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ABSTRACT

MOSFETs are extensively used in IC fabrications. Improvement
of the VLSI technology has resulted in device dimensions of the
order of fractions of a micron. With increased substrate doping
levels and reduced gate oxide thicknesses the classical treatment
of MOSFETs 1s no longer accurate. If the-substrate is heavily
doped then the inversion layer thickness falls below the
classicél critical width and vunder that situation the
quantization effects cannot be neglected. The effects of
quantization can be most accurately modeled by numerically
solving Schrodinger's and Poisson's‘equations self-consistently.
But this approach involves much computational time. It is
important to develop a computer efficienp method that can derive
a result that approximates the gquantum mechanical calculation
results. In this thesis WKB approximate method 1s wused to
determine fhe eigen energy of the inversion layer potential well.
The average penetration of the inversion layer charges in the
potential well from the semiconductor-insulator interface is
determined using the results of the WKB method. The surface
potential at the semiconductor—insulatqr interface 1is then
related to the threshold voltage by using the calculatédkeigen
energy and the average penetration of the inversion layer charges
from.the semiconductor-insulator interface. The derived relatlons_
‘are used to develop a computer efficient analytical model to
study the quantum mechanical effects in various parameters of
MOSFETs including threshold voltage. The threshold voltage is
found to be larger than the classical value if quantization
effects are considered. Also quantization effects are found to
become prominent for higher substrate doping levels and thinner .

gate oxide thicknesses.
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INTRODUCTION

1.1 Threshold voltage of MOSFETs

An important parameter in MOS transistors (Fig.1.1) is the
threshold voltage Vy, which is the minimum gate voltage required
to induce the channel. For an n-channel énhancement type MOSFET,
the positive gate voltage mustrbe greater than some value VT
before conducting channel is induced. Similarly a p—channel
MOSFET requires‘a gate vecltage more negative than‘some valueﬁvf

to induce the required holes in the channel.

The electron and hole concentrations at equilibrium can be

expressed as follows [1]:

= (v-0) {(1.1)
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Fig. 1.1 The schematic cross section of an n-channel
MOSFET. ‘




and

L (bp¥): _ (1.2)

where, n

i 1s the intrinsie carrier concentration, Kk 1is

.Boltzmann's constant, T is the absolute temperature, ¢ is the
potential of the intrinsic energy level, and‘gf is the Fermi
poteﬁtial. Taking the intrinsic level potential in the bulk
-reg;on of the substrate as zero, the electron concentration can
be‘written as,

(L (9-20,)) ,
n=N,e k" (1.3)

where N, is the doping'density of the substrate. The potential L ]
is the potential anywhere in the semiconductof, measured from the
bulk zero reference_(Fig.l.Z). At the surface it is called the
surface potential ¥, and it is the total voltage drop across the

semiconductor, measured from the surface to the bulk reference.

Positive gate voltage pProduces an electric field which
bends the energy bands downward. For small positive gate
voltage majority carriers i.e., holes are depleted from the

vicinity of the oxide-silicon surface, establishing a space-—
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Fig. 1.2 Substrate band diagram.



charge region consisting of stationary acceptor ions. If we
continue to increase the positive Qoltage, the bands at the
semiconductor surface bend down more strongly (Fig.1.3(a)).
A suffiqiéntly large gate voltage can bend E; below Ey and an
inversion layer is formed (Fig.1.3(b)). This inversion layer
near the semiconductor surface has conduction properties
typical of n-type material. The generally accepted definition
of strong inversion is one where the surface concentration of
ﬁinority carriers is  equal -in' magnitude to the bulk
concentration of hajority carriers. From the band diagram of
(Fig.1.4) this means that the'surfacé protential ié as much

below as the bulk potential is above the Fermi level. In other

words,
| kT Ny
=2 o= Bkl —_— .
L ¢, = 2 g ln(nj) (1.4)
and
n, = N, | | (1.5)

This is known as the condition of the onset of strong
inversion and will be used here to ‘specify the threshold
voltage Vp in the classical treatment of MOSFETs, which follows

Tsividis' treatment [2]. Threshold voltage is the critiéal



_-Si/Si0p  INTERFACE

>

——————————————————————————— —Ef
Ey
INSULATOR SEMICONDUCTOR
7
(a)
.—Si/Si0; INTERFACE
Ec
. o
T IWF
\)US 7 - T - == ST T T T - EF
| ik , — Ey
INSULATOR SEMICONDUCTOR
7 (b)

Fig. 1.3 Substrate band diagram at higher gate voltage.
(a) depletion " (b) inversion.



| —Si/Si0; INTERFACE

INSULATOR SEMICONDUCTOR

Fig. 1.4 Substrate band diagram at threshold

condion.



voltage at which the inversion layver is formed to a significant
extent, giving rise to rapid increase of the inversion layer
charge for higher gate voltages. In other words, the threshold
voltage specifies the gate voltage at strong inversion. Once
strong inversion occurs, the depietion—layer width reaches a

maximum. The maximum depletion width is given by [2]
2€
Z&m = __iﬂtﬁ (1.8)
ai, \ _ ~

The depletion charge at the classical threshold condition is

given as

Nyep: = Ny Zgn (1.7)

For charge neutrality of the system it is required that

QS = Qn + qNAZd (1-8)

where, Q; is the total charges per unit area in the
semiconductor, Q, 1s the electrons per unit area in the
inversion region, qN,Z; is the ionized acceptors per unit area
in fhe space-charge region with 'space—charge width 2y -

Threshold voltage must support the total charges per unit area



in the semiconductor, 3., and at the same time introduce a band

bending at the surface to reach the strong inversion potential

¥;=2¢;. Hence V; is given as

' Q
v.,= —-__5 +y
T s
COX
Qg
= —_"2 4 2(1) ,
F 1.9
C., { )
where, szeﬁ/tm (Fig.1.4), the capacitance per unit area of

‘the oxide layer. Because at the onset of strong inversion.

Q~qN, 24, , since Qg >> Q,, the classical threshold voltage is

given by

2€e_gN, (2 ‘ L
fequA( P! + 20, (1.10)

ox

1.2 Quantum effects on threshold voltage

The effects of quantization on MOSFET have been known for

decades, but only recently has it become important and
necessary to physically account for these effects in MOSs

devices at room temperature. The combination of higher doping

=k



levels and thinner-gate oxides increases the electric field at
the Si/SiOz interface to a level such that the energy-band
bending at the 51/510 interface under inversion condition is
very steep. The confinement of the carriers in this potential.
well leads to a two-dimensional electronrgas (2DEG) system. As
a result, the bulk conduction energy band is split into
discrete subbands in the inversion léyer, with  the lowest
subband shifted substantially abové the conduction band minimum
(Fig.1.5). The assumptionlof é 3-D continuum of stafes in a
particular band,v implicit. in the classical treatment of
inversion lavyer carriers, 1s then no longer appropriate.!
Therefore, in order ito accurately simulate .the inversion
carriers in heavily doped MOS devices, models that incorporate
the two-dimensional gquantum nature of the carriers are
necessary. The splitting of the energy band into discrete
subbands has the effect of decreasing the inversion layer
charge density for a given gate voltage, shifting the spatial
distribution of chérge'in the inversion laver awaylfrbm the
interface and increasing the threshold voltage when compared
to the classical predictions that do not include these guantum

mechanical effects.

The inclusion of the various subbands in the calculation

10
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of the electrical properties is hardly ever necessary for lower
doping levels, because the splitting of the energy levels 1is
usually small compared to the thermal voltage kT/q; Many of
these subbands are then occupied and a gquantum description of
the MOS device resembles the conventional one. Howeﬁer, at high
doping levels and reduced Qate dieiectric thicknesses the
normal electric field increaseé significantly, and gquantum

mechanical effects become more pronounced [31].

1.3 Review of past and present works on
Quantization effects on threshold
voltage

The quantum nature of tﬁe two-dimensional electron gas in
MOSFETs has been studied in aetail and is a well-established
fact [4], but a full gquantum-mechanical (QM) treatment is
difficuit, time consuming and for silicon MOSFETs'hardly ever
necessary. But wi£h high doping levels and decreased oxiae
layer thicknesses QM effects become noticeable and a pure
classical description of the physics is not sufficient for an

accurate calculation of the inversion laver charges.

12



The numerical self-consistent calculation of energy
subbands of silicon inversion layers has been carried out in
{4]}. Recently, a simple and approximate model has been proposed
[5]. There the average inversion layer depth calculated gquantum
meéhanically was compared with the classical calculation and
the Idifference between the two were transferred into the
classical calculation through the modification of the gate

oxide thickness.

i.4 Objective of this work

With increased channel doping and reduced gate oxide
thickness required in scaled devices the gquantum mechanical
treatment of the invérsion layer of MOSFETs has become
necessary. The inversion region charge concentration and
distribution is different when gquantum mechanical phenomena is
taken into account. In this work we tfeat-the electric quantum
limit, in which only the lowest electric subband is occupied.
Mathematical expressions for the lowest energy subband and the
average separation of carriers from the semiconductor-insulator
interface will be carried out and the derived expressions will

be used to establish a relation between the surface potential

13



and the threshold voltage. An algorithm yill be developed to
study .the results predicted by the above relations. Therefore,
the main objective of this research is to develop a computer
efficient analyticéi model for determining the- threshold
voltage of low dimensional MOSFETs incorporating the

quantization effects.

1.5 Summary of the thesis.

In this thesis, Schroédinger wave equation for éhe two-
dimensional inversion laver carriefs is solved approximately
incorporating proper boundary conditions. The effects of
quantization on inversion layer carriers and the spatial
distribufion of carriers inside the potential well is studied
here. An analytical model for threshold voltage is also
developed to calculate the quantum threshold voltage computer

efficiently.

Schriddinger wave equation is solved using WKB approximate
method. WKB method and its application on MOSFETs is discussed
in chapter 2. Also an analytical model to calculate quantum

threshold_voltage is developed here,

14



The analytical model developed in-chapter 2 is used to
determine the threshold voltage of a MOSFET for different
channel doping levels and oxide layer thicknesses. The results
of the quantum mechanical efifects on various MOSFET parameters
including quantum threshold voltage are given in chapter 3.

¢
Chapter 4 contains the concluding remarks along with

recommendations for future work on this topic.

15



CHAPTER Z

MATHEMATICAL ANALYSIS FOR THRESHOLD VOLTAGE
OF MOSFETS UNDER INVERSION
CONSIDERING QUANTIZATION EFFECTS

2.1 Introduction

At 1lncreased channel doping levels and reduced gate oxide
thicknesses the inversion layer‘carriers'are confined in a
poteﬁtial well near the 8i/S10, interface. At high doping
levels, the width of the potential well becomes comparable to
the de Broglie wavelength of the inversion layer carriers and
gquantum meéhanicél effects become pronounced. As a result, the
bulk conduction band is split into discrete subbands in the
inversion .layer with the lowest subband'shiftéd substantially
above the conduction band minimum. The effects of quantization

can be most accurately modeled by solving the Schrédinger's and

16



Poisson's equations self-consistently. But this - approach
involves much computational time. On the other hand, a simpler
approach to model the gquantization effects 1s to determine
analyticaily the - lowest allowed eigeg—energy and electron
population in the energy sub-bands. In this work we treat the
electric‘quantum limit, in which only the lowest electric
subband is occupied. Due to thé guantum nature of the electric
population of the energy subband their average penetration into

the semiconductor is greater than the classical treatment.

In this chapter WKB (Wentzel-Kramers-Brillouin)
approximation technique is used to find an analytical
expression for the energy subbands of MOSFETS under inversion.
Also due to the quantum mechanical nature of the confined
inversion layer carriers, they are spatially shifted from the
Si/SiOz interface. Here an analytical expression for average
separation of carriers from the Si/Si0, interface is also
dete;minea using the results of the WKB method. Finally an
analytical model is developed using the expressions of the
lowest energy sﬁbband and the average penetration of the
carriers from the 8$1/8510, interface to determine the threshold
voltage of MOSFETs. This quantﬁm threshold voltage is compared
with the classical threshold voltage to justify the validity

of the analytical model.

17



2.2. WKB Approximation
2.2.1 Introduction
This is an approximate methocd of solution of ordinary

differential equations. The basis of the method is an expansion

of the wave function in powers of h/2n, which, although of a

semiconvergent or asymptotic character, is nevertheless also

useful for the approximéte solutioq of quantum—mechanical
problems in appropriate cases. Its utility is expected to be
highest in situations were h/2m can be considered small and is
often referred to as the semi-classical approximation (since

classical mechanics corresponds to h/2mn -3 0.0).

2.2.2 The One-Dimensional Schrédinger wave
equation
The sdlution of the Schrddinger wave egquation

h %?%(r,t)=‘ %%}VR‘P(I}C)+VTI) v(r, t)(2.1)

can be written in the form [6]

18
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i

iw{r, t)

Yy(r,t) =2e * (2.2)
in which case W satisfies the equation
oW 1 ih '
w— * = (VW2 + V() - =—=VPW =0 2.3
5t 2_m(W) (r) o (2.3)
if ¢{r,t) is an energy eigenfunction
_iEt '
. (2.4)

ylr,t) =p(r)e °

where E is the enérgy of the particle. Now W can be written
using (2.2) and (2.4) as

W(r,t) = 8(r}) - Et (2.5)
where

15(r)

(2.6)

I
}ha
™

o

ul(r)

substituting {(2.5) into (2.3) gives

i 2 _ - --ﬁ = .
2m(VS) [F - V(D] .sz’-S 0 (2.7)

-19



2.2.3 Approximate solutions

let us define

vemlE - V(x)]

- when V(x)Y<E (2.8)

k(x)

and

V2m[V(x) - E]

o when VI(x)>E (2.9)

plx) =

The basic equation that we consider is written in one of the

forms:
2
au + kK2 (xyu=0 k%>0 (2.10)
dx? .
and
dzl.l _ ‘2 - 2 '- ’
2 pi(x)u =0 p2>0 (2.11)

‘First we consider (2.10). For one dimensional analysis we write

(2.6) as

h (2.12)

substituting (2.12) into (2.10) gives

ST (x) - [8(x)]% + Wk3(x) =0  (2.13)

20



where primes denote differentiation with respect to X.

We substitute expansion of S in powers of h/2m and equate

eqdal powers of h/2n.

S =8, +hS, +1S,+ ... (2.14)
-5,2 + 2m(E - V) =0 _ (2.15)
18,/ - 28,/8,! = 0 etc - (2.16)

Integrating (2.15) and 2.16) gives

S,(x) = ika(x) dx (2.17)
S, (x) = %.i Ink(x) (2.18)

where arbitrary constants of integration that can be absorbed
in the cqefficient'A have been omitted. Substitution of (2.17)
and (2.18) into (2.12) results in

-4
2

u(x) = Ak é}:p(:*.:i kadx) g (2.19)

Similarly, the approximate solution of (2.11) is

I

u(x) = Bp % exp(z fxp dx) wE  (2.20)

21



2.2.4 Solution near a turning point

Al turning point is a point at which E?V(X) = 0; .on
approaching such point, the kinetic energy (E—V) of a classical
particle decreases to zero,-and it has to turn back. Let us
considef a particular turning point occurring for a given
energy E. We can take the origin of the X coordinate at this
point, without‘loss of generality, so that (E-V)=0 at x=0. We
alSp‘aSSume for the moment that V(x) ?'E to the right.of'the

turning point {Positive x) and put
’ X
£ (x) Efkdx (2.21)
' 0

Now 1f

k2 (x) = cx® | (2.22)

where C is a positive constant, then (2.10) has the solution

of the form-

u(x) = A7k 2, (§) (2.23)
" Wwhere
1
m= —= 2.24)
e (2.24)
% |

and J is a Bessel function of order m.

. 22



2.2.5 Linear turning point

Let us now consider the most commonly occurring situation,
of a linear turning point, i.e. one near which the variation
of {E-V) or K! with x is linear (Fig.2.1). This corresponds to

taking n = 1 in (2.22). Here (2.10) is used in region 1 (x>0)

and (2.11) 1in region 2 (x<0). We make the following
definitions:
For x>0 ﬁlafkdx (2.25)
G
X
For x< 0 £, = fp dx (2.26)
0

Both 51 and 52 are real and positive, and increase with
distapce from the turning point. The two independent solutions
in each of the two regions are:

wt(x) = A, EZk2a,, (§)  (2.27)

1
3

I

u,*(x) =B, &5 p 2 I, (E,) (2.28)

wile

wlm

where in (2.28) J is replaced by I, the Bessel function of

imaginary argument.

23
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- Fig. 21 Linear turning point.
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We require the leading

terms of the power series

exXpansions and of the asymptotic 'expansions for these functions

(6]

w|-

(2"
J, o (E)——— 21

1
%3 x-0  T(1zd)

{(2.29)
(2g"3
I*;(Ez) x—-o—. I‘(E::—l-)
-1 1

2.2.6 Connection at the turning point

To match u; and U; at x=0, we need to known their behavior

near this point. The leading term in K’ at x=0 1s Cx so that

25
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Then from (2.27), (2.28) and (2.29) we obtain the behavior of

the u's near x = 0

(2)%(1c)3 (2)3 (2073
u, = A,—23 3 x uy = A3
T(2) T'(2)
(2.31)
(2)3 (L) (2)% (Lo
u, = B, —3 43 | x| u, =~ B.—3 23
I‘Lg) I‘LE)

It is clear from this that uf joins smoothly on to uf if B,=-A,

and that y;” joins shoothly on to Uy if,B_=—A

These relations between the coefficients dan be used to

obtain asymptotic forms like (2.19) and (2.20) for the two

independent solutions u' and U in the two regions {the

arbitrary multiplying cdnstants At are omitted).

26



+ - 1 - _ 5w
u . (E“k) ?Cos (&, 1z (2.32a)
~-(2%p) 2 (ezz+e'£=— 51':'1) (2.32b)

X~ 6
- (1 -3 ' _
u . (Enk) 2Cos (&, ———~12) (2.32¢)
-1 - 1 .
- (2mp) 2 (e re - T2)  (2.32q)
X —+—= ) L . .

2.2.7 Asymptotic connection fqrmulas

By forming suitable linear combinations of the independent
solutions u' and u we can form particular solutions with

specified asymptotic properties in either of the regions (x>0

or x<0) and can find the behavior of the solution in the other

region.

From (2.32b) and (2.32d) it is evident .that it is the
combination (u' + u) which decreases exponentially on going
into the interiof of the classically forbidden region (x;+ @) ;
on noting its asymptotic form as xX-+ +@ from (2.32a) and
{(2.32¢c) we see that ;t béhaves like k' Cos(El - n/4). Thus, we

have the first connection formula from the asymptotic region

X-» —-w to the region xX--+ +o.

27



Wi

1 - _Ez —_; . Tr
= et —= K - =) . 2.33
P cos (§; 4) ( )

The formula is not valid in the reverse direction, since a

slight error in the phase of the cosine function is enough to

introduce a small admixture of the exponentialLy increasing
function, which will overwhelm e-Ez for large negative x

values.

Another linear combination of u' and u gives the second

connection formula

_% T

-1 '
Sinnp et —— K *cos(§, —-Z.+ n) (2.34)

where N 1s appreciably different from zero Or an integer
multiple of w. Once again the formula holds only 1in the
direction indicated by the arrow, since a small admixture of
rthe qu term on the left hand side is enough to change the

phase on the right hand side-drastically.
. _ .

2.3 Eigen énergy of a Triangular potential

well.

We require the wave function to vanish at the Si/8i0,

interface, where z=0. This should be a good approximation for

. 28
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the Si/Sio, interface for which the potential barrier for

electrons is approximately 3 eV,

In most cases of interest for Si, the depletion layer is‘
huch wider than the inversion layer. The inversion layef is
even narrower for high channel doping levels, so that the
electrostatic potential V(z) (in the z direction) from the
interface is assumed to have a triangular form (a.triangular
potential well approximation).‘At the interface the-potential_
igs assumed to be infinite (Fig.2.2) i.é., |

V(2)=°‘°,' z<0

= eF .z, z20
(2.35)

where F; is the electric field perpendicular to fhe interface.
One of the turning points 1is Z=0, and the other one follows

from the equation V(z=b) = eFsb = E

b = (2.36)

For a potential trough (Fig.2.3) in the semi-classical
expressions for the wave function the phase starts in both

turning points at n/4.

The connection formula (2.33) can be applied at the

turning point z=a, which separates a type 2 region from the
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Fig- 2.2  Electrostatic potential well.
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type 1 region a<z<b. The only change is that the lower limit
on the El integral is changed from 0 to a, so that the solution

to the right of the turning point is
z
-3 ' T .
k 2Cr.:.s;'(fk dz——4—) _ (2.37)
a

apart from an arbitrary multiplying constant. Here, the turniﬁg
point z=a=0 corresponds to a “vertical potential wall" so that
the wave function must vanish at z=0 ‘and the phase should be
zero. As a resulfl(2.37) dées not start with a term.n/4,
instead it must start with pbase zero at z=0. Hence the

solution to the right of z=0 is

z
k2cos(fkdz - % - &)
frar-z-1

zZ
-1
=k 2t:'os(fkdz-%) (2.38)
a
The same connection formula can also be applied at z=b by

reversing the direction of the x axis and changing the fixed

limit on the { integral from 0 to b. We redefine

b z
El=fkdx, Ez=fpdx (2.39)
Z b

So that they‘still increase going away from the turning point.
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The solution to the left of this turning point is then
b
_1 T
k ZCO's(fkdx—z) (2.40)
Z
Which can be written as

Z
kicos([kdx - & - q)
i ax - 3

- z
=k'"5c*os{fkdx =X - Zy) (2.41)
J 2
where
b )
.
= - = 2.42
n '£kdx z | (2.42)

For the two solutions (2.38) and (2.41) to join smoothly

in the interior of region 1, the arguments of the cosine terms

must be equal. Hence the condition here is

n-—%} = nm M =0, 1, 2,... (2.43)

Using (2.42) and rearranging we get
S 2mlE. = V(z)] |
f‘/ = ‘ dz = (n+3)1: (2.44)
A % 4

Putting the value a=0 and b=E/eF; and integrating we get

a3



B! 2
E, = (;—;)3[%ner(n+%)]3 (2.45)

This is the analytical expression for enefgy subbands in the

inversion layer of MOSFETS.

In the electric quantum limit, when only the lowest energy
level 1is occupied a general solution for all kinds of
semiconductors and possible orientations of the surface can
be-obtained {7]. Hence, we take'n=0 in (2.45) and use the.‘
resulfing iowest energy level fof future calculations. The
lowest energy level of the triangular potential well is then

given by

e
wlw

(2.46)

S

E, = (32)3(ZenF,)

Now, in the MOSFET structure-the width of the inversion
layer is in the nanometer range for high substrate doping
levels. In this narrow range of inversion layer width the.
electrostatic ,potential of the well can be .assumed to be
'triangular. Cn the other hand the depth of the ﬁotential well
at the Si/SiOz interface is more than several electron volts,
so that it may virtually be treated as an infinite potential
barrier. Furthermore, the eleétric field normal toc the 81/810,
interface is assumed to be constant in the narrow potential
well. Conseguently the results of the triangular potential well
can be used in the inversion layér of the heavily doped

MOSFETs.
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2.4 Average separation of minority carriers.

From {(2.38) we get the scolution of the Schrodinger wave

equation inside the potential well given by

¥4
sin(fk dz) (2.47)
a

Using equation {2.8) and integrating within the limit z=b we

find

1]

%)
B
= INY I

N

z
fk dz
a

(2.48)

1
Y
N

where"

A= 2y2m E? (2.49)
32

Since the solutions produce a standing wave inside the
potential well we approximate Sin(AZ) = % inside the well. Now

using (2.8) again (2.47) becomes

u(z) = %ch[zm(En'— eF.z)] * - (2.50)

The average separation of carriers, (Fig.1.5), from the

$1/8i0; is then found by using

2., = <2> (2.51)

av

b
fz’u(z) dz
=.0 .
b
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Substituting the value of (2.50) into {(2.51 ) and performing

the integration we get

Eﬂ
eF,

Zao = 5 (2.52)

This is the required separation of carriers from the Si/SOz

interface.

2.5 Quantum Threshold Voltage.

To determine the gquantum threshold voltage of MOSFETS, the

classical definition of threshold voltage is applied here.

Classically at #=¥g; inversion layer carriers are
negligible compared to the depletion region ionized acceptors.
The surface potentiai due to depletion region ionized acceptors

is given by

eN,Z3
2€,

¢d = (2.53)
where 32, is the depth of the depletion region charge. The
concentration of-electrons at any distance Z perpendicular to

-the interface into the semiconductor is given by

n(z) = niefs('_d”) (2.54)

If ¢ is replaced by ¢p(2.53), and Z; by Z and also if the
condition that n{z=o0)=N, is applied for # = §;, then we get

eNy 22

‘n(z) = Nye ™7

{2.55)
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Integrating (2.55) from Z=0 to Z=w results in the total
concentration of electrons per meter square in the inversion
region given by
1
= (T Vel 5 ' .56
Nipv = (—52) 2.56)
This total electron concentration and the total impurity
ions NMM can be used in the quantum mechanical calculations

to find the electric field perpendicular to the Si/SiOz

interface. The electric field at the interface is given by

F - eNp - e(Ninv+Nd9§=1) (2.57)

e

g

where Nf=va+Nup1 and Nupl is given by (1.7). € is the

permittivity of silicon.

Using the calculated electric field in (2.46) and (2.52)
the first energy subband and average separation of carriers

from the Si/SOz interface can be determined.

. For a two-dimensional density of states given by D for

energies greater than Eo_is given by Fermi-Dirac statistics

N, = Df.—‘”; -  (2.58)
- E, 1+eﬁw-zﬁ .

Applying the easily verifiable formula

& _ = -1n (1 +eX) _ (2.59)

1+e*
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we get,

N, = DXt 10 [1 + ¥ B 5
=

1inv

] (2.60)

where, D is the density of states associated with a single
quantized energy level for a 2D system given by
emyn,

Tt h?

D = (2.61)
where ny, and my are the valley degeneracy and the density-of-

state effective mass per valley.

The band bending #; 1s associated with the depletion laver
charge {Fig.2.4). When an inversion layver has formed, the band

bending &4 is given approximately by

ed, = (E.-Ep), (2.62)

the energy difference between the bottom of the conduction band
in the bulk and the Fermi level. There are several corrections
to this wvalue. We have assumed that the depletion charge is
constant for a distance Zy, the depletion layer width, from the
surface:and then goes abruptly to zero. This aésumption fails
in the transition region from depletion to bulk,-in which the
field decays to zero exponentially with a characteristic
distance given by the bulk screening length. The correction to
edy is given in [8] to be equal to -kT, so that (2.62) can be

written as

edy = (E, - F)b‘ - kT
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Fig. 2.4 Band bending due to depletion charges.
(@) Surface potential wg and band bending
(b) Potential drop due to inversion charges
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The surface potential ¥, arises from the contribution_of both
the dépletion and inversion layer charges. Since the bottom of
the conduction band 1s taken as zero at the Si/s8i0 interface

we have

ews = (Ec - EF)b t+ EF

Now, the contribution of inversion layer electrons to the

- surface potential can be written as

174 eNinv Zav

i
€s

where, N is the total concentration of inversion layer

inv
electrons taking quantum-mechanical effects into account and

Z., is thelr average distance from the semiconductor-insulator

ay
interface. Thérefore, the band bending ¢d'associated with

depletion layer charges can be wriltten as

eb, = [(E.-Ep) ,+Ep-kt] - v, (2.63)

13

The last term in (2.63) is the potential drop V; across the

inversion lavyer.

The depletion laver width can be calculated by

z, = 2€s%q (2.64)
eN,

and the carrier. concentration is given by

Nyep: = ZaN, (2.65)
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- An one-dimensional searching algorithm, which is developed
in chapter three, is used to calculate Ny s Ep, ¥, 2y, Z; and

NMN’ Then the quantum threshold voltage can be computed by

Vp=E Vg =V, + ey, (2.66)
where,
' e_F_t
V,, = ——=9% (2.67)
eOX

is the oxide layer voltage drop, F, is the normal electric

field, t is the oxide layer thickness and ¢ is the

0x 0%

permittivity of the oxide.

2.6 Summary

WKB approximation is used in this chapter to solve the
Schrédinqer wave eqﬁation inside the triangular potential well
forﬁéd within the inversion layer of MOSFETs. Electrostatic
potentialiinside the narrow well israssumed:to be‘triangular
in shape and the electric field :normal to the Si/SiOz_is
assumed to be constant inside the well. Appropriaté boundary
conditions are used to determine the. mathematical expression
for the Eigen eriergy of the various sﬁbbands inside the well.
Then the solution of the Schrddinger wave equation is used to
determine the mathematical expression for the average
separation of minority carriers from the SiSOZinterface inside

the triangular potential well. Finally an analytical model is

41
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developed to calculate the guantum thresheld veltage using an
iterative methed. Classical threshecld veoltage 1s also

calculated to study the thresheld veltage shift due to guantum

mechanical effects.
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CHAPTER 3

RESULTS BASED ON ANALYTICAL
SOLUTION

3.1 Introduction

The MOS device is studied in this work using computational
method. The analytical scolution of thé MOSFET incorporating
quantum mechanical effects into account are compared with the
classical results. One dimensional searching algorithm is used
in the computational method and the MOS device is studied for
different channel doping levels and oxide layer thicknesses. The
lowest allowed energy level shift, the variation of inversion and
deplétion layer charge concentration, the variation of the
average penetration of ihversion layer charge from the si/sioz
interface and the threshold voltage shift due to gquantum

mechanical calculation are particularly studied here.

3.2 Computational method in studying MOS device

The classical concentration of minority carriers is

calculated using (2.56). The electric field perpendicular to the
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$i/8i0, interface is then calculated using (2.57). An one
dimensional searching algorithm is used to determine the
inversion and depletion laver minority carrier charge
concentration and the electric field produced by the sum of them
is compared with (2.57). If the two electric fields matches then
the‘searching algorithm comes to an end. In this process we also
get the corresponding Fermi energy level, surface potential,
potential due to depletion layer charge and depletion region
widfh. The quantum threshold voltage is calculated by (2.66) and

the classical threshold voltage is determined using (2.10).

3.3 Results and discussions

3.3.1 Energy 1level shift

The predicted difference between the energy level of the
lowest sub-band (EG) and the bottom of the cqnduction band (Ec)
increases as the surface potential is increased (Fig.3.1). The
difference between the two increases as the deviée bééémes more
strongly inverted. The variation of energy level shift with o
inversion layer charge is shown in (Fig.3.2). Since the lowest
allowed energy level has an energy above the bottom of the
conduction band, the effective silicon bandgap in the inversion
layer may be treated with a bandgap widening model. The amount
of widening is simply the difference in the energy between the

bottom of the conduction band Ec., and the first allowed energy
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Fig. 3.1 Effect of surface electric field on the
lowest energy subband.

45




Eo (eV)

0.25

0.13

0.07

‘lllljlilllllllilllIlllllllll.!llllliLl_il]Illllll

Fig. 3.2

—T v TP I 1T 1 T T 1T

10_15 10 17

N, (m_a‘ )

Lowest energy subband vs. inversion
layer charge.
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level, E Therefore, if E, is the bandgap,_the increase in the.

§
bandgap due to quantization is given as,

ge

AEg - EE?M _ Escr:‘lassical - Eo _ Ec (3.1)

It is convenient to model the apparent bandgap increase as a
decrease in the local effective intrinsic concentration.

Therefore, the new quantum mechanical effective intrinsic carrier

concentration I1. is given by,

ler

AE

, oM _ Classical { -21:3' ) (3.2)
Iepr — niaff x e
in which .ncuassnmlis the conventional model for the intrinsic

i aff
carrier concentration. Therefore, the lowest allowed energy level
E0 can be used as a parameter to model the effect of the
inversion layer quantization on the inversion charge density of

the MOS device. -

3.3.2 Inversion layer charge concentration

From (Fig.3.3) it can be seen that the quantum mechanical
inversion layer charge concentration varies considerably as the
surface potential i.e., gate voltage increases. Inversion layer

quantization decreases the rate at which the inversion layer
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Fig. 3.3 Effect of surface potential on inversion
layer charge.
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charge density increases with gate voltage. But 'the.inversion
layer charge density is dependent oh the lowest allowed energy
level (Fig.3.2). Therefore, it is again evident that the lowest
allowed energy level can'actually be used as a parameter to
model the effects of quantization on the inversion layer charge

density.

3.3.3 Depletion 1aYer charge concentration

As can be seen from (Fig.3.4) and (Fig.3.5) the variation
of depletion layer charge concentration is very small compared
to the inversion laye: charge concentration. Once strong’
inversion occurs, the depletion-layer width reaches a maximum
i.e., When the bands are bént down far enough such that ¥ =¥
the semiconductor 1is effectively shielded from further
penetration of the electric field by the inversion layer carriers
and even a very small increase in band bending {corresponding to
a very small increase in the depletion-layer width) results in
a véry large increase in thé charge density within the inversion
léyer. Theréfore, after séme_value-of gate voltaée‘depletion

layer <charge concentration becomes almost constant.

3.3.4 The average penetration of the inversion-

layer charge density from the surface

From (Fig.3.6) we observe that the average penetration of
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the inversionllayer carriers from the 8i/S8i0, interface decreases
with increasing surface electric field. As the gate voltage is
increased the band bending at the Si/SiOzinterface is increased.
The width of the guantum potential well, therefore, is decreased
and at the same time inversion layer carriers are more strongly
attracted to the Si/SiOZ interface. As a result the average
penetration of the inversion layer charge carriers from the

surface is decreased with increasing gate voltage.

3.3.5 Threshold voltage shift

The-predicted threshold voltage shift, due to quantization,

for devices with gate oxide thickness 10 nm is shown as a

function of channel doping levels in (Fig.3.7). It is readily
observed that the predicted threshold voltage shift, when the
quantization effects in the inversion layer are included and when
the classical prediction, i.e. no gquantum effects are taken into
account{ increases markedly with increasing channel doping

.leveis.'It is.'important. to account for this changé in thfeshold

voltage because of its strong role on the electrical .

characteristics, such as the drive current which directly

influences the device speed.

For a-given oxide layer thickness, as the channel doping
level is increased the 'electfic field perpendicular to the
S1/810; interface becomes stronger and the quantum nature of the
potential well becomes increasingly prominent. The band bending

at the.Si/SiOz interface becomes steep and the difference in the

energy between the bottom of the conduction bend Q:andithe first -
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allowed energy level E, increases. As a result to induce the same
amount of inversion layer charges the threshold voltage must be
increased. Again, the averége separation of inversion layer
carriers from the Si/SiOz interface is increased compared to the
classical solution and, therefore, the voltage drop given by this
increase of the average distance from the Si/Si0; interface
times the normal electric field must be supplied by the gate
voltage. Hence, the threshold veocltage is also increased by this

phenomena.

3.4 Summary

The mathematical model developed in chapter two is used here
to determine the threshold veoltage and other characteristics of
the MOS.device to study the guantum-mechanical effects on the

inversion layer minority carriers.

In the triangular potential well the energy level is

quantized and the lowest allowed energy level is shifted

substantially above the bottom of the conduction band at the.

Si/Si0, interface. The shift is increased with increased gate

voltage which increase the surface electric field. This is due

to the fact that at increased surface electric field the band

bending increases with the effect of producing steeper and deeper
potential well. As a result the gquantum-mechanical effects become
more prominent and the lowest allowed energy level is
correspondingly shifted above the bottom of the conduction band.
Consequently the loweét allo#ed energy level can be used as a
parameter to model the effect of the inversion layer guantization

on the inversion charge density of the MOS devices.
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Inversion layver charge concentration increases at a lower
rate with increased gate voltage i.e. surface electric field when
the quantum effects are considered. This is due to the fact that
with the upward shift of the lowest allowed energy level the
number of inversion layer <carriers cannot increase at the

previous rate which is exponential in nature.

The variation of depletion layer carriers is small compared
to the inversion layer carriers. Contrary to the classical case
where the depletion layer éarriers become almost constaﬁt after
.the threshold voltage is reached (addi;ional surface potential
increases only the inversion layer carriers), the depletion layer
carriers 1is found to be varying here. This is because the
depletion layer width i.e. depletion layer carrier concentration
is. dependent more strongly on the inversion layer carrier
concentration and their average penetration from the Si/SiOz

interface.

Threghold voltage is the critical voltage at which the
inversion layer is formed to a significant extent,.giving rise
itd a rapid increase of thé inversiocn laver dharge for hiéher gate
'voltages. Physiéally the threshold volfage supports a bulk charge
and at the same time introduces a band bending at the surface to
reach the strong inversion potential. Quantum-mechanical effects
shift the lowest allowed energy level and at the same time
displaces the inversion layer carriers from the Si/SiOz
interface. As a result increased gate voltage is needed to induce
 the same amount of inversion layer carriers. This increases the
threshold voltage. Withwthe increasing channel doping levels the

normal electric field at the Si/SiOz intefface 1s 1ncreased and
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_the increased effects: of gquantization results in a higher
threshold voltage. Also the oxide layer voltage drop is dependent
on the normal electric field; For a given channel doping level
threshold voltage decreases with decreasing oxide laye; thickness
since the oxide layer voltage drop is less and a smaller gate
voltage is needed to induce the same amount of inversion lavyer

carriers.
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CHAPTER 4

CONCLUSIONS

4.1 Conclusions

In this work an analysis is presented to study the quantum-
mechanical effects in the inversion layer of low dimensional
MOSFETs. The self-consistent splution of the Schrddinger .and
Poisson eguations " for the eigen energy of inversion layer
potential well is very time consuming. In this work the potential
well in the inversion layer is assumed to be triangular in shape

and an analytical expression for eigen energy has been determined

by solving Scﬁr&dingérr wave equation with the help of WKB

approximate method. The spatial distribution of the inversion
layer carriers has been taken into account by evaluating their
average distance into the semiconductor from the semiconductor-

insulator interface.

A computer efficient analytical model is developed to
determine threshold voltage of MOSFETs incorporating quantum-—

mechanical effects. Classical definition of threshold voltagé is
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used here to find a condition for gquantum threshold voltage. High
substrate doping levels and very narrow gate oxide thicknesses
were used to invéstigate different MOSFET characteristics, under

strong inversion conditions taking quahtum—meéhanical effects
into account and the results are given. The model developed uses
less CPU time and the results reflect the quantum-mechanical
predictions. The difference between the quantum and classical
threshold voltaée is found to be strongly dependent on substrate

doping level.

4.2 Suggestions for future work

The analytical model developed in this thesis describes the
MOS characteristics in the electric quantum limit i.e., we have
considered here only the lowest energy subband in the inversion
layer potential well. It is possible in future to develop similar
model by considering more energy subbands. Also Schrédinger wave
equatlon could be solved using a variational method for a better

approxlmate solutlon of the elgen energy
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