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ABSTRACT

The use of optimization technique for designing digital filters

is of widespread practice. For a given order, filters designed by
using the iterative methods can closely approximates the 'best'
filter for that order than by using other methods.

In the present work, a design technique using Hooke and Jeeves

pattern search technique has been implemented. The design procedure

.is based on frequency sampling method. Optimization technique has
also been implemented to define the transition region of the desired

filter to maximise the stop band attenuation.
An algorithm has also been presented which gives the solution

for designing a filter, when the pass band and stop band frequencies
and maximum tolerable deviations in pass band and stop band are

given but the order of the filter is not given.

The developed design technique has been implemented on a
IBM 4331 Computer using FORTRAN languagi!,~.

.t i, .
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INTRODUCTION



1. INTRODUCTION

1

1.1 GENERAL
The digital filter is a digital system that can be used to filter

discrete-time signalslO• It is the digital signal processor that
converts a sequence of numbers called the input to another sequence

of numbers called the output. A discrete-time signal, like a contin-

uous-time signa13 can be represented by a unique function of

frequency referred to as the frequency spectrum of the signal.

This is a description of the frequency content of the signal.
Filtering is the particular process by which the frequency spectrum

of a signal can be modified, reshaped, or manipulated according to

some desired specification. It can be implemented by means of

soft-ware or by means of dedicated hard-ware, and in either case

it can be used to filter real-time signals or non-real-time•..
(recorded) signals.

The advantages of digital filt~rs over analog filters are

the traditional advantages associated with digital systems in

general:
(1) Accuracy is high
(2) Physical size is small

(3) Reliability is high

A very important additional advantage of digital filters is the
\

ease with which filter parameters can be changed in order to

change the filter characteristics.

.I'
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As digital computers carne into scene, digital filters began to proli-

ferate. Digital filters have been. used by the scientists to solve many
interesting problems, some of its uses are like in picture processing
which uses digital filtering techniques to improve the clar~ty of

pictures obtained from remote sensing, interplanetory communications,

x-ray films. Other area of application include speech processing,

radar, sonar, and various fields of medical technology.

1.2 TERMINOLOGY
Before discussing the design issues, it is important to distinguish

the various types of digital filters.
1) Finite-Impulse-Response (FIR): This term means that the dura-

tion of the filter impulse response h(n) is finite, i.e.

h(n) = 0,

h(n) = 0,

and Nl) N2 "

1.1

. // ,'-
2) Infinite Duration Impulse Response (IIR): This term means that

the duration of the impulse response h(n) is infinite; i.e., there exi-
sts no finite values of either Nl or N2 such that (1.1) is satisfied.

3) Recursive realization: This term describes the way a filter

(either IIR or FIR) is realized. It means that the current filter output

y(n) is obtained explicitly in terms of past filter outputs y(n-l) ,..••

as well as in terms of past and present filter inputs x(n), x(n-l) ,...•.

Thus the output of a recursive realization can be written as
y(n) = F(y(n-l),y(n-2), ••..• , x(n),x(n-1), •••.. )

4) Nonrecursive realization: This term means that the current fil-

ter output y(n) is obtained explicitly in terms of only past and present

inputs; i.e., previous outputs are not used to generate the current out-

put. The representation on a nonrecursive realization can be written as

y(n) = F(x(n), x(n-l), ...•• )

[, r"l .•
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It should be noted that, in general, recursive realizations of II'R

filters and nonrecursive realizations of FIR filters are most
efficient and are usually used.

1.3 SOME ADVANTAGES OF FIR FILTERS

Among the advantages of FIR filters, over IIR filters are,

1) FIR filters can easily be designed to approximate a pres-

cribed magnitude frequency response to arbitrary accuracy with an
exactly linear phase characteristic.

2) FIR filters can be realized efficiently both nonrecursively

(using direct convolution6, or high-speed convolution by using the

fast Fourier transform2) and recursively (using a comb filter and
a bank of resonators).

3) An FIR filter realized nonrecursively is al~ays stable.
FIR filters realized non-recursively contain only zeros in the
finite z plane ~~--'c-c-~"~;:..~,??and hence are always stable.

4) Quantization and roundoff problems inherent in recursive
realization of IIR filters are generally negligible in nonrecursive
realization of FIR filters.

5) The coefficient accuracy problems inherent in sharp cUtoff

IIR filters can often be made less severe for realizations of
equally sharp FIR filters.

1.4 DESIGN OF FIR FILTERS USING WINDOWS

The most straightforward approach to FIR filter design is to obtain



4

a finite length impulse response by trancating an infinite-duration

impulse response s~quence. If we suppose that Hd(ejw) is an ideal

desired frequency response, then

n= - <><;

-jwne 1.2

where hd(n) is the corresponding impulse response sequence, i.e.,

Tr
I 1 jw. jwnhd(n) = ~ .2T[ Hd(e ) e dw........ 1.3

-1(

In general, Hd(ejw) for a frequency selective filter may be piecewise
constant with discontinuities at the boundaries between bands. In

such cases the sequence hd(n) is of infinite duration and it must

be truncated to obtain a finite-duration impUlse response Equations

(1.2) & (1.3) can be thought of as a Fourier series representation

of the periodic frequency response Hd(ejw), with ehe sequence hd(n)

playing the rdle of the 'Fourier coefficients". In order to control. '
the convergence of the Fourier series a weighting function is used

to modify the Fourier coefficients. This time-limited weighting func-

tion is called a window.

If hd(n) has infinite duration, one way to obtain a finite -

duration causal impulse response is to simply truncate h(n), 1.e.

defining

~

hd(n) ,
h(n) =

0, .

o~ n~N-1
".~.,1/ /:

Otherwise
1.4

In general, we can represent h(n) as the product of the desired

impulse response and a finite-duration "Window" w(n); i.e.,

h(n) = hd(n) w(n)
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where in the example of Eq. (1.4),

~

1,
wen) =

0, Otherwise
(1.5)

10Using the complex convolution theorem

:It" "

H(ejw) = ~~iHd(ej6) w(ej(w-e) de •••• 1.6
-iC

That is, H (ejw) is the periodic continuo.I.J73:"convolution of the desired

frequency response with the Fourier transform of the window. Thus the

frequency response H(ejw) will be a "smeared" version of the desired

response Hd(ejw). Figure 1.1(a) depicts typical functions Hd(e
j9)

jw-eand Wee ) as required in Eq. (1.6).

( a) ( b)
It

Fig. 1.1. (a) Convolution process implied by truncation of the desired
impulse response; ~

(b) Typical approximation resulting from windowing the derived
impulse response.

,
l--'
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From Equation (1.6) it is clear that if w(ejw) is narrow compared to

variations in Hd(ejw), then H(ejw) will "look like" Hd(ejw). Thus
the choice of window is governed by the desire to have wIn) as short

"as possible in duration so as to minimi~~ computation in the ,imple-
~mentation of the filter and to faithfully reproduce the desired

frequency responses.

1.5 COMPUTER-AIDED DESIGN OF FIR FILTERS
The window technique is straightforward to apply and is in a sense

quite general. However, we often wish to design a filter that is the

"best" that can be achieved for a given value of N. In the case of

window designs, it follows from a fundamental result of the theory

of Fourier series that the rectangular window provides the best
mean - square approximation to a desired, frequency response for a

given value of N. That is

1hd(n),

h(n) =
, 0,

minimizes the expression -

Otherwise

1\

E2 = ~ 2~i IHd (ejw) - 'H(ejw)12dW
-l[

However, it is found that this approximation criterion leads to

adverse behavior at discontinuities of Hd(ejw). A better criterion

for many types of filters is minimization of the maximum absolute

least square error. In our method of designing the FIR filters we

used an optimization technique governed by a pattern search iterative

procedure to minimize the least square error in one or more frequency

bands. This optimization technique yielded better filters than the

window method at the expense of greater complexity in the design
procedure.
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1.6 LITERATURE SURVEY

Since World War II, electronics engineers have speculated on the

applicability of digital hardware techniques to many proble~ 'areas

in which signal processing plays a role. Thus, for example, Laemmel
(1948), in Bell Telephone Laboratory tried to employ digital elements

to construct a filter. Needless to say, the conclusion then was not

favourable. Cost, size, and reliability strongly favoured analog

filtering and analog spectrum analysis techniques. In the 1950's,

Stockham (1955) reports that Linville, an MIT professor at that time,

discussed digital filtering at graduate seminars. By then, control

theory, based partly on Hurawiez's (1945) work, had become established
as a discipline; the concepts of sampling and its spectral effects

were well understood and the mathematical tools of z-transformation
theory, which had existed since Laplace's time, were propagating into
the electronics engineering community. It was not until the mid

1960's that a more formal theory of digital signal processing began
to emerge. By then the potential of integrated circuit technology

:.1"/ .'

was appreciated and it was not unreasonable to imagine complete

signal processing systems that could best be synthesized with digital
components.

The first major contributions in the area of digital filter design

were by kaiser (1966) at Bell Laboratories. Kaiser's work showed

clearly how to design useful digital filters using the bilinear

transform. Perhaps the most interesting aspect of the development

of the field of digital signal processing is the changing relationship

between the roles of FIR and IIR digital filters. Initially Kaisor

(1970) analyzed FIR filters using window functions, which indicated

that IIR filters were much more efficient than FIR filters. However,
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Stockham's work on the FFT (Fast Fourier Transform) method of

performing convolution, or more specifically FIR digital filtering,

indicated that implementation of high-order FIR filters could be
made extremely computationally efficient. These results also inspired

significant research for efficient designs for FIR filters.
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2.1 TYPES OF DISCRETE-TIME SIGNALS

'.,'.
. J f i 9

A continuous-time signal can be represented by a function x(t)

whose domain is a range of numbers (tl,t2), where -oC~tl and

t2~OCSimilarlY, a discrete-time signal can be represented by a

function x(nT), where T is a constant and n is an integer in the

range (nl,n2) such that - OC~nl and n2~oC. Alternatively, a dis-

crete-time signal can be represented by x(n). As for continuous-

time signals, two types of discrete-time signals can be identified,

namely nonquantized and quantized signals. A nonquantized signal

is one that can assume any value within a specified range, whereas

a quantized signal is one that can assume only a finite number of

discrete values. The various types of signals are illustrated in

the fig. 2.1.
~ L+),

,-

8

..,
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10

-2.
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/
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Fig. 2.1:
Legend X(t) = continuous-time signal, input to samplar

Xl (nT) = discrete-time signal (nonquantized), output of the samplar.

X(nT) or X(n) = digital signal, output ,of the quantizer.
tJ l .

2.2~. REPRESENTATION OF ARBITRARY SYSTEMS

Using the basic digital impulse sequence it is easy to represent

arbitrary sequence in terms of delayed and scaled impulses. For

example, the sequence P(n) of fig 2-2 can be expressed as

a -,1.
P (n)

I
al

I L
71-4 -3 -2 -1 0 1 ~12 3 "4 5 6 8

a2 a7
Fig. 2.2. Example of an arbitrary system

More generally, an arbitrary sequence can be expressed as

oc
X(n) = 2. X(k)?> (n-k)

k = -oc

2.1



2.~b LINEAR SHIFT-INVARIANT SYSTEMS

A system is defined mathematically as a unique transformation or
operator that maps an input sequence x(n) into an output sequence
y(n). This is denoted as

11

y(n) = T e'[x(nU•••.•.•••

and is often depicted as in fig. 2.3~,

X(n)---~@j---- y(n)

2.2

Fig. 2.3, Representation of the transformation that maps a~) input

sequence x(n) into an output sequence y(n).

The class of Linear systems is defined by the principle of super-

position. If Y1(n) and Y2(n) are the responses when x1(n) and
X2(n), respectively, are the inputs, then a system is linear, if
and only if

': I;

where, a and b are arbitrary constants.

Linear system can be completely characterized -by its impulse res-

ponse or unit sample response. Specifically, let hk{n) be the res-

ponse of the system to $(n-k), a unit sample occuring at n=k.

Then from eqn. 2.1.

y(n) = T~focX(K) ~ (n-k)]



.'

0<:-

Or y (n) = L X(k) T[bCn-kD
k= -oQ

0<;

Or y(n) = L:x(k) hk(n} ...... 2.4
k= -cc

12

Thus according to Eq. 2.4, the system response can be expressed

in terms of the response of the system to ~(n-k).

The class of shift-invariance systems(Time invariant system)

is characterized by the property that if y(n) is the response to

x(n), then y(n-k) is the response to x(n-k}, when k is a positive

or negative integer.

This property of shift invariance implies that if h(n) is the res-

ponse to 6(n), then the response to ~(n-k) is .simply h(n-k}.

Thus, Eq. 2.4, becomes,

y(n} = x(k) h(n-k) 2.5

Equation(2.5} is commonly called the convolution sum. It can be

represented as

oc
y(n) = x(n} * h(n) = z=. x(k)h(n-k)

k= -<>0

y(n} = h(n} * x(n) = L h(K) x(n-k) ••••••
k= - """'"

2.6

2.3 THE GENERAL DIFFERENCE EQUATION DESCRIBING THE DIGITAL FILTER

Let the sequence of numbers x(n) be such a set of equally spaced
". -measurements of some quantity x(f), where n is an integer and
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t is a continuous variable. If the sequence y(n) is computed by the

formula,

N

Lk=o

We can writeLM
, . y (n) =
i' ., , k=o

M
bky(n-k) = L arx(n-r),....••

r=o

N

Ck x(n-k) + L dk y(n-k),
k=l

2.7

2.8

Then this formula defines a digital filter. The coefficients, ar,
bk, ck & dk are constants. Thus a digital filter is merely a linear

combination of equally spaced samples x(n-k) of some function

X(t), together with the computed values of the output y(n-k). For

each successive n, the formula shifts one data point along the

string of data points, x(n-k).

In the case where all the coefficients dk of tpe y(n-k) are zero,

the filter is called nonrecursive; otherwise it is a recursive

filter. According to the duration of the impulse respons~ the

digital filters are classified into another two classes. If the

impulse response is of finite duration, it is reffered as a finite

impulse response (FIR) Filter, and if the impulse response is of

infinite duration, it is reffered as an infinite impulse response

(IIR) filter. The FIR filters are the nonrecursive type of digital

fillers i.e. the constants dk of Eq. 2,8 are zero. So, the equation

describing FIR filter is,

y(n) = i=
k=o

Ck x(n-k) •.••...

'..'.
.~..t/ /

2.9
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If fact, comparison with Eq. (2.6) shows that the above difference

equation is identical to the convolution sum, and hence if follows

directly that.

lC.n'n = 0,1, •••••• ,M
h(n) =

. .

0, Otherwise.

2.4 DERIVATION OF THE GENERAL TRANSFER FUNCTION OF
DIGITAL FILTERS

Let X(n} be the input to a linear time-invariant digital system,

wi t.han impulse response h (n), Let X (z) and H (z) be the z-transforms

of x(n) and h(n), respectively. The output y(n} is given by

y(n) = x(n) * h(n}

Applying the transform property (App;rndix A)

Y(z} = H(z) X(z}

where H(z) is the transfer function of the system. For deriving,
the General transfer function of the degital filter. Let us start

with the general equation (Eq. 2.7),

N M

~

bk y(n-k) = L a x(n-r)r
r=O

Applying the z - transform to each side we have

z~~
bk y(n-k~ = z It ar x (n-r]
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which from property of Appendix B in the Appendix A we can

rewrite as,

N2:k=o
M

=L
r=o

ar z [x (n-r)]

with the help of property ~of Appendix B, that,

= z-k y(z}

Thus, N

L
k=o

M

bk z-k y(z} = ~
r=o

-r
a
r
z X(z}

Or, H(z}
M=L::.r=o

a
r

-kz 2.10

. // .'

For FIR filter, we have, N=O,
M

Or H(z} = E
r=o

'2.11

+a z:-~ .".
m 2.12

The z transfer of a sequence is always a rational function of

either z or z-l (App-B). Thus, if we know the poles and zeros of

the z-transform H(z} of a sequence of inpulse response h(n}, we

2.13......
-1

(l-Z.z)
].

H(Z) =

can write H(z} in the fOllowing .form.
M

o<.IT
i=l

Nnl
(
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"

tion H(z) in z domain.

where, zi are the zeros andPk are the poles of the transfer func-
'.!.".-

1/ .to ••

Equation 2.13 is another general form of transfer functionof digital filters
2 .5 CONVERSION FRCM Z-OOMAIN TO FREQUENCY DCMAIN.

The Fourier transform xF(ejw) of a sequence x(n) is defined to be,

"'"2: x (n)
h:.-oc:;

-jnwe .... 2.14

Comparing this equation with defin.ing equation of z - transformation

(Appendix A), we can conclude that the Fourier transform of a
sequence is the z-transform of the sequence evaluated along the

unit circle in the z-plane (Appendix A), as shown in Fig ~.~.• , Of

jw A
z=e

Fig. 2.4. Fourier transforms are z-transforms evaluated
along the unit circle.

/
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For any integer K, we have,

jw j (w+2nk)e = e

jw = x[ej (w+21'k)]Hence, X(e )

This means that the Fourier transform of a sequence is a periodic

function of w.

Given the input sequence x(n), the output sequence y(n) can be

obtained by a convolution sum, as indicated by (2.6).

Let that x(n) is given by

!

"A

x (n) jwn= e , _OC<n,<oe
II I

Then the output y(n) is given by
oc

y(n) = L h(k) x(n-k)
k= -DC

=

k= -00

h (k)
jw (n-k)e

= jwne h (k) -jwke

k= -0(;

jwne

2.15
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where w is the input exponential<if';;;quency.,[Let x(t) = ejwt be

the exponential sinusoidal continuous ~ time function. Then the

where w~wT is the digital frequency of the sampled
corresponding
J'wnT jwne = e I

sampled sequence x(n) , 4is given by x (n)= x (nT) =

sequence x(n), and T is the sampling period] From (2.15), H(ejw)

is the multiplier to that converts the exponential input sequence

x(n) to the output sequence y(n). H(ejw) is called the frequency

response of the system. In otherwords, the frequency response

H(ejw) of a system S is the transfer function H(z) of the system

S evaluated along the unit circle - by letting z = ejw with

o ~ w < 21\- in the z-plane.

2.6 LINEAR PHASE CHARACTERISTICS OF FIR FILTERS:
The transfer function of an FIR digital filter is in the form of

H (z) =
N-I

L
n=o

h( n) -nz ....... 2.16

where the impulse response is of length N or has a duration of N

samples. If the impulse response of an FIR digital filter satisfies.

h(n) = h(N-1-n) 2.17

for n = 0, 1,

for n = 0,1,

...... ,

••••••• I

(N/2) - 1 if N is even, and
..i

(N-l)/2 if N, is Odd, then it can be shown

that the digital filter will have a linear phase characteristic.
Indeed, when N is odd, (2-16) and (2-17) give,

, '
N-I

~
n=o

,"/i ...

h(n) e-jnw
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•

(N-3)/2

= L [h(n) e-jnw+ h(N-1~n)'e-j (N-1-n)w].

n=o

=

(N-3) /2

~
n=o

h (n) [ e- j nw +
. {i .•.-

e-j(N-1-n)w]

+ h( N-1) e-j [(N-1~ /~ w

2

n=o

+

= e-j[(N-1)/~W{h(N;1)

(N-3)/2 }L h(n)G-j{n-[(N-1)/~ w +

(N-3) /2 ,

N;ljw}[ . ~ w{ N-1 +L 2 h (n) Cos [(n-
= e-j (N-1)/2 h(--2--)

n=o

In the same manner, when N is even, the frequency response is given

~(W) = - /H(e)jw) = N-1--IN
2 2.18

which is linear for -TI<w~Tl • The group delay function

N-1= 2 2.19
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linear phase filter for N=10. (even) is shown in fig (2-6). Here

~(w)=4.5, which reflects that the center of symmetry of the

impulse response lies midway between two samples. The definition

of a Linear phase filter [Eq. 2.1SJrequires the 'filter to have

both constant group delay and constant phase delay.

2.7 STABILITY CONSIDERATIONS

A linear and time-invariant digital system S is stable if its

impulse response hen) satisfies the condition

2.20
n= - DC

We will try to implement the above stability criterion in the case

of digital filters in the 2 - domain. Since, in the case of ,FIR
filter we know that the duration of the impulse response is finite,

so we can say that FIR filters will always satisfy the above

mentioned stability criterion. But to make it more specific and

clear we will first study the stability condition of IIR filter.

Considering the general transfer function of the fOllowing type

M

otTT -1(1-2.2 )
i=1 l

H (2) = ...... 2.21N -1n(1-P 2 )k
k=1

Any filter whose transfer functions are given by (2.21) with N11
is called an IIR digital £ilter, because there does not exist a
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finite integer L such that, h(n) = 0, for n»~ ,

where h(n) is the impulse response of the filter.

Considering, M~N, a partial fraction expansion of (2.21) gives.

H(z) =c fl Ez EN+ --- + -1 + ...... + -10 -1 1-P2z 1-P z1-P z N1

where, E: , = (1-P,z-1)H(z)1 for i=1,2, ••.••. N.
~ ~ '\z=p,

~

and Pi are the poles ,of (2.21) .
"," J / -,'

Hence, the corresponding impulse response of (2.21) with the help

of inverse. Z-transform is

h(n) = [E1I1
n + E2 P~ + .•••. +~NP~J u(n)

, .
+~ ~ (n) (2.22)

Clearly, the necessary and sufficient conditions for the impulse

response of (2.21) to satisfy the stability criteria of Eg. (2.20)

is that, I Pil< 1 for i = 1,2, .•••• , N. That is all the pole loca-

tions of the digital filter are within the unit circle in the

z-plane.

We know that the Transfer function of FIR digital filter does not

carry any poles. Hence, this type of filter is always stable.



CHAPTER - 3

REALIZATION OF FIR FILTER
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3.1 Introduction

As stated before, a digital filter can be implemented either as

software on a general or special - purpose computer or as hardware.
'.!.

Either way, the basic concepts of digital filter implementation

involve the fOllowing two steps:
1. to convert the input-output relationship of a digital filter

into an algorithm.

2. to implement or to realize the algorithm ,in terms of a set

of basic operations or digital hardware.

In this chapter a direct form approach of realization of FIR filters

is suggested.

3.2 Basic Buildi~ Block Considerations

We know the FIR filter transfer function can be written in the

-nzh(n)Y (z )= X (z)
H (z)

following form from Eq. (2- ).
N,-l

=~

n=o

Or, H(z)
o -1 -2= aoz +alz +a z . +a2 •••••• M

-Mz 3.1

where X(z) and Y(z) are, respectively, the z-transforms of the input

and the output sequences. To realize this transfer function, We convert

it into a difference equations as

y(n) = ao x(n) + al x(n-l) + a2 x(n-2) ••...••

+ a x(n-M)
m

3.2
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To realize the transfer function of (3.1) is equivalent to 'imple-

menting the algorithm of (3.2), which requires the following:

a) delay units or shift registers to store past, output values;

b) mul tipl iers or mul tipl ication operations to provide the
necessary scaling or weighting factors to sampled values; and

c) summers or addition operations to add up the various quantities

indicated on the right-hand side of (3.2) to give the present

output values.

Fig. 3.1 illustrates the symbols and operations of these basic

building blocks.

Cd
y,VO = X(n-l)

x (n)
_____ ---l~~ z -1'-------------'".-

(a)

__ X_2_(n_)_'._~r-b-)--".--------

__x~~-n-)--b
(c)

y(n) = ax(n),

Fig. 3.1. Basic building blocks for digital filters:

a) delays, b) summers and c) multipliers.
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A simplified symbol representation of these building blocks is

illustrated in the figure (3.2).

Xl (n) Xl(n)

X2(n)
y(n)

I X2(n) +I

I

XL (n) I
I

(a) X3 (n)
+

I,
I.

xL(n) ci:l (b)
Y (n)

x(n)
a,

(c)

y (n)
X (n) --- G>--~..-~y(n)

(d)

Fig. (3.2) Simplified schematics for (a) and (b) summers,

and (c) and (d) multipliers.

3.3 Direct Realization

There 'are many techniques in the direct approach to realize digital

transfer functions. Among the well-known techniques are the direct

forms, ladder and lattice structures, multiplier - extraction

techniques, and the,modular forms of wav~digital filters. The
. Ii .•.

direct form is the realization technique that implement the difference
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equation of the filter. The multiplying constants are the coeffi-

cients of the transfer function. For low-order transfer functions,

the direct form is very competitive in performance and cost.

A realization of the transfer function of (3.1) can be

obtained by implementing a computation procedure for (3.2). Figure
3.3 shows a digital network implementation of (3.2). This configu-

1/ I

ration is called the direct form realization of the transfer func-

tion of (3.1).

(n)

x(n)
-1 -1Z Z

a a1 a30

-1Z

a(M-l) aM y

Fig. 3.3. Realization of FIR filters by Direct approach.

To analyse the hardware implementation we consider a filter with

impulse response duration of 7 i.e. N = 7. The direct form realization

is illustrated in the figure 3.4.

X(n) -1Z -1Z -1Z -1z

ao

Fig. 3.4. Direct form FIR filter with N=7. yIn)

a~
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Figure 3.5 shows a simple structure for realizing the filter of

Fig. 3.4 using a single computational element (consisting of a multi-

plier and an adder), a shift resister to hold the filter states,

and a ROM for the coefficients. The important element of this figure

is the manner in which the shift register is controlled. By means

of a multiplier and an accumulator, a single output sample can be

computed by successive addition as the shift register circulates.

During the first computation (of a6 x(n-6), the new input x(n) inters

the shift register while x(n-6) is sh~f'ted off the end. Aft~rward,

each iteration includes a circulation of one datum around the shift
register, as indicated in the chart accompanying Fig. 3.5. When y(n)
is obtained, it is sent on while the accumulator is cleared; then

the next major cycle begins.

,
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~-~_~ x<n-l)H x(n-z)H X(n-3)1~ x(n-4) Hx(n-s)]--l X(n-6}~

~ x(n,j

ACCUMULATOR
REGISTER

1) CLEARR _S_T_A_T_E_O_F_RlQ..

--Ix (n-4)~X (n-s)~ x (n-l)f-j X(~-Z) f-Ix (n-3p

a6,x(n-6) +as (n-S)

+ a4x{n-4)

x (n-2 )Hi{;1-3)1-1 x (n-Z+J...;x(n-S}H x(n)H x(n-l)H

4) a4x(n-4)' + R---+R

Z)a6x(n-6) + R_R

~ x(n)H X(n-l)H X(n-Z)H x(n-3)H x(n-4}H x (n-s7}J

3) as x(n-S) + R--+R

S) a3x(n-3) + R---R

~x (n-3)f--jx (n-4)Hx (n-s}f--j x(n)Hx (n-l) ~x (n-zp

6) aZx(n-Z) + R--,R

-Ix (n-Z)Hx (n-3)t--!x (n-4)Hx (n-S)~x (n-liJ

7) a1x(n-l) + R~R

-1x (n-,llHx (n-z)Hx (n-3 )HX (n-4)Hx (n-Sl~

8) aox(n) + R R ':l
-.jx (n)H x (n-l) H x (n-z)H-x-(-n---3-)H x (n-4}H-.x-(-n---s~

6 a x (n-m)

~
m

6

L a x{n-m)m
m=Z

1:- a x (n-m)
m=l m

t amx(n-ml =y (n)
m=o

Fig. 3.S. Structure, program, and states for irrplerrentation
of direct formFIR filter.
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4.1 Introduction

Many work have been done on the design techniques of FIR digital

filters, the objective of most of the work is to'develop a method

for building up a filter which approximates the desired charac-

teristics very closely. For example the simplest method of

windowing design is a cornmon one. There are also other methods

such as discrete fo'urier transform and equiripple approximation.
Applying all these design techniques the filter which is developed

requires some compromise with its desired characteristic. In most

of the cases the compromise is made with the transition region,

which results in a loss of information in the transition frequency
band.

In our designwith the optimizationtechnique,much care is taken to study the

transitionregion and selectingSOme optimal transitionpoints to yield relatively

better filterwith minimumdeviationsin the pass and stop bands: The purpose
of optimization is to find the best possible solution among the many
potential solutions for a given problem in terms of some effectiveness

or performance criterion. In this computer aided design we used

Hooke and Jeeves pattern search (direct search) iterative optimization

algorithm4• Using this search technique the resulted filter is a

better one with specified tolerance of ripple in the pass band and

stop band with tolerable transition region, but with the expense of

greater computer time.

4.2 HOOKE AND JEEVES PATTERN SEARCH OPTIMIZATION TECHNIQUE

Conceptually, the simplest type of se~ich method is to change one

variable at a time while keeping all the others constant until the

r'. '
I ,
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minimum is reached. The algorithm consists of two major phases, an

"exploratory search" around the base point and a "pattern search"

in a direction selected for minimization. Figure 4..1 is a simplified

information flow diagram of the direct search algorithm. This

algorithm operates in the following manner. Initial values for all

the elements of x must be provided, as well as an initial incremental

change AX. To initiate an exploratory search, f(x) is evaluated
. if'"

at a base point (the base point is the vector of initial guesses

of the independent variables for the first cycle). Then each variable

is changed in rotation, one at a time, by incremental amounts, until
all the parameters have been so changed. To be specific, x~o} is changed
by an amount +4X~0), so that x~l) = x~O)+.6x~O}. If f(x} is 'reduced,

x~o} + ~ x~o) is adopted as the new elemerit in x. If the increment

fails to improve the objective function, x~o} is changed by

and the value of f(x) again checked as before. If the value
(0 )

is not improved by either xiO) ~~xl ,x~O) is left unchanged. Then
xiO) is changed by an amount ~xiO}, and so on, until all the inde-

pendent variables have been changed to complete one exploratory

search. For each step or move in the independent variable, the value

of the objective function is compared with the value at the previous

point. If the objective function is improved for the given step, then

the new value of the objective function replaces the old one in the

testing. However, if a perturbation is a failure, then the old
value of f(x} is retained~

,After making one (or more) exploratory searches in this fashion,

a "pattern search" is made in the following way,

(k+ 1)'x.~
(b) ,

x. '~
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( ) ..
START ,

1

Evaluate f(xtort the
base pOint(x initially)

2 .

Carry out type I exploratory search
from base point. After last per-(b)
turbation, is f(x) less than f(x ) I

at old base point?

No YES
.

6
. . • 3

Is perturbation size Set new base
.6x less than some -<0 point
prescribed small f(x(b)=f(x)
number?

No [ STOP
. 4

,.

7 Carry out pattern
search

Reduce perturba tion
I. parameter

5
Carry out type II
exploratory search.
After last perturbation.. .f (x) less than

r/ " f(x(b») in (3) ?

Yes No, •

Fig 4.1. Information flow diagram for pattern search minimization.



where, (k+ 1)x.~ is the new pattern search vector, x(b)~ is the old
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base vector and x~k) is the new base vector after 1st successful
1 . II i"

type I exploratory search is obtained. After the successful pattern
search, an exploratory search is conducted which is known as type II

exploratory search, and the success or failure of a pattern move is
not established until after the type II exploratory search has been

completed. If f(x) is not decreased after the type II exploratory

.search, the pattern search is said to fail, and a new type I exploratory

search is made in order to define a new successful direction. If the
type I exploratory search fails to give a new successful direction,

AX is reduced gradually, until either a new successful direction

can be defined or each AX. becomes smaller than some preset tolerance.~

Failure to decrease f(x)' for a very small AX indicates that a optimum

point has been reached. Figure 4.2, describes the whole procedure of

searching operation.
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• Base ve~tors x(b)
Exploratory search steps

success
failure.

Pattern search steps
success

+++++ Failure,

Fig. 4.2. A simplified diagram explaining the steps of HOOKE
& JEEVES optimization technique.
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4.3 DESIGN OF THE FIR FILTER

4.3.1 SPECIFICATION OF THE DESIRED FILTER:-

To design a' filter, the first step is to consider some desired

34

specifications. In most of the cases much care is taken, so that the

desired filter characteristics is matched closely with the ideal

filter characteristics. Some parameters of the ideal filter charac-

teristics are illustrated in the fig. 4.3.

, It!l1eJ(J

j.1"~1

;1.--

i- '",

Fig. 4.3. Idealized frequency response ( ---_-_-- curve)
Designed filter output frequency response ( curve)

In the above figure, ~ and b2 are the permissible passband and

stopband ripple respectively and Fp and Fs are the pass-band and
stop-band cutoff frequencies. The other useful parameter indicated

in the figure is the transition width AF which is defined as

L> F = Fi:; - Fp •.•..•••..•••••• 4.1

Since from the beginning we are interested to design the filters with

tolerable transition region, a compromise is made with the ripples,
, "

. /l ..-
61 and b 2 in our design procedure. The ripples are the result of
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the well. known Gribbs phenomenon. The reason for them is the presence

of the sharp discontinuity in the transition region.

The design of an FIR filter may be accomplished by finding either

its impulse response co-efficient or N samples of its frequency response.

In our work we have concerned with the design techniques of low pass

FIR filters only.
The design technique followed can be surnrnerisedas (1) to specify

the desired characteristics of the filter to be designed and (2)

to reach the filter equation for a given order which minimises a spec i-

fied error function. To achieve the desired filter equation we have

followed the optimisation technique (Hooke and Jeeves pattern search
,. j / ,.-

methods) •

Fig (4.4) shows the ideal frequency response of a low pass

filter in a frequency sampled form.

/H(ei"')(

1 -----------

oL --l,. ~--"-7r
Q ~ ~~

Fig (4.4) Fixed samples of ideal lowpass filter frequency
response with no transition sample.

Mathematically the frequency response can be expressed as,

= 0, otherwise.
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The equation of the FIR filter can be expressed as

H(z)
N-l=2: -nh(n)z

n=o

The solution of the design technique is to find out the values of h(n)

for which the error function E(w) is minimised. In our present problem

we have defined the error function as

4 •.2

Another error function which is often used may be named as the maximum

error in passband or stop band. To ensure the linear phase characte-

ristics of the filter, a constrain has been imposed on the optimization

such that, h(n) = h(N-l-n).
For a specification similar to the above mentioned one, a

N = 14 gives the characteristics as shown ~~;l
figure(4.5a). The figure shows that the minimum stop band attenuatiO'n
filter of the order

is about ZO dB, which is unsatisfactory for many purpose. This is a

well known method to improve the minimum stop band attenuation by

increasing the transition width. Figure (4.6) shows a specification

where two samples Hl and HZ have been introduced in the transition

region .. 'The attenuation in the stop band depends upon the

/IKI"J/
1------------- r/"

• H,

OLD --' ..,_". __ J."
we

Fig. 4.6. Frequency sampling design using two transition samples.
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values of HI and HZ of course it is also dependent upon the'number

of such parameters. Optimization technique can be used to vary these
parameters so as to give the best approximation to the desired filter

i.e. to improve maximally the minimum attenuation in the stop band.

In our design process we have devided the transition region into three

equal parts and hence always used two samp'lesHI and HZ in that region.

Their values have been choosen by applying the optimisation technique

such that it minimises the maximum deviation in the stop band. Future

work may be suggested for defining the transition region more effici-

ently. Figure (4.5b) shows a designed characteristic of such a filter

with order N = 14. As can be seen from the above mentioned

two characteristics by using two transition samples and increasing N,

the stop band attenuation is increased tremendously.
In many design problem it is usual practice to specify the pass

band frequency Fp stop band frequency Fs tolarable deviations61

and b Z in pass band and stopband respectively, Now, the designer's

duty is to find out the required order N of the filter and the equation

that optimum filter satisfying the specifications. To solve such
problems we have proceeded as below:-

Based on

low-pass

measurements on an extensive set of optimal, linear phase,

filters, H~rrman~qemperiCallY determined the relationship

between b I' b Z' Fp' Fsand .p. F.

as, D = ~ (~I,bZ) - f( 01' ~z) ( ~F)Z e .••• "••• ;. ••• "••• ". 4.3

where, D = (N-I)L>F ......

"/1 -'

4.4
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+r4(10g10 01)2 + as 10g10b1 +a~ 4.5

.. // "

with,

a1 = 5.309 X 10-3

a2 = 7.114 X 10-2

a3 = -4.761 X 10-1

a4 = -2.66 X 10-3

as = -5.941 X 10-1

a6 = -4.278 X 10-1

and

f( 61, 62) = b1 + b2 log1061 - b2 log10&;2 .... 4 .6

with b1 = 11.01217

b2 = 0.51244



41

The coefficients in (4.5) and (4.6) were determined by a minimum

mean - square error fitting procedure to the data, whereas the
forms for (4.3) and (4.4) were suggested by some simple data fitting

procedures.

For the design of the filter, the given specified parameters

are Fp' Fs' 01 and (:;2. The unspecified parameter is N. In this case
Equations (4.3) and 4.4) may be used to give N, the estimate of N, as

N = 4 .7

path

A
of N is

Figure (4.7) shows the logic required to obtain the actual value
/' 'of N that is required. After estimating N from (4.7), the direction

parameter JD is initialized to O. The parameter ~, Fp, Fs' <11 and °2

are used as input to the optimal design algorithm (Hooke and Jeeves
"pattern search technique) that returns the value 62 as the actual

deviation in the stopband. This value is compared with 62 and if

they are equal the algorithm goes for a second check about Sl.
/' I-If 62 >62 then N is incremented by 2(i.e. one filter order) and a

check is made to see if the direction parameter JD was -I, indicating
A '"that N had previously been decreasing. If so, the new value of N is

the smallest N that meets the requirement for 62 and the algorithm goes
to point(2~If not, the value of JD is set to 1 and the updated value

used as input to the optimal design algorithm. A similar
". -

is taken if 621.... 62 whereby if JDwas I, the current value of
to ~N is the minimum value of N. Otherwise N is decreased by 2 and JD

set to -1 and the algorithm repeats.
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CALCULATE N
USING EQN. 4.7

JD=O

INVOKE OPl'IMAL
DESIGN ALGORITHM ',' "

II.'

<

JD= 1

"'. /'
N = N-2

NO

YES
2

NO

• OPl'IMAL
DESIGN ALGORITHM

Fig 4.7. Algorithm for choosing snallestN"to rreet specifications on F ,F ,6 andlS
A PSI 2'
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The process for attaining the value of 61 within the specified

tolerance is also explained in the flow chart 4.7

Now for an example, we have designed an optimal low pass FIR
filter with the following specifications,

b1 = 0.0001

52 = 0.0003

F = 1.6P

F = 1.8s

The resulted frequence response of the transfer function is
show in the fig. 4.8.
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK
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5.1 CONCLUSIONS:

In the present work, a design technique using Hooke and Jevees

pattern search technique has been implemented. The design procedure
is based on frequency sampling method. Optimization technique

has also been implemented to define the transition region of the

desired filter to maximise the stop band attenuation.

The present method for designing the low-pass FIR filter

the results which we have obtained are quite satisfactory and the

resulted filter could be rightly claimed to be close to the 'best'

filter for that particular value of N (derived from the iterative

loops of the algorithm shown in fig. 4.7~

5.2 SUGGESTIONS FOR FUTURE WORK:

In this method we have taken the Hooke and Jeeves pattern 'search

optimization technique. For further analysis different optimization

techniques can be used and a modification of the present algorithm

can be made in a view to improve the flexibility of the total

program.

In our work we have concentrated on the design of low-pass

filter only. Future work can be extended for other FIR filters

such as high-pass, band-pass and band-reject types. New approaches

for defining the transition region points efficiently can be inves-

tigated.

" /{ /.
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APPENDIX - A

THE Z TRANSFORMATION

Although the conventional Laplace transformation can be used, the
analysis of discrete-time signals (sampled-data systems) is greatly

facilitated by the introduction of the z transformation, especially

when responses only at the sampling instants are desired.

A sampler is needed to generate the discrete-time signal of a

continuous input signal. The function of a sampler is illustrated

in fig. 1.2, where the sampler is represented bya simple switch.

If the duration of the sampling pulses is small in comparison with

the time constants of the system of which the sampler is a part,

the sampled output f(nT) or f(n) can be considered as a sequence of

impulses occuring at the sampling instants, O,T,2T,3T, •••.•• ,.
the strengths of the individual impulses being. equal to ;the values

of the input function f(t) at the respective instants.
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. 1Thus we can write ,

f (nT) = f( t) bT (t),

where, f(nT) is the discrete, sampled function, and bT(t)

represents a periodic train of unit impulses spaced T seconds apart:
C>C

'Z. J(t-nT),
n= _0<:

when, T is the sampling rate.

If f(t) = 0 for t <0, Eq. (1-1) becomes, with the help of

convolution summation

1.1

o<J

f(nT) = 2:
n=O

f(nT) ~t-nT) . ~.. 1.2

(:>4

Or f(n) = L
n=O

. "
f (;{fj £( t-nT) ... ~ . 1.3

as f(nT) _ f(n).

Now taking the Laplace transform of the sam~led output function

f(n) and denoting the result by F(S), we have

cC

[(t-nT]F (s) = L [f(n0 = L[~f(nT)

OC'

-
~

f (nT)e.,.nTs 1.4...........
n=o
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since, L[k ~(t~ = k

or L[k ~(t-to0 = k e-toS

Since s appears in Eq. 1-4, only in the exponential factor, it is

convenient to introduce a new symbol:

Tsz = e

we have from Eqs, (1.4) & (1.5)

00

F(z) = ~ f(nT)z-n = z[f(nQ

n=o

Equatdon (1.6) defines the z transformation, F(z). of the

sampled function f(nT).

1.5

1.6

Hence the z - transform x(z) of a sequence x(n) is defined to be

where, z is a complex variable. Hence, X(z) is complex quantity.

The z - transform method is a very useful tool in solving

linear difference equations. It reduces the solutions of such equa-

tions into those of algebraic equations. !he application of z -

transforms to a set of difference equations is analogous to the

application of Laplace transforms to a set of differential equations.



1.2 APPLICATION OF Z - TRANSFORMATION TO OPEN-LOOP SYSTEMS

i(t) i(n) o(t)

-~,./~.--Q~-~/.
I (s) I~(s) -0 0 (s)

o (t)

0* (s)

Fig. 1.3. A system with sampled input function.

The block-diagram representation of a simple sampled - data system

in which the input function i(t) is periodically sampled by the

sampler is shown in Fig. 1.3. The transfer function, H(S), is the
; /1 I

ratio of the Laplace transform of the output function to the Laplace.

transform of the input function, irrespective of whether the input

function is continuous or sampled. Thus, for the situation in the

above fig. can be expressed as,

O(S) =H(S)I*(S)

where, I*(S) is the Laplace transform of the sampled input

function.

It is analogous to the Laplace transform that the z - transformed

relationship for a system in which both the input and the outpu.c

are sampled in synchronism is simply,

O(z) = H(z) I (z) 1.8



where, H(z) = z[h(nTD i.e. z tl:ansform of the s,ampled Impulse

response.

I(z) = z transform of the sampled input

4

& O(z) = z transform of the sampled output signal.

1.3 MAPPING OF JW-AXIS IN S pLANE ONTO Z PLANE AND ITS
SIGNIFICANCE IN STABILITY CRITERION OF SAMPLED-DATA
FEEDBACK SYSTEMS

STWe have, z = e ........... 1.9

But we have, S = 0-+ jw ......... 1.10

using Eq; 1.10, in 1.9, we have,

o-T jwTz=e e .

where T is the sampling period.
On the imaginary axis of the s-plane,

1.11

17'" = 0, Hence, I ' T
z . = e

Jw

0.=0

= 1

0>= 0

• <. ••• 1.12

"
Equation (1.12) shows very clearly th<l:tthe jw-axis of the s-plane

maps onto the z-plane as a unit circle centred at the origin. As

the angular frequency w is inc-reased from -oC through 0 to -+OC ,

the unit circle is traced over and over'again every time wT goes

through an angle of 2n radians.



For points in the right half of the s-plane, OV;>O and from Eq.

1.11, Izl> 1. Thus, the right half of the s-plane maps ant" the
z-plane as the region exterior to the unit circle, correspondingly,

the left half of the s-plane maps

Fig. 1.4. Mapping of jw-axis in s-plane onto z-plane.

a) jw-axis in s-plane.

b) Unit circle in z-plane (n=any integer

from -oC to -roc)

over as the interior of the unit circle.

The necessary and sufficient condition for a sampled - data feed-

back system to be stable is that all the poles of its over-all



transfer function lie inside the unit circle in the z-plane. An

alternative statement for the stability requirement is: the necessaryv
and sufficient condition for a sampled - data feedback system to
be stable is that all the roots of its characteristics

in z, have an absolute value less than one.

",".If/"; .

equation
r

•



3

APPENDIX B

Z-Transform Pairs of Some Causal. Sequences

Causal Seauence x (n) Z-Transforms of Causal Seauences
. oc
x(n)=O for n<: 0 X(z) L -n= x(n)z

n=o .
.

x(n) = 2,(n) X (z) = 1

x (n) ~ (n-m) X (z) -m
= = z

x (n) u (n) X (z) z 1
= = =z-l 1-z -1

x (n) nu(n) X (z) z 1= a = =z-a 1-az -1

-1
x (n) = nu (n) X (z) z z= (Z_1)2

-- '1 -1) 2\ -z
,

x (n) La nsin nw.jJu (n) X (z) az sin wT= = 2 2z -2az cos wT+a

-1 sin wTaz= 2 -2 -2az -1 wT+1a z cos

x (n) = [ancos nWTJ u (n) X (z) = z(z-a cos wT)
2 2z -2az cos wT +a

1-az -1 wTcos= 2 -2 -2az -1.a..z cos wT+1
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