eigenstrains under a uniformly applied internal pressure. 
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Fig. 4. 4 Two diametrically-opposed edge cracks emanating from the inner surface of a 

thick-walled homogenized cylinder with distributed incompatible and equivalent 

eigenstrains under a uniformly applied internal pressure. 
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Fig. 4. 5 A discrete edge dislocation at z=h 
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Fig. 4. 6 Two edge dislocations at z=±h in a thick-walled homogenized cylinder 
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Fig. 5. 1 Flow diagram for calculation of SIF by direct method for an FGM cylinder.  
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Fig. 5. 2 Flow diagram for determination of SIF by direct method for cylinder with FGM 

coating.   
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Fig. 5. 3 Flowchart for inverse problem of material distribution to realize prescribed 

apparent fracture toughness in an FGM cylinder.   
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Fig. 5. 4 Flowchart for inverse problem of material distribution to realize prescribed 

apparent fracture toughness in a cylinder with FGM coating.  
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Fig. 5. 5 Comparison of normalized stress intensity factors for two diametrically opposed 

edge cracks in a homogeneous cylinder obtained by the present method and by Wu and 

Janne [48]. 
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Fig. 5. 6 Prescribed material distributions of TiC in a thick-walled cylinder with 

TiC/Al2O3 FGM coating. 
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Fig. 5. 7 Effect of material distribution on normalized stress intensity factors. 
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Fig. 5. 8  Normalized stress intensity factors as a function of cylinder wall thickness. 
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Fig. 5. 9  Normalized stress intensity factors as a function of strength factor. 
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Fig. 5. 10 Comparison of normalized stress intensity factors for a single and two 

diametrically opposed cracks. 
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Fig. 5. 11 Comparison of normalized stress intensity factors for a single and two 

diametrically-opposed edge cracks. 
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Fig. 5. 12 Normalized stress intensity factors as function of difference in sintering and 

application temperature. 
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Fig. 5. 13 Comparison of normalized stress intensity factors for a single and two 

diametrically opposed cracks as a function of difference between sintering and 

application temperature. 
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Fig. 5. 14 Coating thickness and distribution of TiC. 
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Fig. 5. 15 Effect of coating thickness on normalized stress intensity factor. 
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Fig. 5. 16 Effect of material distribution on apparent fracture toughness. 
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Fig. 5. 17 Effect of cylinder wall thickness on the apparent fracture toughness. 
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Fig. 5. 18 Effect of application temperature on the apparent fracture toughness. 
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Fig. 5. 19 Coating thickness and distributioon of TiC. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. 20 Effect of coating thickness on apparent fracture toughness. 
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Fig. 5. 21 Effect of number of cracks on apparent fracture toughness. 
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Fig. 5. 22 Prescribed apparent fracture toughness in a thick-walled cylinder with 

TiC/Al2O3 FGM coating. 
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Fig. 5. 23 Material distributions of TiC in a thick-walled cylinder with 20% TiC/Al2O3 

FGM coating at the inner surface. 
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Fig. 5. 24 Prescribed apparent fracture toughness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. 25 Comparison of material distribution for cylinder with 20% FGM coating and 

FGM cylinder for same prescribed apparent fracture toughness. 
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Fig. 5. 26 Effect of cylinder thickness on material distributions obtained for prescribed 

apparent fracture toughness of example I of Fig. 5.22. 
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Fig. 5. 27 Comparison of material distribution for the same prescribed apparent fracture 

toughness I of Fig. 5.22 for different FGM coating thickness. 
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Fig. 5. 28 Comparison of material distribution for the same prescribed apparent fracture 

toughness II of Fig. 5.22 between a single and two diametrically-opposed edge cracks. 
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Table 3. 1 The normalized geometric factor   𝑹𝒐
𝟐 − 𝑹𝒊

𝟐 𝟐. 𝟐𝟒 𝑹𝒐
𝟐  𝑭 

l/(Ro-Ri) 
Ro/Ri 

1.25 1.50 1.75 2.00 2.25 2.50 

0.0 1.00 1.00 1.00 1.00 1.00 1.00 

0.1 - 0.99 0.96 0.94 0.91 0.88 

0.2 - 1.03 0.98 0.93 0.88 0.84 

0.3 1.15 1.14 1.03 0.96 0.89 0.83 

0.4 1.40 1.27 1.11 1.00 0.91 0.84 

0.5 1.66 1.42 1.20 1.05 0.94 0.86 

0.6 1.90 1.56 1.28 1.11 0.99 0.90 

0.7 - 1.70 1.39 1.19 1.06 0.97 

0.8 - 1.83 1.51 1.31 1.18 1.08 

0.9 - 2.09 1.75 1.56 1.42 1.32 
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Table 4. 1 Coefficients 𝑨𝑲
′  and 𝑨𝑲

′′   
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Table 4. 2 Modified coefficients 𝑨𝑲
′  and 𝑨𝑲

′′  
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Table 5. 1 Material properties of TiC and Al2O3 

 

 

 

 

 

 

 

 

 

 

  

 

Material 
Young’s 

Modulus 

(GPa) 

Shear 

Modulus 

(GPa) 

Poisson’s 

Ratio 

CTE 

(/C) 

Ultimate 

Tensile 

Strength 

(GPa) 

Intrinsic 

Apparent 

Fracture 

Toughness

KIC 

(MPa 

m
1/2

) 

TiC 462 194.12 0.19 7.410
-6

 - 4.1 

Al2O3 380 150.79 0.26 8.010
-6

 0.28 3.5 
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Appendix I 

FORTRAN code to determine SIF and AFT for a cylinder with FGM coating 

(Main program only) 

c     Last change:      24 Jun 2012    2:31 am 

c     This program is to directly calculate stress intensity factor and  apparent fracture 

c     toughness of a thick-walled cylinder containing two diametrically opposed edge  

c     cracks from a prescribed material distribution 

 

      implicit double precision (a-h,o-z) 

      parameter (ri=10.0,ro=25,ti=ri/ro,romri=ro-ri) 

      parameter (delcl=0.151) 

      parameter (naftad=(0.98-0.0)*romri/delcl) 

 

 

c         INPUT FOR SUBROUTINE MIXTURE  

 

      parameter (nl=150) 

      dimension ye(nl),alfmix(nl),v1(nl),v2(nl),anu(nl) 

 

 

c     INPUT FOR SUBROUTINE AMDIS 

 

      parameter (nn=100,n=50) 

 

c     INPUT FOR SUBROUTINE SIGMAP  

 

      dimension r1(0:nl) 

      

 

c     INPUT FOR SUBROUTINE SIGMAEI 

 

      parameter (delt=1000.0) 

      dimension ca2(nl-1,nl-1),b2(nl-1),p2(0:nl),xs2(nl-1),cc2(nl) 

      

      dimension rops(nl+2),sigma2st(nl+2),sigma2sr(nl+2),sigma2sz(nl+2) 

 

 

c        INPUT FOR SUBROUTINE TLEDD 

 

      parameter (e=1.0d-16,PI=3.141592653589793d0) 

 

c     INPUT FOR SUBROUTINE SPLINE 

 

      parameter(nlp2=nl+2) 

      dimension ryes(nl),yesp(nlp2) 
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      open (7,file='v1.dat') 

      open (8,file='v1s.dat') 

      open (9,file='apft.dat') 

      open (10,file='stressp.dat') 

      open (11,file='stressei.dat') 

      open (12,file='sifad.dat') 

      open (13,FILE='SIF.dat') 

 

      p2(0)=0.0 

      p2(nl)=0.0 

 

      d=ti 

      dosl=(ro-ri)/nl+0.0001 

      obti=ro/ri 

 

      do 80 i=1,nl 

      ryes(i)=i*(ro-ri)/nl+ri-(ro-ri)/nl/2.0 

 80   continue 

 

 

      do 16 i=1,nl 

 

c      v1(i)=(1.0-float(i-1)/(nl-1))                    !lin: linear 

c      v1(i)=(1.0-float(i-1)/(nl-1))**2                !pd: parabolic downward 

c      v1(i)=dsqrt(1.0d0-float(i-1)/(nl-1))            !pu: parabolic upward 

 

c      *********** for coating ********************* 

       IF(i.gt.30) GOTO 37 

 

c       IF(i.le.30) v1(i)=1.0                          ! UNIFORM OVER PART OF THE 

THICKNESS 

 

       v1(i)=(1.0-float(i-1)/(30-1))                    !lin  :close this statement if graded whole 

thickness 

 

 

c       v1(i)=(1.0-float(i-1)/(30-1))**2                !pd: parabolic downward 

 

 

 

c        v1(i)=dsqrt(1.0d0-float(i-1)/(30-1))           !pu: parabolic upward 

 

  37     IF(i.gt.30) v1(i)=0                           ! close this statement if graded whole thickness 

 

      v2(i)=1.0-v1(i) 

 

      call MIXTURE(V1,V2,YE,ALFMIX,i,nl,anu) 
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      yesp(i+1)=ye(i) 

 

  16   continue 

 

      yesp(1)=ye(1) 

      yesp(nlp2)=ye(nl) 

 

      CALL SIGMAEI(ANU,RO,RI,NL,YE,ALFMIX,DELT,CA2,B2,CC2,r1) 

 

 119  format(9(f10.4),4x,f10.4) 

 

      CALL TLEDD(NL-1,CA2,B2,XS2,NL-1,E,INDER) 

 

      do 9 i=1,nl-1 

 9    p2(i)=xs2(i) 

 

      do 14 dx2=0.,30.0,0.2 

 

         frac=(ro-ri)*dx2/30.0 

         rop=ri+frac 

         i=idint(1.0+frac/dosl) 

 

 14    continue 

 131   format(f10.4,3x,f12.8) 

 

       sp1=(ro-ri)/nl 

 

       do 76 ji=1,nl+2 

 

       rop=ri+sp1*(ji-1)-sp1/2.0 

       if(ji.eq.1) rop=ri 

       if(ji.eq.nl+2) rop=ro 

 

      rops(ji)=rop 

      i=idint(1.0+(rop-ri)/dosl) 

 

       sigma2st(ji)=p2(i-1)*cc2(i)*cc2(i)*(1.0+r1(i)*r1(i)/(rop*rop))/ 

     &  (1.0-cc2(i)*cc2(i))-p2(i)*(1.0+cc2(i)*cc2(i)*r1(i)*r1(i)/ 

     &  (rop*rop))/(1.0-cc2(i)*cc2(i)) 

 

       sigma2sr(ji)=p2(i-1)*cc2(i)*cc2(i)*(1.0-r1(i)*r1(i)/(rop*rop))/ 

     &  (1.0-cc2(i)*cc2(i))-p2(i)*(1.0-cc2(i)*cc2(i)*r1(i)*r1(i)/ 

     &  (rop*rop))/(1.0-cc2(i)*cc2(i)) 

 

       sigma2sz(ji)=2.0*anu(i)*(cc2(i)*cc2(i)*p2(i-1)-p2(i))/(1.0- 

     & cc2(i)*cc2(i))+ye(i)*alfmix(i)*delt 

 

 76    continue 

 

      cl=0.0d0 
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  48  continue 

 

c     CALCULATION OF SIF AFTER DESIGN 

 

cCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

 

      write(12,208) obti,delt 

 208  format(3x,'ro/ri=',1x,f6.3,5x,'delt='1x,f7.2/) 

      write(12,206) 

 206  format(5x,'Ri+cl',7x,'cl',8x,'cl/romri',5x,'sifad',10x,'sifadn') 

 

      do 91 i=1,naftad 

 

      cl=cl+delcl 

       sf=1.0 

       sigmau=.28 

 

      call apftad(sf,sigmau,cl,p2,n,ri,dosl,cc2,r1,ro,nl,ye,anu 

     & ,nn,pcrt,SIF,rops,sigma2st,nlp2,D,yesp) 

 

      x5=cl/(ro-ri) 

 

      ff=1.794872d0*x5**5+1.293706d0*x5**4-5.712121d0*x5**3+ 

     & 4.941142d0*x5**2-1.585786d0*x5+0.9988531d0      ! ro/ri=2.5 

 

c      ff=5.0D0*x5**5-5.932401D0*x5**4+3.671329D-2*x5**3+2.77331D0*x5**2 

c     & -8.599114D-1*x5+9.996224D-1                             ! ro/ri=2.0 

 

c      ff=1.24359D+1*x5**5-2.26049D+1*x5**4+1.146795D+1*x5**3+ 

c     & 5.300117D-1*x5**2-2.365291D-1*x5+9.995664D-1            ! ro/ri=1.5 

 

c      sifad=ff*pcrt*dsqrt(pi*(cl+ri))*1000.0/dsqrt(1000.0d0) 

      sifad=ff*pcrt*dsqrt(pi*cl)*1000.0/dsqrt(1000.0d0) 

      sifadn=sifad/3.5d0 

 

       F1=SIF*(1-ti*ti)*sf*dsqrt(1000.0d0)/(2*sigmau*dsqrt(pi*cl)*1000) 

 

      WRITE(13,312) x5,F1 

 

      write(12,205) Ri+cl,cl,x5,sifad,sifadn 

      print*, cl,sifadn 

 

 91   continue 

 205  format(3x,f9.6,2x,f9.6,2x,f9.6,2x,f12.8,2x,f12.8) 

 312  FORMAT(5x,f9.6,7x,f12.8) 

 

cCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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c     SPLINE OF VOLUME FRACTION 

 

      write(8,209) obti,delt 

 209  format(3x,'ro/ri=',1x,f6.3,5x,'delt=',1x,f7.2/) 

      write(8,207) 

 207  format(7x,'r',9x,'(r-ri)/romri',5x,'v1s') 

 

      do 62 rv1s=ri,ro,0.01  

 

      call spline(rv1s,v1s,ryes,v1,nl) 

      write(8,111) rv1s,(rv1s-ri)/romri,v1s 

 

 62   continue 

 

 111  format(3x,f8.5,6x,f8.5,6x,f9.7) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccc 

      WRITE(7,115) 

 115  FORMAT(2x,'(r-ri)/(ro-ri)',6x,'v1') 

 

      do 69 i=1,nl 

      xrop=ri-romri/(2*nl)+romri/(nl)*i 

      WRITE(7,116) (xrop-ri)/romri,v1(i) 

   69 continue 

 

 116  FORMAT(3x,f7.3,5x,f8.3) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

cccccccccccccccccccccccccccccccc 

 

      write(7,42) nl,cl,obti 

 42   format(3x,'iteads=',i4,3x,'nl=',i3,3x,'cl=',f6.3,2x, 

     & 'ro/ri=',1x,f6.3,/) 

 

      write(9,43) nl,cl,obti 

 43   format(3x,'iteads=',i4,3x,'nl=',i3,3x,'cl=',f6.3,2x, 

     & 'ro/ri=',1x,f6.3,/) 

 

      write(7,41) 

 41   format(16x,'obj',12x,'r',11x,'cl/romri',8x,'v1') 

 

      write(9,112) 

 112  format(7x,'cl',11x,'cl/romri',6x,'apft',11x,'apftn', 

     & 11x,'inft',11x,'csif') 

 

      do 22 i=1,nl 

       

      xaxis=ri+i*(ro-ri)/nl-romri/2.0/nl 

      write(7,40) xaxis,(xaxis-ri)/romri,v1(i) 
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 22   continue 

 

 40   format(13x,f9.6,5x,f9.6,5x,f9.6,5x,f9.6) 

 

      do 61 i=1,nlp2 

 

      write(10,110) rops(i) 

      write(11,110) rops(i),sigma2sr(i),sigma2st(i),sigma2sz(i) 

 

 61   continue 

 110  format(3x,f7.4,2x,3(f12.9,2x)) 

 

 88   stop 

      end  
c 

c 
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Appendix II 

FORTRAN code for expressing SIF as a function of ΔT for a cylinder with FGM 

coating containing two diametrically opposed edge cracks. 

(Main program only) 

c     Last change:  L    27 Apr 2012   10:07 pm 

c     This program is to directlyly calculate SIF as a function 

c     of application temperature for a cylinder with FGM  

c     coating containing two diametrically opposed edge  

c      cracks from a prescribed material distribution 

       

  implicit double precision (a-h,o-z) 

 

 

      parameter (ri=10.0,ro=25,ti=ri/ro,romri=ro-ri) 

c      parameter (delcl=0.151) 

c      parameter (naftad=(0.98-0.0)*romri/delcl) 

c      parameter (sf=1.0,sigmau=0.28) 

 

 

 

c         INPUT FOR SUBROUTINE MIXTURE  

 

      parameter (nl=150) 

      dimension ye(nl),alfmix(nl),v1(nl),v2(nl),anu(nl) 

 

 

c     INPUT FOR SUBROUTINE AMDIS 

 

      parameter (nn=100,n=50) 

 

c     INPUT FOR SUBROUTINE SIGMAP  

 

      dimension r1(0:nl) 

      

 

c     INPUT FOR SUBROUTINE SIGMAEI 

 

c      parameter (delt=1000.0) 

      dimension ca2(nl-1,nl-1),b2(nl-1),p2(0:nl),xs2(nl-1),cc2(nl) 

      

      dimension rops(nl+2),sigma2st(nl+2),sigma2sr(nl+2),sigma2sz(nl+2) 

 

 

c        INPUT FOR SUBROUTINE TLEDD 

 

      parameter (e=1.0d-16,PI=3.141592653589793d0) 



 

 

99 

 

 

c     INPUT FOR SUBROUTINE SPLINE 

 

      parameter(nlp2=nl+2) 

      dimension ryes(nl),yesp(nlp2) 

 

 

      open (7,file='v1.dat') 

      open (8,file='v1s.dat') 

      open (9,file='apft.dat') 

      open (10,file='stressp.dat') 

      open (11,file='stressei.dat') 

      open (12,file='sifad.dat') 

      open (13,FILE='SIF.dat') 

 

 

      p2(0)=0.0 

      p2(nl)=0.0 

 

 

      d=ti 

      dosl=(ro-ri)/nl+0.0001 

      obti=ro/ri 

 

      do 80 i=1,nl 

      ryes(i)=i*(ro-ri)/nl+ri-(ro-ri)/nl/2.0 

 80   continue 

 

      do 16 i=1,nl 

 

c      v1(i)=1.0                                                ! uniform 

c      v1(i)=(1.0-float(i-1)/(nl-1))                    !lin: Linear 

c      v1(i)=(1.0-float(i-1)/(nl-1))**2               !pd: parabolic downward 

c      v1(i)=dsqrt(1.0d0-float(i-1)/(nl-1))         !pu: parabolic upward 

 

c      *********** for coating ********************* 

      IF(i.gt.30) GOTO 37 

 

c       IF(i.le.30) v1(i)=1.0                     ! uniform over part of the thickness 

 

       v1(i)=(1.0-float(i-1)/(30-1))          !lin :close this statement if graded whole thickness 

 

c      v1(i)=(1.0-float(i-1)/(30-1))**2                !pd: parabolic downward 

 

c        v1(i)=dsqrt(1.0d0-float(i-1)/(30-1))            !pu: parabolic upward 

 

   37     IF(i.gt.30) v1(i)=0                       ! close this statement if graded whole thickness 

      v2(i)=1.0-v1(i) 

 

      call MIXTURE(V1,V2,YE,ALFMIX,i,nl,anu) 
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      yesp(i+1)=ye(i) 

 16   continue 

 

      yesp(1)=ye(1) 

      yesp(nlp2)=ye(nl) 

 

       WRITE(13,309) 

 309  FORMAT(5x,'DELT',7x,'F1') 

 

      delt=0.d0 

      do 91 p=1,5,1 

 

      delt=delt+200 

 

 

      CALL SIGMAEI(ANU,RO,RI,NL,YE,ALFMIX,DELT,CA2,B2,CC2,r1) 

 119  format(9(f10.4),4x,f10.4) 

 

      CALL TLEDD(NL-1,CA2,B2,XS2,NL-1,E,INDER) 

 

      do 9 i=1,nl-1 

 9    p2(i)=xs2(i) 

 

      do 14 dx2=0.,30.0,0.2 

 

         frac=(ro-ri)*dx2/30.0 

         rop=ri+frac 

         i=idint(1.0+frac/dosl) 

 

 14    continue 

 131   format(f10.4,3x,f12.8) 

 

       sp1=(ro-ri)/nl 

 

       do 76 ji=1,nl+2 

 

       rop=ri+sp1*(ji-1)-sp1/2.0 

       if(ji.eq.1) rop=ri 

       if(ji.eq.nl+2) rop=ro 

 

      rops(ji)=rop 

      i=idint(1.0+(rop-ri)/dosl) 

 

       sigma2st(ji)=p2(i-1)*cc2(i)*cc2(i)*(1.0+r1(i)*r1(i)/(rop*rop))/ 

     &  (1.0-cc2(i)*cc2(i))-p2(i)*(1.0+cc2(i)*cc2(i)*r1(i)*r1(i)/ 

     &  (rop*rop))/(1.0-cc2(i)*cc2(i)) 

 

       sigma2sr(ji)=p2(i-1)*cc2(i)*cc2(i)*(1.0-r1(i)*r1(i)/(rop*rop))/ 

     &  (1.0-cc2(i)*cc2(i))-p2(i)*(1.0-cc2(i)*cc2(i)*r1(i)*r1(i)/ 

     &  (rop*rop))/(1.0-cc2(i)*cc2(i)) 



 

 

101 

 

 

       sigma2sz(ji)=2.0*anu(i)*(cc2(i)*cc2(i)*p2(i-1)-p2(i))/(1.0- 

     & cc2(i)*cc2(i))+ye(i)*alfmix(i)*delt 

 

 76    continue 

 

      cl=3.75 

 

  48  continue 

 

c     CALCULATION OF SIF AFTER DESIGN 

 

cCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

 

      write(12,208) obti,delt 

 208  format(3x,'ro/ri=',1x,f6.3,5x,'delt='1x,f7.2/) 

 

 

      write(12,206) 

 206  format(5x,'Ri+cl',7x,'cl',8x,'cl/romri',5x,'sifad',10x,'sifadn') 

      

       

       sf=1.0                                                          

       sigmau=.28 

 

      call apftad(sf,sigmau,cl,p2,n,ri,dosl,cc2,r1,ro,nl,ye,anu 

     & ,nn,pcrt,SIF,rops,sigma2st,nlp2,D,yesp) 

 

      x5=cl/(ro-ri) 

 

      ff=1.794872d0*x5**5+1.293706d0*x5**4-5.712121d0*x5**3+ 

     & 4.941142d0*x5**2-1.585786d0*x5+0.9988531d0                             ! ro/ri=2.5 

 

 

c      ff=5.0D0*x5**5-5.932401D0*x5**4+3.671329D-2*x5**3+2.77331D0*x5**2 

c     & -8.599114D-1*x5+9.996224D-1                                            ! ro/ri=2.0 

 

c      ff=1.24359D+1*x5**5-2.26049D+1*x5**4+1.146795D+1*x5**3+ 

c     & 5.300117D-1*x5**2-2.365291D-1*x5+9.995664D-1                           ! ro/ri=1.5 

 

c      sifad=ff*pcrt*dsqrt(pi*(cl+ri))*1000.0/dsqrt(1000.0d0) 

 

 

      sifad=ff*pcrt*dsqrt(pi*cl)*1000.0/dsqrt(1000.0d0) 

      sifadn=sifad/3.5d0 

 

      write(12,205) Ri+cl,cl,x5,sifad,sifadn 

 

 

       F1=SIF*(1-ti*ti)*sf*dsqrt(1000.0d0)/(2*sigmau*dsqrt(pi*cl)*1000) 



 

 

102 

 

 

       PRINT*,delt,F1 

 

       WRITE(13,312) delt,F1 

 

 91   continue 

 205  format(3x,f9.6,2x,f9.6,2x,f9.6,2x,f12.8,2x,f12.8) 

 312  FORMAT(5x,f7.2,7x,f12.8) 

 

cCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

 

c     SPLINE OF VOLUME FRACTION 

 

      write(8,209) obti,delt 

 209  format(3x,'ro/ri=',1x,f6.3,5x,'delt=',1x,f7.2/) 

      write(8,207) 

 207  format(7x,'r',9x,'(r-ri)/romri',5x,'v1s') 

 

      do 62 rv1s=ri,ro,0.01  

 

      call spline(rv1s,v1s,ryes,v1,nl) 

      write(8,111) rv1s,(rv1s-ri)/romri,v1s 

 

 62   continue 

 

 111  format(3x,f8.5,6x,f8.5,6x,f9.7) 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccc 

      WRITE(7,115) 

 115  FORMAT(2x,'(r-ri)/(ro-ri)',6x,'v1') 

 

      do 69 i=1,nl 

      xrop=ri-romri/(2*nl)+romri/(nl)*i 

      WRITE(7,116) (xrop-ri)/romri,v1(i) 

   69 continue 

 

 116  FORMAT(3x,f7.3,5x,f8.3) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

cccccccccccccccccccccccccccccccc 

 

 

c      write(7,42) nl,cl,obti 

c 42   format(3x,'iteads=',i4,3x,'nl=',i3,3x,'cl=',f6.3,2x, 

c     & 'ro/ri=',1x,f6.3,/) 

 

      write(9,43) nl,cl,obti 

 43   format(3x,'nl=',i4,3x,'cl=',f6.3,2x,'ro/ri=',f6.3,/) 
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c      write(7,117) 

c 117   format(1x,'obj',2x,'r',2x,'cl/romri',3x,'v1') 

 

      write(9,112) 

 112  format(7x,'cl',11x,'cl/romri',6x,'apft',11x,'apftn', 

     & 11x,'inft',11x,'csif') 

 

c      do 22 i=1,nl 

       

c      xaxis=ri+i*(ro-ri)/nl-romri/2.0/nl 

c      write(7,118) xaxis,(xaxis-ri)/romri,v1(i) 

c 22   continue 

 

c 118   format(13x,f9.6,5x,f9.6,5x,f9.6) 

 

c      do 24 i=1,naft 

c 24      write(9,113) scl(i),x5s(i),saft(i),saftn(i),sifin(i),ssif(i) 

c 113     format(f12.7,3x,f12.7,3x,f12.7,3x,f12.7,3x,f12.7,3x,f12.7) 

 

      do 61 i=1,nlp2 

 

      write(10,110) rops(i) 

      write(11,110) rops(i),sigma2sr(i),sigma2st(i),sigma2sz(i) 

 

 61   continue 

 110  format(3x,f7.4,2x,3(f12.9,2x)) 

 

 88   stop 

      end 

c 

c 
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Appendix III 

FORTRAN code for inverse problem of material distribution to realize prescribed 

apparent fracture toughness. 

(Main program only) 

c     Last change:  L    24 Jun 2012    3:29 am 

c     This program is to inversely calculate composition profile  

c     of thick-walled cylinder with FGM coating 

c     containing two radial edge cracks from a prescribed 

c     apparent fracture toughness. 

 

      implicit double precision (a-h,o-z) 

 

 

      parameter (ri=10.0,ro=25.0,ti=ri/ro,romri=ro- ri,clmax=0.75*romri) 

      parameter (delcl=0.151,naft=clmax/delcl) 

      parameter (naftad=(0.98-0.75)*romri/delcl) 

      dimension scl(naft),saft(naft),sifin(naft),objb(naft),ssif(naft) 

      dimension x5s(naft),saftn(naft) 

 

 

c         INPUT FOR SUBROUTINE MIXTURE  

 

      parameter (nl=30) 

      parameter (nlc=3) 

      dimension ye(nl),alfmix(nl),v1(nl),v2(nl),anu(nl),v11(nlc) 

 

 

c     INPUT FOR SUBROUTINE  ADS  

 

      parameter (ndv=nlc,ncon=naft,nra=ndv+1,nrwk=30000,nriwk=1000, 

     & ncola=2*ndv) 

       

      parameter (smvfcon=0.4) 

 

      dimension vlb(ndv+1),vub(ndv+1),g(ncon),idg(ncon),ic(ncon), 

     & df(ndv+1),wk(nrwk),iwk(nriwk),a(nra,ncola) 

 

 

c     INPUT FOR SUBROUTINE AMDIS  

 

      parameter (nn=60,n=30) 

      dimension ATL(nn,n),DH1(n),H(N) 

 

 

c     INPUT FOR SUBROUTINE SIGMAP  
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      parameter (pout=0.0) 

      dimension p1(0:nl),ca1(nl-1,nl-1),b1(nl-1),r1(0:nl),xs1(nl-1) 

     & ,cc1(nl),sigma1(n) 

      dimension sigma1st(nl+2),sigma1sr(nl+2),sigma1sz(nl+2) 

 

c     INPUT FOR SUBROUTINE SIGMAEI 

 

      parameter (delt=1000.0) 

      dimension ca2(nl-1,nl-1),b2(nl-1),p2(0:nl),xs2(nl-1),cc2(nl) 

     & ,sigma2(n) 

      dimension rops(nl+2),sigma2st(nl+2),sigma2sr(nl+2),sigma2sz(nl+2) 

 

c        INPUT FOR SUBROUTINE TLEDD 

 

      parameter (e=1.0d-16,PI=3.141592653589793d0) 

      dimension B(n),XTL(n) 

 

c     INPUT FOR SUBROUTINE SPLINE 

 

      parameter(nlp2=nl+2) 

      dimension ryes(nl),yesp(nlp2) 

 

 

c     dimension for finding minimum value 

      dimension objst(11),v1st(11,nl) 

 

      open (7,file='v1.dat') 

      open (8,file='v1s.dat') 

      open (9,file='apft.dat') 

      open (10,file='stressp.dat') 

      open (11,file='stressei.dat') 

      open (12,file='sifad.dat') 

 

      p1(nl)=pout 

      p2(0)=0.0 

      p2(nl)=0.0 

 

      d=ti 

      dosl=(ro-ri)/nl+0.0001 

      obti=ro/ri 

 

      do 80 i=1,nl 

      ryes(i)=i*(ro-ri)/nl+ri-(ro-ri)/nl/2.0 

 80   continue 

 

      igrad=0 

c     initial design 

 

      iobj=0 

c      do 48 stepdv=0.0,1.0,0.1 
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      iobj=iobj+1 

      stepdv=0.8d0           !**************** initial value********************** 

 

      do 11 i=1,nlc 

      v11(I)=stepdv 

 11   continue 

 

      do 12 i=nlc+1,nl 

 12   v1(I)=0.0d0 

      continue 

 

C     BOUNDS OF DESIGN VARIABLES 

 

      do 21 i=1,nlc 

 

         vlb(i)=0.0 

         vub(i)=1.0 

 21   continue 

 

c     identify constraints as nonlinear, inequality 

 

      do 19 i=1,naft 

 

      idg(i)=0    ! for nonlinear inequality 

c      idg(i)=2     ! for linear inequality 

 19   continue 

 

c     input 

 

      data istrat,iopt,ioned,iprint/5,3,3,0000/ 

 

c     OPTIMIZATION BEGINS 

 

      iteads=0 

      info=0 

 

 10   call ADS(info,istrat,iopt,ioned,iprint,igrad,ndv,ncon,v11,vlb, 

     & vub,obj,g,idg,ngt,ic,df,a,nra,ncola,wk,nrwk,iwk,nriwk) 

 

      do 36 i=1,nlc 

 36   v1(I)=v11(I) 

      continue 

 

 

      if (info.eq.0) goto 20 

      iteads=iteads+1 

 

c     Calculate YE, ALFMIX and ANU 

 

      do 16 i=1,nl 
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c      v1(i)=(1.0-float(i-1)/(nl-1)) 

 

      v2(i)=1.0-v1(i) 

 

      call MIXTURE(V1,V2,YE,ALFMIX,i,nl,anu) 

 

      yesp(i+1)=ye(i) 

 

c      print*,V1(i),ye(i),alfmix(i),anu(i) 

 

 16   continue 

 

      yesp(1)=ye(1) 

      yesp(nlp2)=ye(nl) 

 

 

      CALL SIGMAEI(ANU,RO,RI,NL,YE,ALFMIX,DELT,CA2,B2,CC2,r1) 

 

c      write(7,119)((ca2(i,j),j=1,nl-1),b2(i),i=1,nl-1) 

 119  format(9(f10.4),4x,f10.4) 

 

      CALL TLEDD(NL-1,CA2,B2,XS2,NL-1,E,INDER) 

 

      do 9 i=1,nl-1 

 9    p2(i)=xs2(i) 

 

c      do 13 i=0,nl 

c 13      print*,p2(i) 

 

      do 14 dx2=0.,30.0,0.2 

 

         frac=(ro-ri)*dx2/30.0 

         rop=ri+frac 

         i=idint(1.0+frac/dosl) 

 

         sigmao2=p2(i-1)*cc2(i)*cc2(i)*(1.0+r1(i)*r1(i)/(rop*rop))/ 

     &  (1.0-cc2(i)*cc2(i))-p2(i)*(1.0+cc2(i)*cc2(i)*r1(i)*r1(i)/ 

     &  (rop*rop))/(1.0-cc2(i)*cc2(i)) 

 

c       print*, rop, sigmao2,frac,i 

c         write(7,131) rop,sigmao2 

 

 14    continue 

 131   format(f10.4,3x,f12.8) 

 

       sp1=(ro-ri)/nl 

 

       do 76 ji=1,nl+2 
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       rop=ri+sp1*(ji-1)-sp1/2.0 

       if(ji.eq.1) rop=ri 

       if(ji.eq.nl+2) rop=ro 

 

      rops(ji)=rop 

      i=idint(1.0+(rop-ri)/dosl) 

 

       sigma2st(ji)=p2(i-1)*cc2(i)*cc2(i)*(1.0+r1(i)*r1(i)/(rop*rop))/ 

     &  (1.0-cc2(i)*cc2(i))-p2(i)*(1.0+cc2(i)*cc2(i)*r1(i)*r1(i)/ 

     &  (rop*rop))/(1.0-cc2(i)*cc2(i)) 

 

       sigma2sr(ji)=p2(i-1)*cc2(i)*cc2(i)*(1.0-r1(i)*r1(i)/(rop*rop))/ 

     &  (1.0-cc2(i)*cc2(i))-p2(i)*(1.0-cc2(i)*cc2(i)*r1(i)*r1(i)/ 

     &  (rop*rop))/(1.0-cc2(i)*cc2(i)) 

 

       sigma2sz(ji)=2.0*anu(i)*(cc2(i)*cc2(i)*p2(i-1)-p2(i))/(1.0- 

     & cc2(i)*cc2(i))+ye(i)*alfmix(i)*delt 

 

 76    continue 

 

      sobj=0.0d0 

      cl=0.0d0 

 

 

      do 23 ii=1,naft 

 

      cl=cl+delcl 

      scl(ii)=cl 

 

      x5=cl/(ro-ri) 

      x5s(ii)=x5 

 

      ff=1.794872d0*x5**5+1.293706d0*x5**4-5.712121d0*x5**3+ 

     & 4.941142d0*x5**2-1.585786d0*x5+0.9988531d0             ! ro/ri=2.5 

 

c      ff=5.0D0*x5**5-5.932401D0*x5**4+3.671329D-2*x5**3+2.77331D0*x5**2 

c     & -8.599114D-1*x5+9.996224D-1                             ! ro/ri=2.0 

 

c      ff=1.24359D+1*x5**5-2.26049D+1*x5**4+1.146795D+1*x5**3+ 

c     &5.300117D-1*x5**2-2.365291D-1*x5+9.995664D-1            ! ro/ri=1.5 

 

 

      aft=3.0/clmax*cl+7.0   !*********************** prescribed apparent fracture 

toughness **************************************** 

 

c      aft=7.0 

       

      saft(ii)=aft 

      saftn(ii)=aft/3.5 
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      pin=aft*(1.0-ti*ti)*dsqrt(1000.0d0)/(2.24*dsqrt(pi*cl)*ff*1000.0) 

c      write(8,111) scl(ii),saft(ii) 

      p1(0)=pin 

 

      call SIGMAP(ANU,RO,RI,NL,PIN,POUT,YE,CA1,B1,cc1,r1) 

 

c      write(7,119)((ca1(i,j),j=1,nl-1),b1(i),i=1,nl-1) 

c 119  format(9(f10.4),4x,f10.4) 

 

      call   TLEDD(NL-1,CA1,B1,XS1,NL-1,E,INDER) 

 

      do 7 i=1,nl-1 

 7    p1(i)=xs1(i) 

 

c      do 8 i=0,nl 

c 8       print*, p1(i) 

 

      do 15 dx1=0.,30.0,0.2 

 

         frac=(ro-ri)*dx1/30.0 

         rop=ri+frac 

         i=idint(1.0+frac/dosl) 

 

         sigmao1=p1(i-1)*cc1(i)*cc1(i)*(1.0+r1(i)*r1(i)/(rop*rop))/ 

     &  (1.0-cc1(i)*cc1(i))-p1(i)*(1.0+cc1(i)*cc1(i)*r1(i)*r1(i)/ 

     &  (rop*rop))/(1.0-cc1(i)*cc1(i)) 

 

c       print*, rop, sigmao1,frac,i 

 

 15   continue 

 

       do 78 ji=1,nl+2 

       rop=ri+sp1*(ji-1)-sp1/2.0 

 

       if(ji.eq.1)rop=ri 

       if(ji.eq.nl+2)rop=ro 

      rops(ji)=rop 

 

      i=idint(1.0+(rop-ri)/dosl) 

 

      sigma1st(ji)=p1(i-1)*cc1(i)*cc1(i)*(1.0+r1(i)*r1(i)/(rop*rop))/ 

     &  (1.0-cc1(i)*cc1(i))-p1(i)*(1.0+cc1(i)*cc1(i)*r1(i)*r1(i)/ 

     &  (rop*rop))/(1.0-cc1(i)*cc1(i)) 

 

      sigma1sr(ji)=p1(i-1)*cc1(i)*cc1(i)*(1.0-r1(i)*r1(i)/(rop*rop))/ 

     &  (1.0-cc1(i)*cc1(i))-p1(i)*(1.0-cc1(i)*cc1(i)*r1(i)*r1(i)/ 

     &  (rop*rop))/(1.0-cc1(i)*cc1(i)) 

 

      sigma1sz(ji)=2.0*anu(i)*(cc1(i)*cc1(i)*p1(i-1)-p1(i))/(1.0- 

     & cc1(i)*cc1(i)) 



 

 

110 

 

 

 78   continue 

 

 

      w=2.0d0*ro/cl       

      call AMDIS(NN,N,W,D,TI,ATL,dh1,h) 

 

c      write(7,132) ((ATL(i,j),j=1,n),i=1,n) 

c 132  format(10(f10.4)) 

 

 

c     B MATRIX CALCULATION 

 

      do 17 j=n,1,-1 

 

         frac=cl*(h(j)+1.0)/2.0 

         rop=ri+frac 

 

         i=idint(1.0+frac/dosl) 

 

      call spline(rop,str1,rops,sigma1st,nlp2) 

      sigma1(j)=str1 

 

c         sigma1(j)=p1(i-1)*cc1(i)*cc1(i)*(1.0+r1(i)*r1(i)/(rop*rop))/ 

c     &  (1.0-cc1(i)*cc1(i))-p1(i)*(1.0+cc1(i)*cc1(i)*r1(i)*r1(i)/ 

c     &  (rop*rop))/(1.0-cc1(i)*cc1(i)) 

 

c         write(7,131) rop,sigma1(j) 

c       print*, rop, sigma1(j),frac,i 

 

 17   continue       

 

      do 18 j=n,1,-1 

 

         frac=cl*(h(j)+1.0)/2.0 

         rop=ri+frac 

 

         i=idint(1.0+frac/dosl) 

 

      call spline(rop,str2,rops,sigma2st,nlp2) 

      sigma2(j)=str2 

 

c         sigma2(j)=p2(i-1)*cc2(i)*cc2(i)*(1.0+r1(i)*r1(i)/(rop*rop))/ 

c     &  (1.0-cc2(i)*cc2(i))-p2(i)*(1.0+cc2(i)*cc2(i)*r1(i)*r1(i)/ 

c     &  (rop*rop))/(1.0-cc2(i)*cc2(i)) 

 

c       print*, rop, sigma2(j),frac,i 

c         write(7,131) rop,sigma2(j) 

 

 18   continue 
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      do 29 i=1,n 

         b(i)=-(sigma1(i)+sigma2(i)+pin)*((2*n+1)/2.0d0) 

c         print*, sigma1(i),sigma2(i),pin,b(i) 

 29      continue 

 

c 

      call   TLEDD(N,ATL,B,XTL,NN,E,INDER) 

 

      sum=0.0d0 

      do 6 i=1,n 

      an=dsin((2*i-1)*n*pi/(2*n+1)) 

      dn=dtan((2*i-1)*pi/((2*n+1)*2)) 

   6  sum=sum+an/dn*XTL(i) 

      sumf=(2.0d0/(2*n+1))*sum 

 

c   STRESS INTENSITY FACTOR 

 

      sif=sumf*dsqrt(2.0d0*pi*cl)*1000.0d0/dsqrt(1000.0d0) 

      ssif(ii)=sif 

c      print*, sif,'=sif' 

 

 

      call spline(cl+ri,yes,rops,yesp,nlp2) 

 

c      ki=idint(1+cl/dosl) 

c      sifi=ye(ki)*3.5/380.0 

 

      sifi=yes*3.5/380.0 

      sifin(ii)=sifi 

 

c      print*, ye(ki),sifi,sif,cl 

 

c     evaluate objective and constraints. 

 

      objb(ii)=(sif-sifi)**2 

      sobj=sobj+objb(ii) 

 

 23   continue 

 

      obj=sobj 

 

      do 25 jj=1,naft 

 

      g(jj)=dabs(ssif(jj)-sifin(jj))-0.7 

c      print*, g(jj),obj,iteads 

 

 25   continue 

 

c     go continue with optimization. 
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c      print*, obj,iteads 

 

      go to 10 

 

 20   continue 

 

      objst(iobj)=obj 

c      print*, objst(iobj) 

 

      do 49 ij=1,nl 

      v1st(iobj,ij)=v1(ij) 

  49  continue 

 

  48  continue 

 

c     CALCULATION OF SIF AFTER DESIGN 

 

cCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

 

      write(12,208) obti 

 208  format(3x,'ro/ri=',1x,f6.3,/) 

      write(12,206) 

 206  format(5x,'Ri+cl',7x,'cl',8x,'cl/romri',5x,'sifad',10x,'sifadn') 

 

      do 91 i=1,naftad 

 

      cl=cl+delcl 

 

      call apftad(cl,p2,n,ri,dosl,cc2,r1,ro,nl,ye,anu 

     & ,nn,pcrt,rops,sigma2st,nlp2,D,yesp) 

 

      x5=cl/(ro-ri) 

 

      ff=1.794872d0*x5**5+1.293706d0*x5**4-5.712121d0*x5**3+ 

     & 4.941142d0*x5**2-1.585786d0*x5+0.9988531d0             ! ro/ri=2.5 

 

c      ff=5.0D0*x5**5-5.932401D0*x5**4+3.671329D-2*x5**3+2.77331D0*x5**2 

c     & -8.599114D-1*x5+9.996224D-1                             ! ro/ri=2.0 

 

c      ff=1.24359D+1*x5**5-2.26049D+1*x5**4+1.146795D+1*x5**3+ 

c     &5.300117D-1*x5**2-2.365291D-1*x5+9.995664D-1            ! ro/ri=1.5 

 

 

 

 

c      sifad=ff*pcrt*dsqrt(pi*(cl+ri))*1000.0/dsqrt(1000.0d0) 

      sifad=ff*pcrt*dsqrt(pi*cl)*1000.0/dsqrt(1000.0d0) 

      sifadn=sifad/3.5d0 
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      write(12,205) Ri+cl,cl,x5,sifad,sifadn 

c      print*, cl,sifad 

 

 91   continue 

 205  format(3x,f9.6,2x,f9.6,2x,f9.6,2x,f12.8,2x,f12.8) 

 

cCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

 

c     SPLINE OF VOLUME FRACTION 

 

      write(8,209) obti 

 209  format(3x,'ro/ri=',1x,f6.3,/) 

      write(8,207) 

 207  format(7x,'r',9x,'(r-ri)/romri',5x,'v1s') 

 

      do 62 rv1s=ri,ro,0.01  

 

      call spline(rv1s,v1s,ryes,v1,nl) 

      write(8,111) rv1s,(rv1s-ri)/romri,v1s 

 

 62   continue 

 

 111  format(3x,f8.5,6x,f8.5,6x,f9.7) 

 

 

      goto 71 

 

c     Find the minimum value of obj 

 

      alarge=9.9d16 

      do 50 i=1,11 

      if(objst(i).le.alarge) alarge=objst(i) 

      if(objst(i).le.alarge) kfv=i 

      if(objst(i).gt.alarge) alarge=alarge 

      if(objst(i).gt.alarge) kfv=kfv 

  50  continue 

      obj=alarge 

      do 51 i=1,nl 

      v1(i)=v1st(kfv,i) 

  51  continue 

 

c      print*, 'obj=',obj,kfv 

c     print results 

 

 71   continue 

 

      write(7,42) iteads,nl,cl,obti 

 42   format(3x,'iteads=',i4,3x,'nl=',i3,3x,'cl=',f6.3,2x, 

     & 'ro/ri=',1x,f6.3,/) 
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      write(9,43) iteads,nl,cl,obti 

 43   format(3x,'iteads=',i4,3x,'nl=',i3,3x,'cl=',f6.3,2x, 

     & 'ro/ri=',1x,f6.3,/) 

 

      write(7,41) 

 41   format(16x,'obj',12x,'r',11x,'cl/romri',8x,'v1') 

 

      write(9,112) 

 112  format(7x,'cl',11x,'cl/romri',6x,'apft',11x,'apftn', 

     & 11x,'inft',11x,'csif') 

 

      do 22 i=1,nl 

       

      xaxis=ri+i*(ro-ri)/nl-romri/2.0/nl 

      write(7,40) obj,xaxis,(xaxis-ri)/romri,v1(i) 

 22   continue 

 

 40   format(13x,f9.6,5x,f9.6,5x,f9.6,5x,f9.6) 

 

      do 24 i=1,naft 

 24      write(9,113) scl(i),x5s(i),saft(i),saftn(i),sifin(i),ssif(i) 

 113     format(f12.7,3x,f12.7,3x,f12.7,3x,f12.7,3x,f12.7,3x,f12.7) 

 

      do 61 i=1,nlp2 

 

      write(10,110) rops(i),sigma1sr(i),sigma1st(i),sigma1sz(i) 

      write(11,110) rops(i),sigma2sr(i),sigma2st(i),sigma2sz(i) 

 

 61   continue 

 110  format(3x,f7.4,2x,3(f12.9,2x)) 

 

 88   stop 

      end 

c 

c 
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