DSpace Repository

Intrinsic and interfacial thermal transport in stanene/hexagonal boron nitride heterostructure

Show simple item record

dc.contributor.advisor A.K.M.MonjurMorshed, Dr.
dc.contributor.author Das, Priom
dc.date.accessioned 2024-11-23T10:38:47Z
dc.date.available 2024-11-23T10:38:47Z
dc.date.issued 2024-09-29
dc.identifier.uri http://lib.buet.ac.bd:8080/xmlui/handle/123456789/6900
dc.description.abstract Recently, the stanene (Sn) / hexagonal boron nitride (h-BN) van der Waals heterostructure(vdW) has garnered significant attention among the scientific community due to its distinctiveelectricalandopticalcharacteristics.Despitethepromisingpotentialofthisheterostructure,its in-plane phonon thermal conductivity (PTC) and interfacial thermal resistance (ITR)remain unexplored.In this study, we employ molecular dynamics (MD) simulations toexplore the thermal characteristics of this heterostructure, revealing an ITR of approximately7×10−8K•m2/W and a PTC of about 37.1 W/m•K for a 30×10 nm2Sn/h-BN nanosheet atroom temperature. We further investigate the influence of several key parameters—includingnanosheet size (ranging from 10nm to 400nm), temperature (spanning from 100K to600K),vacancyconcentration(0.25%to2%),contactpressure(0.5to20),andmechanicaltensile strain (1% to 5%) in both uniaxial and biaxial directions—on the modulation ofthese thermal properties. Our findings reveal that with increasing nanosheet size, the in-plane phonon thermal conductivity (PTC) gradually rises, while the interfacial thermalresistance (ITR) consistently decreases.The results further demonstrate that increasingtemperature, contact pressure, and defect concentration tend to reduce both PTC and ITR,whereas mechanical strain notably enhances both properties. To elucidate these behaviors,wecalculatethePhononDensityofStates(PDOS)profilesofboththeh-BNandSnlayers.All these parameters collectively change the PDOS profiles of the individual Sn and h-BNmonolayers, thereby influencing their thermal properties.This work will provide boththeoretical support and logical guidelines for modulating thermal resistance and in-planethermal conductivity across diverse dissimilar material interfaces, which will be necessaryfor the development of advanced nanodevices used in next-generation nanoelectronics,nanophotonic,andoptoelectronicsapplications. en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical Engineering, BUET en_US
dc.subject Thermal behavior-Engineering materials en_US
dc.title Intrinsic and interfacial thermal transport in stanene/hexagonal boron nitride heterostructure en_US
dc.type Thesis-MSc en_US
dc.contributor.id 0422102056 en_US
dc.identifier.accessionNumber 119853
dc.contributor.callno 620.16/DAS/2024 en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search BUET IR


Advanced Search

Browse

My Account