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ABSTRACT
MOSFETs are extensively used in Ie fabrications. Improvement

of the VLSI technology has resulted in device dimens-ions of the
order of fractions of a micron. With increased substrate doping
levels and reduced gate oxide thicknesses the classical treatment
of MOSFETs is no longer accurate. If the substrate is heavily
doped then the inversion layer thickness falls below the
classica1 critical width and under that situation the
quantization effects cannot be neglected. The effects of
quantization can be most accurately modeled by numerically
solving Schrodinger's and Poisson's equations self-consistently.
But this approach involves much computational time. It is
important to develop a computer efficient method that can derive
a result that approximates the quantum mechanical calculation
resul ts. In this thesis WKB approximate method is used to
determine the eigen energy of the inversion layer potential well.
The average penetration of the inversion layer charges in the
potential well from the semiconductor-insul<;ltor interface is
determined using the results of the WKB method. The surface
potential at the semiconductor-insulator interface is then
related to the threshold voltage by using the calculated_ eigen
energy and the average penetration of the inversion layer charges
from the semiconductor-insulator interface. The derived relations

. , ~.
-are used to develop a computer efficient analytical model to
study the quantum mechanical effects in various parameters of
MOSFETs including threshold voltage. The threshold voltage is
found to be larger than the classical value if quantization
effects are considered. Also quantization effects are found to
become prominent for higher substrate doping levels and thinner
gate oxide thicknesses.
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CHAPTER 1

INTRODUCTION

1.1 Threshold voltage of HOSFETs

An important parameter in MOS transistors (Fig.l.l) is the

threshold voltage VT, which is the minimum gate voltage required

to induce the channel. For an n-channel enhancement type MOSFET,

the. positive gate voltage must be greater than some value VT
before conducting channel is induced. Similarly a p-channel

MOSFET requires a gate voltage more negative than some value VT
to induce the required holes in the channel.

The electron and hole concentrations at equilibrium can be
expressed as follows [1]:

(1.1)
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Fig. 1.1 The schematic cross section of an n-channe(
MOSFET.
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and

(1.2)

where, njis the intrinsic carrier concentration, k is

Boltzmann's constant, T is the absolute temperature, • is the
potential of the intrinsic energy level, and _, is the Fermi
potential. Taking the intrinsic level potential in the bulk
region of the substrate as zero, the electron concentration can
be written as,

(1.3) .

where NA is the doping density of the substrate. The potential •

is the potential anywhere in the semiconductor, measured from the

bulk zero reference (Fig.l.2). At the surface it is called the

surface potential .s' and it is the total voltage drop across the
semiconductor, measured from the surface to the bulk reference.

Positive gate voltage produces an electric field which
bends the energy bands downward. For small positive gate
voltage majority carriers i.e., holes are depleted from the

vicinity of the oxide-silicon surface, establishing a space-

3
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charge region consisting of stationary acceptor ions. If we
continue to increase the positive voltage, the bands at the

semiconductor surface bend down more strongly (Fig.l.3(a)).

A sufficiently large gate voltage can bend Ei below Ey and an

inversion layer is formed (Fig.l.3(b)). This inversion layer

near the semiconductor surface has conduction properties

typical of n-type material. The generally accepted definition

of strong inversion is one where the surface concentration of

minority carriers is equal in magnitude to the bulk

concentration of majority carriers. From the band diagram of

(Fig .1.4) this means that the. surface potential is as much

below as the bulk potential is above the Fermi level. In other
words;

(1.4)

and

(1.5)

This is known as the condition of the onset of strong

inversion and will be used here to. specify the threshold

voltage Vr in the classical treatment of MOSFETs, which follows

Tsividis' treatment [2J. Threshold voltage is the critical

5
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voltage at which the inversion layer is formed to a significant

extent, giving rise to rapid increase of the inversion layer

charge for higher gate voltages. In other words, the threshold

voltage specifies the gate voltage at strong inversion. Once

strong inversion occurs, the depletion-layer width reaches a

maximum. The maximum depletion width is given by [2]

(1.6)

The depletion charge at the classical threshold condition is
given as

(1.7)

For charge neutrality of the system it is required that

(1.8)

where, Qs is the total charges per unit area in the

semiconductor, Qn is the electrons per unit area in the

inversion region, qNAZd is the ionized acceptors per unit area

in the space-charge region with space-charge width Zd'

Threshold voltage must support the total charges per unit area

8



in the semiconductor, Os' and at the same time introduce a band

bending at the surface to reach the strong inversion potential

's=2i1lr'Hence VI is given as

=
(1.9)

where, Cox=EoX/tox(Fig.1.1), the capacitance per unit area of

the oxide layer. Because at the onset of strong inversion.

0s"qNAZdm, since Os » On' the classical threshold voltage is
given by

v ~
,T

.j2~sqNA (2<P-;f
Cox

(1.10)

1.2 Quantum effects on threshold voltage

The effects of quantization on MOSFET have been known for

,
. ,

decad~s, but only recently has it become important and

necessary to physically account for these effects in MOS

devices at room temperature. The combination of higher doping

9



levels and thinner gate oxides increases the electric field at

the Si/Si01 interface to a level such that the energy-band

bending at the Si/Si02 interface under inversion condition is

very steep. The confinement of the carriers in this. potential

well leads to a two-dimensional electron gas (2DEG) system. As

a result, the bulk conduction energy band is split into

discrete subbands in the inversion layer, with' the lowest

subband shifted substantially above the conduction band minimum

(Fig.l.5). The assumption of a 3-D continuum of states in a

particular band, implicit. in the classical treatment of

inversion layer carriers, is then no longer appropriate ..

Therefore, in order to accurately simulate the inversion

carriers in heavily doped MOS devices, models that incorporate

the two-dimensional quantum nature of the carriers are

necessary. The splitting of the energy band into discrete

subbands has the effect of decreasing the inversion layer

charge density for a given gate voltage, shifting the spatial

distribution of charge in the inversion layer away from the

interface and increasing the threshold voltage when compared

to the classical predictions that do not include these quantum

mechanical effects.

The inclusion of the various subbands in the calculation

10
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of the electrical properties is hardly ever necessary for lower

doping levels, because the splitting of the energy levels is

usually small compared to the thermal voltage kT/q. Many" of

these subbands are then occupied and a quantum description of

the MOS device resembles the conventional one. However, at high

doping levels and reduced gate dielectric thicknesses the

normal electric field increases significantly, and quantum

mechanical effects become more pronounced [3J.

1.3 Review of past and present works on
Quantization effects on threshold
voltage

The quantum nature of the two-dimensional electron gas in

MOSFETs has been studied in detail and is a well-established

fact [4], but a full quantum-mechanical (QM) treatment is

difficult, time consuming and for silicon MOSFETs hardly ever

necessary. But with high doping levels and decreased oxide

layer thicknesses QM effects become noticeable and a pure

classical description of the physics is not sufficient for an

accurate calculation of the inversion layer charges.

12



The numerical self-consistent calculation of energy

subbands of silicon inversion layers has been carried out in

[4J. Recently, a simple and approximate model has been proposed

[5J. There the average inversion layer depth calculated quantum

mechanically was compared with the classical calculation and

the difference between the two were transferred into the

classical calculation through the modification of the gate

oxide thickness.

1.4 Objective of this work

With increased channel doping and reduced gate oxide

thickness required in scaled devices the quantum mechanical

treatment of the inversion layer of MOSFETs has become

necessary. The inversion region charge concentration and

distribution is different when quantum mechanical phenomena is

taken into account. In this work we treat the electric quantum

limit, in which only the lowest electric subband is occupied.

Mathematical expressions for the lowest energy subband and the

average separation of carriers from the semiconductor-insulator

interface will be carried out and the derived expressions will

be used to establish a relation between the surface potential

13



and the threshold voltage. An algorithm will be developed to

study the results predicted by the above relations. Therefore,

the main objective of this research is td develop a computer

efficient analytical model for determining the threshold

voltage of low dimensional MOSFETs incorporating the

quantization effects.

1.5 5u••••ary of the thesis.

In this thesis, Schrodinger wave equation for the two-

dimensional inversion layer carriers' is solved approximately

incorporating proper boundary conditions. The effects of

quantization on inversion layer carriers and the spatial

distribution of carriers inside the potential well is studied

here. An analytical model for threshold voltage is also

developed to calculate the quantum threshold voltage computer
efficiently.

Schrodinger wave equation is solved using WKBapproximate

method. WKB method and its application on MOSFETs is discussed

in chapter 2. Also an analytical model to calculate quantum

threshold voltage is developed here.

14



The analytical model developed in chapter 2 is used to

determine the threshold voltage of a MOSFET for different

channel doping levels and oxide layer thicknesses. The results

of the quantum mechanical effects on various MOSFET parameters

including quantum threshold voltage are given in chapter 3.
t

Chapter 4 contains the concluding remarks along with

recommendations for future work on this topic.

15



CHAPTER 2

MATHEMATICAL ANALYSIS FOR THRESHOLD VOLTAGE
OF MOSFETS UNDER INVERSION

CONSIDERING QUANTIZATION EFFECTS

2.1 Introduction

At increased channel doping levels and reduced gate oxide

thicknesses the inversion layer carriers are confined in a

potential well near the Si/SiOJ interface. At high dOp'ing

levels, the width of the potential well becomes comparable to

the de Broglie wavelength of the inversion layer carriers and

quantum mechanical effects become pronounced. As a result, the

bulk conduction band is split into discrete subbands in the

inversion layer with the lowest subbandshifted substantially

above the conduction band minimum. The effects of quantization

can be most accurately modeled by solving the Schrodinger's and

16



Poisson's equations self-consistently. But this approach

involves much computational time. On the other hand, a simpler

approach to model the' quantization effects is to determine

analytically the lowest allowed eigen-energy and electron

population in the energy sub-bands. In this work we treat the

electr ic quantum limit, in which only the lowest electric

subband is occupied. Due to the quantum nature of the electric

population of the energy subband their average penetration into

the semiconductor is greater than the classical treatment.

In this chapter WKB (Wentzel-Kramers-Brillouin)

approximation technique is used to find an analytical

expression for the energy subbands of MOSFETS under inversion.

Also due to the quantum mechanical nature of the confined

inversion layer carriers, they are spatially shifted from the

Si/SiOj interface. Here an analytical expression for average

separation of carriers from the Si/SiOj interface is also

determined using the results of the WKB method. Finally an

analytical model is developed using the expressions of the

lowest energy subband and the average penetration of the

carriers from the Si/SiOj interface to determine the threshold

voltage of MOSFETs. This quantum threshold voltage is compared

with the classical threshold voltage to justify the validity

of the analytical model.

17



2.2.

2.2.1

WKB Approximation

Introduction

This is an approximate method of solution of ordinary

differential equations. The basis of the method is an expansion

of the wave function in powers of h/2rr, which, although of a

semiconvergent or asymptotic character, is nevertheless also

useful for the approximate solution of quantum-mechanical

problems in appropriate cases. Its utility is expected to be

highest in situations were h/2rrcan be considered small and is

often referred to as the semi-classical approximation (since

classical mechanics corresponds to h/2rr -~ 0.0).

2.2.2 The One-Dimensional Schrodinger wave
equation

The solution of the Schrodinger wave equation

i'fi ~~ (r, t) =- VZ 1J1(r, t) +V (r) 1J1 (r , t) (2. 1)

can be written in the form [6J

18



Ae
iW(r, t)

" ( 2 . 2 )

in which case W satisfies the equation

&w + ~ (VW) 2 + V(r) - i'hV2w = 0
~t 2m 2m

if ,(r,t) is an energy eigenfunction

iEt

'" (r I t) = II (r) e --,;-

( 2 . 3 )

( 2 . 4 )

where E is the energy of the particle. Now W can be written

using (2.2) and (2.4) as

W(r ,t) = S(r) - Et (2 .5 )

where

is(r)
(2 .6 )u(r) = A e "

r
substituting (2 .5) into (2 .3 ) gives

~ (VS) 2 - [E - V(r)] - i'hV2s = 0
2m 2m

19
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2.2.3 Approximate solutions

let us def.ine

and

k(x) = .;2iilLE - V{x) T
It

when V(x) <E ( 2. 8 )

p (x) = .;2iilL V{x) - ET
It

when V(x) >E ( 2 . 9 )

The basic equation that we consider is written in one of the

forms:

(2.10)

and

(2.11)

First we consider (2.10). For one dimensional analysis we write

( 2.6) as

is(x)
U (X) = A e ,.,

substituting (2.12) into (2.10) gives

20
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(2.13)
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where primes denote differentiation with respect to x.

We substitute expansion of S in powers of h/2n and equate

equal powers of h/2n.

-S/2. + 2m(E - V) = 0

(2.14)

(2.15 )

is/' - 2So'S/ = 0

Integrating (2.15) and 2.16) gives

etc (2.16)

So(X) = :l: IX k (x) dx (2.17)

1 i Ink (x)
2

(2.18)

where arbitrary constants of integration that can be absorbed

in the coefficient A have been omitted. Substitution of (2.17)

and (2.18) into (2.12) results in

-1:
u (X) = Ak 2 exp (:I:i IX k dx) V<E (2.19)

Similarly, the approximate solution of (2.11) is

-1:
u(x) = Bp 2 exp(:1: IX p dx)

21
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2.2.4 Solution near a turning point

A turning point is a point at which E~V(x) = 0; on

approaching such point, the kinetic energy (E-V) of a classical

particle decreases to zero, and it has to turn back. Let us

consider a particular turning point occurring for a given

energy E. We can take the origin of the x coordinate at.this

point, without loss of generality, so that (E-V)=O at x=O. We

also assume for the moment that Vex) < E t.o the right of the

turning point (Positive x) and put

x

~ (X) - Jk dx
o

Now if

(2.21)

(2.22)

where C is a positive constant, then (2.10) has the solution
of the form.

\

where

U (X)
1:. _.!

= A~2k 2Jf.m(~) (2.23)

m= 1
n + 2 (2.24)

and J is a Bessel function of order m.

22



2.2.5 Linear turning point

•
Let us now consider the most commonly occurring situation,

of a linear turning point, i.e. one near which the variation
,

of (E-V) or K' with x is linear (Fig.2.1). This corresponds to

taking n = 1 in (2.22). Here (2.10) is used in region 1 (x>O)

and (2.11) in region 2 (x<O). We make the following

definitions:

FOI X> 0

FOI X <0

x

~l - Jk dx
0

x

~2 - JP dx
0

(2.25)

(2.26)

Both ~1 and ~2 are real and positive, and increase with

distance from the turning point. The two independent solutions

in each of the two regions are:

~. 1

U1% (X) = A% ~; k 'J (~l)% 1.,
1 -~

U2" (X) = B% ~JP ,
I%l (~2).,

(2.27)

(2.28)

where in (2.28) J is replaced by I, the Bessel function of

imaginary argument.

23
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We require the leading terms of the power series

expansions and of the asymptotic expansions for these functions
{6)

.d
(d~l) 3
2

r(h1)

(2.29)

1.-(d~2) 3
2

r (1 ~1)

2.2.6 Connection at the turning point

To match ul and Uz at x=O, we need to known their behavior

near this point. The leading term in KZ at x=O is ex so that

25



k '" ex'n I P

where
1

e = +C' (2.30)

Then from (2.27), (2.28) and (2.29) we obtain the behavior of

the u's near x = 0

1 1 1 1
(~)' P.e)' (~) , (.l e) ,+

A+ 3 3
A_ 3 3U1 '" X a1 '"I'(.!) I'(3.)3 3

(2.31 )

1 1 1 -..!(3.), (..!. e) , (3.)' (..!.e) 3+
B+ 3 3 Ixl - B_ 3 3U2 '" U2 '"I'(.!) I'(3.)3 3

It is ~lear from this that ult joins smoothly on to u2t if Bt=-A
t

and that ul- joins smoothly on to U2- if B_=-A_ ..

These relations between the coefficients can be used to

obtain asymptotic forms like (2.19) and (2.20) for the two

independent solutions ut and u- in the two regions (the

arbitrary multiplying constants AI are omitted).

26



(211tk) -t Cos (~l - 51t)12 (2.32a)

(2.32b)

(2.32c)

---+
x ...-oo

(2.32d)

2.2.7 Asymptotic connection formulas

By forming suitable linear combinations of the independent

solutions u+ and u- we can form particular solutions with

specified asymptotic properties in either of the regions (x>O

or x<O) and can find the behavior of the solution in the other

region.

From (2.32b) and (2.32d) it is evident that it is the

combination (u+ + u-) which decreases exponentially on going

into the interior of the classically forbidden region (x-~ 00);

on noting its asymptotic form as x-~ +00 from (2.32a) and

(2.32c) we see that it behaves like K-t Cos (~1 - IT/4). Thus, we

have the first connection formula from the asymptotic region

x-~ -00 to the region x-~ +00.

27



(2.33)
-.!

K ' COS ("~l - .2!.)
4

;p-1e-~r--
I

IThe formula is not valid in the reverse direction, since a
Islight error in the phase of the cosine function is enough to

introduce a small admiJture of the exponentially increasing

function, which will overwhelm e-~' for large negative x
values.

Another linear combination of ut and u- gives the second
connection formula

1 -.! 1tSin" p-, e-~2- K2COS(~1 - + ,,) (2.34)
4

where 11 is appreciably different from zero or an integer

mul tiple of IT. Once again the formula holds only in the

direction indicated by the arrow, since" a small admixture of

the e -~2 term on the left hand side is enough to change the

phase on the right hand side drastically.
,A o

2.3 Eigen energy of a Triangular potential
well.

We require the wave function to vanish at the 8i/8i02
interface, where z=O. This should be a good approximation for

28



the Si/SiOl interface for which the potential barrier for

electrons is approximately 3 eV.

In most cases of interest for Si, the depletion layer is

much wider than the inversion layer. The inversion layer is

even narrower for high channel doping levels, so that the

electrostatic potential V (z) (in the z direction) from the

interface is assumed to have a triangular form (a triangular

potential well approximation). At the interface the potential

is assumed to be infinite (Fig.2.2) i.e.,

V(z) = 00, z ~ 0
z ~ 0

(2.35)

where FS is the electric field perpendicular to the interface.

One of the turning points is Z=O, and the other one follows

from the equation V( z=b) = eFSb = E

b = (2.36)

For a potential trough (Fig.2.3) in the semi-classical

expressions for the wave function the phase starts in both

turning points at rr/4.

The connection formula (2.33) can be applied at the

turning point z=a, which separates a type 2 region from the

29
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type 1 region a<z<b. The only change is that the lower limit

on the e1 integral is changed from 0 to a, so that the solution

to the right of the turning point is

1 Z

k -. COS (jk dz -
a

~)
4

(2.37)

apart from an arbitrary multiplying constant. Here, the turning

point z=a=O corresponds to a "vertical potential wall" so that

the wave function must vanish at. z=Oand the phase should be

zero. As a result (2.37) does not start with a term It/4,

instead it must start with phase zero at z=O. Hence the

solut~on to the right of z=O is

1 Z

k-' COS (f k dz
a

1 Z

= k -. COS (f kdz
a

'It

4

~)
2

~)
4

(2.38)

The same connection formula can also be applied at z=b by

reversing the direction of the x axis and changing the .fixed

limit on the e integral from 0 to b. We redefine

b

~l = fk dx,
z

z

~2 = f P dx
b

(2.39)

So that they still increase going away from the turning point.
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The solution to the left of this turning point is then

1 b

k -, Cos (f k dx - =)
z

Which can be written as

(2.40)

1 Z

k -. COS (fk dx
a .

1 z
=k-' COS { fkdx

a

where

1t - 11)
4

(2.41)

dx _ 1t
2

(2.42)

For the two solutions (2.38) and (2.41) to join smoothly

in the interior of region 1, the arguments of the cosine terms

must be equal. Hence the condition here is

1t11 - - = n1t
4

,11 = 0, 1, 2, ... (2.43)

Using (2.42) and rearranging we get

bf .j2iiiT.En; V(z) rdz =

a

(n + 1.) 1t
4

(2.44)

Putting the value a=O and b=E/eFs and integrating we get.
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, 1 2

= (~)'P.n;eF (n+2)]'
2m 2 s 4

(2.45)

This is the analytical expression for energy subbands in the

inversion layer of MOSFETS.

In the electric quantum limit, when only the lowest energy
level is occupied a general solution for all kinds of
semiconductors and possible orientations of the surface can
be obtained [7]. Hence, we take n=O in (2.45) and use the-
resulting lowest energy level for future calculations. The
lowest energy level of the triangular potential well is then
given by

, 1 ,

= (~)' (.2. en; F ) ,
2m 8 s

(2.46)

Now, in the MOSFET structure the width of the inversion
layer is in the nanometer range for high substrate doping
levels. In this narrow range of inversion layer width the
electrostatic potential of the well can be assumed .to be
triangular. On the other hand the depth of the potential well
at the Si/SiOj interface is more than several electron volts,
so that it may virtually be treated as an infinite potential
barrier. Furthermore, the electric field normal to the Si/SiOj
interface is assumed to be constant in the narrow potential
well. Consequently the results of the triangular potential well
can. be used in. the inversion. layer of the heavily doped
MOSFETs.
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2.4 Average separation of minority carriers.

From (2.38) we get the solution of the Schrodinger wave
equation inside the potential well given by

z

u(Z) = ck-{ Sin(fk dz)
a

(2.47)

Using equation (2.8) and integrating within the limit z=b we
find

where.

1

E'n (2.49)

Since the solutions produce a standing wave inside the
potential. well we approximate Sin(AZ) = ~ inside the well. Now
using (2.8) again (2..47) becomes

1

u(z) =~c'h[2m(En - eFsz)]-' (2.50)

The average separation of carriers, (Fig.~.5), from the
Si/Si02 is then found by using

Zav = <z> =

35

b ..

f Zu(Z) dz
o
bf U(Z) dz
o

(2.51 )



Substituting the value of (2.50) into (2.51 ) and performing
the integration we get

z =.! En
av 7 eFs

(2.52 )

This is the required separation of carriers from the Si/SOZ
interface.

2.5 QuantUll Threshold Voltage.

To determine the quantum threshold voltage of MOSFETs, the
classical definition of threshold voltage is applied here.

Classically at .S=.Si inversion layer carriers are
negligible compared to the depletion region ionized acceptors.
The surface potential due to depletion region ionized acceptors
is given by

4>d = (2.53)

where. Zd is the depth of the depletion region charge. The
concentration of electrons at any distance Z perpendicular to
the interface into the semiconductor is given by

( )
J:~< •..• p) ( 2 . 54 )n z = nie

If • is replaced by ~d' (2.53), and Zd by Z and also if the
condition that n(z=o)=NA is applied for. = .S' then we get

n (z)
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Integrating (2.55) from Z=O to Z=m results in the total
concentration of electrons per meter square in the inversion
region given by

(2.56 )

This total electron concentration and the total impurity

interface. The electric field at the interface is

ions can be used in the quantum mechanical calculations
the 8i/8i02

given by
toperpendicularfieldelectricthe

Ndep1

findto

F =s "s "s (2.57)

where Nr=Ninv+Ndepl and Ndep1 is given by (1.7). €Os is the
permittivity of silicon.

Using the calculated electric field in (2.46) and (2.52)
the first energy subband and average separation of carriers
from the 8i/802 interface can be determined.

For a .two-dimensional density of states given by D for
energies greater than Eo is given.by Fermi-Dirac statistics

dE

To (B-By)
1+e

(2.58)

Applying the easily verifiable formula

(2.59)
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we get,

(2.60 )

where, D is the density of states. associated with a single
quantized energy level for a 2D system given by

D = (2.61 )

where nv and md are the valley degeneracy and the density-of-
state effective mass per valley.

The band bending ~d is associated with the depletion layer
charge (Fig.2.4). When an inversion layer has formed, the band
bending ~d is given approximately by

(2.62)

the energy difference between the bottom of the conduction band
in the bulk and the Fermi level. There are several corrections
to this 'Value. We have assumed that the depletion charge is
constant for a distance Zd' the depletion layer width, from the
surface and then goes abruptly to zero. This assumption fails
in the transition region from depletion to bulk, in which the
field decays to zero exponentially with a characteristic
distance given by the bulk screening length. The correction to
e~d is given in [8] to be equal to -kT, so that (2.62) can be
written as
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Fig. 2.4 Band bending due to depletion charges.
(a) surface potentia! 'fIs and band bending
(b) Potential drop due to inversion charges
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The surface potential '5 arises from the contribution of both
the depletion and inversion layer charges. Since the bottom of
the conduction band is taken as zero at the Si/Si02 interface
we have

Now, the contribution of inversion layer electrons to the
surface potential can be written as

where, Ninv is the total concentration of inversion laier
electrons taking quantum-mechanical eff~cts into account and
Zav is their average distance from the semiconductor-insulator
interface. Therefore, the band bending fZ5d. associated with
depletion layer charges can be written as

(2.63)

The last term in (2.63) is the potential drop Vi across the
inversion layer.

The depletion layer width can be calculated by

Z - ~es dd - --eNA

and the carrier concentration is given by
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An one-dimensional searching algorithm, which is developed
in chapter three, is used to calculate Ninv' Ey, .s' i1ld' Zd and
Ndep1' Then the quantum threshold voltage can be computed by

(2.66)

where,

(2.67)

is the oxide layer voltage drop, Fs is the normal electric
field, tax is the oxide layer thickness and Eax is the
permittivity of the oxide.

2.6 Summary

WKB approximation is used in this chapter to solve the
Schrodinger wave equation inside the triangular potential well
formed within the inversion layer of MOSFETs. Electrostatic
potential inside the narrow well is assumed to be triangular
in shape and the electr ic field normal to the Si/Si02. is
assumed to be constant inside the well. Appropriate boundary
conditions are used to determine the. mathematical expression
for the Eigen energy of the various subbands inside the well.
Then the solution of the Schrodinger wave equation is used to
determine the mathematical expression for the average
separation of minority carriers from the SiS02 interface inside
the triangular potential well. Finally an analytical model is
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developed to calculate the quantum threshold voltage using an
iterative method. Classical threshold voltage is also
calculated to study the threshold voltage shift due to quantum
mechanical effects.
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CHAPTER 3

RESULTS BASED ON ANALYTICAL

SOLUTION

3. 1 Introduction

The MOS device is studied in this work using computational
method. The analytical solution of the MOSFET incorporating
quantum mechanical effects into account are compared with the
classical results. One dimensional searching algorithm is used
in the computational method and the MOS device is studied for
different channel doping levels and oxide layer thicknesses. The
lowest allowed energy level shift, the variation of inversion and
depletion layer charge concentration, the variation of the
average penetration of inversion layer charge from the Si/Si02
interface and the threshold voltage shift due to quantum
mechanical calculation are particularly studied here.

3. 2 COllputational :methodin studying HOB device

The classical concentration of minority carriers is
calculated using (.2.56). The electric field perpendicular to the
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Si/Si02 interface is then calculated using (2.57). An one
dimensional searching algorithm is used to determine the
inversion and depletion layer minority carrier charge
concentration and the electric field produced by the sum of them
is compared with (2.57). If the two electric fields matches then
the searching algorithm comes to an end. In this process we also
get the corresponding Fermi energy level, surface potential,
potential due to depletion layer charge and depletion region
width. The quantum threshold voltage is calculated by (2.66) and
the classical t-hreshold voltage is determined using (2.10).

3.3 Results and discussions

3.3.1 Energy level shift

The predicted difference between the energy level of the
lowest sub-band (Eo) and the bottom of the conduction band (Ee)

incre-ases as the surface potential is increased (Fig.3.1). The
difference between the two increases as the device becomes more
strongly inverted. The variation of energy level shift with
inversion layer charge is shown in (Fig.3.2). Since the lowest
allowed energy level has an energy above the bottom of the
conduction band, the effective silicon bandgap in the inversion
layer may be treated with a bandgap widening model. The amount
of widening is simply the difference in the energy between the
bottom of the conduction band Ee ' and the first allowed energy
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level, Eo' Therefore, if Eg is the bandgap, the increase in the
bandgap due to quantization is given as,

AE = EON - EClassical = E E
~ g g g 0- c ( 3 . 1 )

It is convenient to model the apparent bandgap increase as a
decrease in the local effective intrinsic concentration.
Therefore, the new quantum mechanical effective intrinsic carrier

concentration n.
~e££

is given by,

n9M~e£f
( -42g)

= n r;:lassical X e 'JeT
~ef:f

( 3 .2)

in which n Classical.. lS the conventional model for the intrinsic~eff

carrier concentration. Therefore, the lowest allowed energy level
Eo can be used as a parameter to model the effect of the
inversion layer quantization on the inversion charge density of
the MOS device.

3.3.2 Inversion layer charge concentration

From (Fig.3.3) it can be seen that the quantum mechanical
inversion layer charge concentration varies considerably as the
surface potential i.e., gate voltage increases. Inversion layer
quantization decreases the rate at which the inversion layer
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charge density increases with gate voltage. But the inversion
layer charge density is dependent on the lowest allowed energy
level (Fig.3.2). Therefore, it is again evident that the lowest
allowed energy level can actually be used as a parameter to
model the effects of quantization on the. inversion layer charge
density.

3.3.3 Depletion layer charge concentration

As can be seen from (Fig.3.4) and (Fig.3.5) the variation
or depletion layer charge concentration is very small compared
to the inversion layer charge concentration. Once strong
inversion occurs, the depletion-layer width reaches a maximum
i.e., When the bands are bent down far enough such that,s ='si'

the semiconductor is effectively shielded from further
penetration of the electric field by the inversion layer carriers
and even a very small increase in band bending (corresponding to
a very small increase in the depletion-layer width) results in
a very large increase in the charge density within the inversion
layer. Th~refore, after some value of gate voltage depletion
layer charge concentration becomes almost constant.

3.3 ..4 The average penetration of the inversion-
layer charge density from the surface

From (Fig.3.G) we observe that the average penetration of
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the inversion layer carriers from the Si/Si02 interface decreases
with increasing surface electric field. As the gate voltage is
increased the band bending at the Si/Si02 interface is increased.
The width of the quantum potential well, therefore, is decreased
and at the same time inversion layer carriers are more strongly
attracted to the Si/Si02 interface. As a result the average
penetration of the inversion layer charge carriers from the
surface is decreased with increasing gate voltage.

3.3.5 Threshold voltage shift

The-predicted threshold voltage shift, due to quantization,
for devices with gate oxide thickness 10 nm is shown as a
function of channel doping.levels in (Fig.3.7). It is readily
observed that the predicted threshold voltage shift, when the
quantization effects in the inversion layer are included and when
the classical prediction, i.e. no quantum effects are taken into
account, increases markedly with increasing channel doping
levels. It is important to account for this change in threshold
voltage because of its strong role on the electrical
characteristics, such as the drive current which directly
influences the device speed.

For a- given oxide layer thickness, as the channel doping
level is increased the electric field perpendicular to the
Si/Si02 interface becomes stronger and the quantum nature of the
potential well becomes increasingly prominent. The band bending
at the Si/Si02interfacebecomes steep and the difference in the
energy between the bot tom of the conduction bend Ee and _the first _
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allowed energy level Eo increases. As a result to induce the same
amount of inversion layer charges the threshold voltage must be
increased. Again, the average separation of inversion layer
carriers from the Si/Si02 interface is increased compared to the
classical solution and ,therefore, the voltage drop given by this
increase of the average distance from the Si/Si02 interface
times the normal electric field must be supplied by the gate
voltage. Hence, the threshold voltage is also increased by this
phenomena.

3.4 SUllllary

The mathematical model developed in chapter two is used here
to.determine the threshold voltage and other characteristics of
the MOS device to study the quantum-mechanical effects on the
inversion layer minority carriers.

In the triangular potential well the energy level is
quantized and the lowest allowed energy level is shifted
substantially above the bottom of the conduction band. at the.
Si/Si02 interface. The shift is increased with increased gate
voltage which increase the surface electric field. This is due
to the fact that at increased surface electric field the band
bending increases with the effect of producing steeper and deeper
potential well. As a result the quantum-mechanical effects become
more prominent and the lowest allowed energy level is
correspondingly shifted above the bottom of the conduction band.
Consequently the lowest allowed energy level can be used as a
parameter to model the effect of the inversion layer quantization
on the inversion charge density of the MOS devices.
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Inversion layer charge concentration increases at a lower
rate with increased gate voltage i.e. surface electric field when
the quantum effects are considered. This is due to the fact that
with the upward shift of the lowest allowed energy level the
number of inversion layer carriers cannot increase at the
previous rate which is exponential in nature.

The variation of depletion layer carriers 'is small compared
to the inversion layer carriers. Contrary to the classical case
w,here the depletion layer carriers become almost constant after
~he threshold voltage is ,reached (additional surface potential
increases only the inversion layer carriers), the depletion layer
carriers is found to be varying here. This is because the
depletion layer width i.e. deplet'i:on'layercarrier concentration
is dependent more strongly on the inversion layer carrier
concentration and their average penetration from the 8i/8i02
interface'.

Threshold voltage is the critical voltage at which the
inversion layer is formed to a significant extent, giving rise

,to a rapid increase of the inversion layer charge for higher gate
vol tages. Physically the threshold voltage supports a bulk charge
and at the same time introduces a band bending at the surface to
reach the strong inversion potential. Quantum-mechanical effects
shift the lowest allowed energy level and at the same time
displaces the inversion layer carriers from the 8i/8i02
interface. As a result increased gate voltage is needed to induce
the same amount of inversion layer carriers. This increases the
threshold voltage. With the increasing channel doping levels the
normal electric field at the 8i/8i02 interface is increased and
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.the increased effects of quantization results in a higher
threshold voltage. Also the oxide layer voltage drop is dependent
on the normal electric field. For a given channel doping level
thre.shold voltage decreases with decreasing oxide layer thickness
since the oxide layer voltage drop is less and a smaller gate
voltage is.needed to induce the same amount of inversion layer
carriers.
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CHAPTER 4

CONCLUSIONS

In this work an analysis is presented to study the quantum-
mechanical effects in the inversion layer of low dimensional
MOSFETs. The self-consistent solution of the Schr6dingerand
Poisson equations for the eigen energy of inversion layer
potential well is very t"imeconsuming. In this work the potential
well in the inversion layer is assumed to be triangular in shape
and an analytical expression for eigen energy has been determined
by solving Schr6dinger wave equation with the help of WKB"
approximate method. The spatial distribution of the inversion
layer carriers has been taken into account by evaluating their
average distance into the semiconductor from the semiconductor-
insulator interface.

A computer efficient analytical model is developed to
determine threshold voltage of MOSFETs incorporating quantum-
mechanical effects. Classical def inition of threshold voltage is
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used here to find a condition for quantum threshold voltage. High
substrate doping levels and very narrow gate oxide thicknesses
were used to investigate different MOSFET characteristics, under
strong inversion conditions taking quantum-mechanical ef-fects
into account and the results are given. The model developed uses
less CPU time and the results reflect the quantum-mechanical
predictions. The difference between the quantum and classical
threshold voltage is found to be strong~y dependent on substrate
doping level.

4.2 Suggestions for future work

The analytical model developed in this thesis describes the
MOS characteristics in the electric quantum limit Le., we have
considered here only the lowest energy subband in the inversion
layer potentia-I well. It is possible in future to develop similar
model by considering more energy subbands. Also Schrodingerwave
equation could be solved using a variational method for a better
approximate solution of the eigen energy.
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